PARP-dependent and NAT10-independent acetylation of N4-cytidine in RNA appears in UV-damaged chromatin
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
68081707
Institute of Biophysics, Academy of Sciences of the Czech Republic
PubMed
37322549
PubMed Central
PMC10268562
DOI
10.1186/s13072-023-00501-x
PII: 10.1186/s13072-023-00501-x
Knihovny.cz E-zdroje
- Klíčová slova
- DNA repair, NAT10, PARP, RNA acetylation, RNA methylation,
- MeSH
- acetylace MeSH
- chromatin MeSH
- cytidin * genetika metabolismus MeSH
- PARP inhibitory MeSH
- RNA * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- chromatin MeSH
- cytidin * MeSH
- PARP inhibitory MeSH
- RNA * MeSH
RNA modifications have been known for many years, but their function has not been fully elucidated yet. For instance, the regulatory role of acetylation on N4-cytidine (ac4C) in RNA can be explored not only in terms of RNA stability and mRNA translation but also in DNA repair. Here, we observe a high level of ac4C RNA at DNA lesions in interphase cells and irradiated cells in telophase. Ac4C RNA appears in the damaged genome from 2 to 45 min after microirradiation. However, RNA cytidine acetyltransferase NAT10 did not accumulate to damaged sites, and NAT10 depletion did not affect the pronounced recruitment of ac4C RNA to DNA lesions. This process was not dependent on the G1, S, and G2 cell cycle phases. In addition, we observed that the PARP inhibitor, olaparib, prevents the recruitment of ac4C RNA to damaged chromatin. Our data imply that the acetylation of N4-cytidine, especially in small RNAs, has an important role in mediating DNA damage repair. Ac4C RNA likely causes de-condensation of chromatin in the vicinity of DNA lesions, making it accessible for other DNA repair factors involved in the DNA damage response. Alternatively, RNA modifications, including ac4C, could be direct markers of damaged RNAs.
Zobrazit více v PubMed
Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–395. doi: 10.1038/cr.2011.22. PubMed DOI PMC
Arango D, Sturgill D, Alhusaini N, et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell. 2018;175(7):1872–1886.e1824. doi: 10.1016/j.cell.2018.10.030. PubMed DOI PMC
Tjeertes JV, Miller KM, Jackson SP. Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. Embo J. 2009;28(13):1878–1889. doi: 10.1038/emboj.2009.119. PubMed DOI PMC
Sustáčková G, Kozubek S, Stixová L, et al. Acetylation-dependent nuclear arrangement and recruitment of BMI1 protein to UV-damaged chromatin. J Cell Physiol. 2012;227(5):1838–1850. doi: 10.1002/jcp.22912. PubMed DOI
Meyer B, Fabbrizi MR, Raj S, Zobel CL, Hallahan DE, Sharma GG. Histone H3 Lysine 9 Acetylation Obstructs ATM Activation and Promotes Ionizing Radiation Sensitivity in Normal Stem Cells. Stem Cell Rep. 2016;7(6):1013–1022. doi: 10.1016/j.stemcr.2016.11.004. PubMed DOI PMC
Dhar S, Gursoy-Yuzugullu O, Parasuram R, Price BD. The tale of a tail: histone H4 acetylation and the repair of DNA breaks. Phil Trans R Soc B. 2017;372(1731):20160284. doi: 10.1098/rstb.2016.0284. PubMed DOI PMC
Gursoy-Yuzugullu O, Ayrapetov MK, Price BD. Histone chaperone Anp32e removes H2A.Z from DNA double-strand breaks and promotes nucleosome reorganization and DNA repair. Proc Natl Acad Sci U S A. 2015;112(24):7507–7512. doi: 10.1073/pnas.1504868112. PubMed DOI PMC
Xu Y, Sun Y, Jiang X, et al. The p400 ATPase regulates nucleosome stability and chromatin ubiquitination during DNA repair. J Cell Biol. 2010;191(1):31–43. doi: 10.1083/jcb.201001160. PubMed DOI PMC
Ikura M, Furuya K, Fukuto A, et al. Coordinated regulation of TIP60 and Poly(ADP-Ribose) polymerase 1 in damaged-chromatin dynamics. Mol Cell Biol. 2016;36(10):1595–1607. doi: 10.1128/MCB.01085-15. PubMed DOI PMC
Boccaletto P, Stefaniak F, Ray A, et al. MODOMICS: a database of RNA modification pathways 2021 update. Nucleic Acids Res. 2022;50(D1):D231–D235. doi: 10.1093/nar/gkab1083. PubMed DOI PMC
Chimnaronk S, Forouhar F, Sakai J, et al. Snapshots of dynamics in synthesizing N(6)-isopentenyladenosine at the tRNA anticodon. Biochemistry. 2009;48(23):5057–5065. doi: 10.1021/bi900337d. PubMed DOI PMC
Ito S, Horikawa S, Suzuki T, et al. Human NAT10 is an ATP-dependent RNA acetyltransferase responsible for N4-acetylcytidine formation in 18 S ribosomal RNA (rRNA) J Biol Chem. 2014;289(52):35724–35730. doi: 10.1074/jbc.C114.602698. PubMed DOI PMC
Sharma S, Langhendries JL, Watzinger P, Kötter P, Entian KD, Lafontaine DL. Yeast Kre33 and human NAT10 are conserved 18S rRNA cytosine acetyltransferases that modify tRNAs assisted by the adaptor Tan1/THUMPD1. Nucleic Acids Res. 2015;43(4):2242–2258. doi: 10.1093/nar/gkv075. PubMed DOI PMC
Thomas JM, Briney CA, Nance KD, et al. A chemical signature for cytidine acetylation in RNA. J Am Chem Soc. 2018;140(40):12667–12670. doi: 10.1021/jacs.8b06636. PubMed DOI PMC
Taoka M, Ishikawa D, Nobe Y, et al. RNA cytidine acetyltransferase of small-subunit ribosomal RNA: identification of acetylation sites and the responsible acetyltransferase in fission yeast, Schizosaccharomyces pombe. PLoS ONE. 2014;9(11):e112156. doi: 10.1371/journal.pone.0112156. PubMed DOI PMC
Kudrin P, Meierhofer D, Vågbø CB, Ørom UAV. Nuclear RNA-acetylation can be erased by the deacetylase SIRT7. BioRxiv. 2021;23:101151.
Arango D, Sturgill D, Yang R, et al. Direct epitranscriptomic regulation of mammalian translation initiation through N4-acetylcytidine. Mol Cell. 2022;82(15):2797–2814.e2711. doi: 10.1016/j.molcel.2022.05.016. PubMed DOI PMC
Yu XM, Li SJ, Yao ZT, et al. N4-acetylcytidine modification of lncRNA CTC-490G23.2 promotes cancer metastasis through interacting with PTBP1 to increase CD44 alternative splicing. Oncogene. 2023;42(14):1101–1116. doi: 10.1038/s41388-023-02628-3. PubMed DOI
Xiang Y, Laurent B, Hsu C-H, et al. RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature. 2017;543(7646):573–576. doi: 10.1038/nature21671. PubMed DOI PMC
SvobodováKovaříková A, Stixová L, Kovařík A, et al. N(6)-Adenosine Methylation in RNA and a Reduced m(3)G/TMG Level in Non-Coding RNAs Appear at Microirradiation-Induced DNA Lesions. Cells. 2020;9(2):360. doi: 10.3390/cells9020360. PubMed DOI PMC
Zhang J. Brothers in arms: emerging roles of RNA epigenetics in DNA damage repair. Cell Biosci. 2017;7(1):24. doi: 10.1186/s13578-017-0151-9. PubMed DOI PMC
Sinclair WR, Arango D, Shrimp JH, et al. Profiling cytidine acetylation with specific affinity and reactivity. ACS Chem Biol. 2017;12(12):2922–2926. doi: 10.1021/acschembio.7b00734. PubMed DOI PMC
Sakaue-Sawano A, Kurokawa H, Morimura T, et al. Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell. 2008;132(3):487–498. doi: 10.1016/j.cell.2007.12.033. PubMed DOI
Branzei D, Foiani M. Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol. 2008;9(4):297–308. doi: 10.1038/nrm2351. PubMed DOI
Zhao W, Zhou Y, Cui Q, Zhou Y. PACES: prediction of N4-acetylcytidine (ac4C) modification sites in mRNA. Sci Rep. 2019;9(1):11112. doi: 10.1038/s41598-019-47594-7. PubMed DOI PMC
Xie R, Cheng L, Huang M, et al. NAT10 drives cisplatin chemoresistance by enhancing ac4C-associated DNA repair in bladder cancer. Cancer Res. 2023 doi: 10.1158/0008-5472.CAN-22-2233. PubMed DOI
Legartova S, Svobodova Kovarikova A, Behalova Suchankova J, Polasek-Sedlackova H, Bartova E. Early recruitment of PARP-dependent m(8)A RNA methylation at DNA lesions is subsequently accompanied by active DNA demethylation. RNA Biol. 2022;19(1):1153–1171. doi: 10.1080/15476286.2022.2139109. PubMed DOI PMC
Sundaravinayagam D, Rahjouei A, Andreani M, et al. 53bp1 supports immunoglobulin class switch recombination independently of its DNA double-strand break end protection function. Cell Rep. 2019;28(6):1389–1399.e1386. doi: 10.1016/j.celrep.2019.06.035. PubMed DOI PMC
Klein KN, Zhao PA, Lyu X, et al. Replication timing maintains the global epigenetic state in human cells. Science. 2021;372(6540):371–378. doi: 10.1126/science.aba5545. PubMed DOI PMC
Park HJ, Bae JS, Kim KM, et al. The PARP inhibitor olaparib potentiates the effect of the DNA damaging agent doxorubicin in osteosarcoma. J Exp Clin Cancer Res. 2018;37(1):107. doi: 10.1186/s13046-018-0772-9. PubMed DOI PMC
Stixová L, Komůrková D, SvobodováKovaříková A, Fagherazzi P, Bártová E. Localization of METTL16 at the nuclear periphery and the nucleolus is cell cycle-specific and METTL16 interacts with several nucleolar proteins. Life (Basel). 2021;11(7):669. PubMed PMC
Hahn P, Wegener I, Burrells A, et al. Analysis of Jmjd6 cellular localization and testing for its involvement in histone demethylation. PLoS ONE. 2010;5(10):e13769. doi: 10.1371/journal.pone.0013769. PubMed DOI PMC
Svobodová Kovaříková A, Legartová S, Krejčí J, Bártová E. H3K9me3 and H4K20me3 represent the epigenetic landscape for 53BP1 binding to DNA lesions. Aging (Albany NY) 2018;10(10):2585–2605. doi: 10.18632/aging.101572. PubMed DOI PMC
Kellner S, Ochel A, Thuring K, et al. Absolute and relative quantification of RNA modifications via biosynthetic isotopomers. Nucleic Acids Res. 2014;42(18):e142. doi: 10.1093/nar/gku733. PubMed DOI PMC
Thuring K, Schmid K, Keller P, Helm M. Analysis of RNA modifications by liquid chromatography-tandem mass spectrometry. Methods. 2016;107:48–56. doi: 10.1016/j.ymeth.2016.03.019. PubMed DOI
Stixova L, Sehnalova P, Legartova S, et al. HP1beta-dependent recruitment of UBF1 to irradiated chromatin occurs simultaneously with CPDs. Epigenetics Chromatin. 2014;7(1):39. doi: 10.1186/1756-8935-7-39. PubMed DOI PMC