Prioritization and functional validation of target genes from single-cell transcriptomics studies
Language English Country England, Great Britain Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37330599
PubMed Central
PMC10276815
DOI
10.1038/s42003-023-05006-7
PII: 10.1038/s42003-023-05006-7
Knihovny.cz E-resources
- MeSH
- Gene Expression Profiling * methods MeSH
- Transcriptome * MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Translation of academic results into clinical practice is a formidable unmet medical need. Single-cell RNA-sequencing (scRNA-seq) studies generate long descriptive ranks of markers with predicted biological function, but without functional validation, it remains challenging to know which markers truly exert the putative function. Given the lengthy/costly nature of validation studies, gene prioritization is required to select candidates. We address these issues by studying tip endothelial cell (EC) marker genes because of their importance for angiogenesis. Here, by tailoring Guidelines On Target Assessment for Innovative Therapeutics, we in silico prioritize previously unreported/poorly described, high-ranking tip EC markers. Notably, functional validation reveals that four of six candidates behave as tip EC genes. We even discover a tip EC function for a gene lacking in-depth functional annotation. Thus, validating prioritized genes from scRNA-seq studies offers opportunities for identifying targets to be considered for possible translation, but not all top-ranked scRNA-seq markers exert the predicted function.
CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences Vienna Austria
Center for Biotechnology Khalifa University of Science and Technology Abu Dhabi United Arab Emirates
Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Prague West Czech Republic
See more in PubMed
Seyhan AA. Lost in translation: the valley of death across preclinical and clinical divide—identification of problems and overcoming obstacles. Transl. Med. Commun. 2019;4:18. doi: 10.1186/s41231-019-0050-7. DOI
Hudson J, Khazragui HF. Into the valley of death: research to innovation. Drug Discov. Today. 2013;18:610–613. doi: 10.1016/j.drudis.2013.01.012. PubMed DOI
Fernandez-Moure JS. Lost in translation: the gap in scientific advancements and clinical application. Front. Bioeng. Biotechnol. 2016;4:43. doi: 10.3389/fbioe.2016.00043. PubMed DOI PMC
Collins FS, Fink L. The Human Genome Project. Alcohol Health Res. World. 1995;19:190–195. PubMed PMC
Wood V, et al. Hidden in plain sight: what remains to be discovered in the eukaryotic proteome? Open Biol. 2019;9:180241. doi: 10.1098/rsob.180241. PubMed DOI PMC
Dey G, Jaimovich A, Collins SR, Seki A, Meyer T. Systematic discovery of human gene function and principles of modular organization through phylogenetic profiling. Cell Rep. 2015;10:993–1006. doi: 10.1016/j.celrep.2015.01.025. PubMed DOI PMC
Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146:873–887. doi: 10.1016/j.cell.2011.08.039. PubMed DOI
Goveia J, et al. An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and angiogenic candidates. Cancer Cell. 2020;37:21–36.e13. doi: 10.1016/j.ccell.2019.12.001. PubMed DOI
Nowak-Sliwinska P, et al. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis. 2018;21:425–532. doi: 10.1007/s10456-018-9613-x. PubMed DOI PMC
Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307. doi: 10.1038/nature10144. PubMed DOI PMC
Niu G, Chen X. Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr. Drug Targets. 2010;11:1000–1017. doi: 10.2174/138945010791591395. PubMed DOI PMC
Jászai J, Schmidt MHH. Trends and challenges in tumor anti-angiogenic therapies. Cells. 2019;8:1102. doi: 10.3390/cells8091102. PubMed DOI PMC
Vasudev NS, Reynolds AR. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis. 2014;17:471–494. doi: 10.1007/s10456-014-9420-y. PubMed DOI PMC
Haibe Y, et al. Resistance mechanisms to anti-angiogenic therapies in cancer. Front. Oncol. 2020;10:221. doi: 10.3389/fonc.2020.00221. PubMed DOI PMC
Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell. 2014;26:605–622. doi: 10.1016/j.ccell.2014.10.006. PubMed DOI PMC
Yang S, Zhao J, Sun X. Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review. Drug Des. Dev. Ther. 2016;10:1857–1867. PubMed PMC
Rezzola S, et al. Therapeutic potential of anti-angiogenic multitarget N,O-sulfated E. coli K5 polysaccharide in diabetic retinopathy. Diabetes. 2015;64:2581. doi: 10.2337/db14-1378. PubMed DOI
Bunnage ME. Getting pharmaceutical R&D back on target. Nat. Chem. Biol. 2011;7:335–339. doi: 10.1038/nchembio.581. PubMed DOI
Hayes A. Key role of publication of clinical data for target validation. Pharmacol. Res. Perspect. 2015;3:e00163. doi: 10.1002/prp2.163. PubMed DOI PMC
Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat. Biotechnol. 2014;32:40–51. doi: 10.1038/nbt.2786. PubMed DOI
Dowden H, Munro J. Trends in clinical success rates and therapeutic focus. Nat. Rev. Drug Discov. 2019;18:495–496. doi: 10.1038/d41573-019-00074-z. PubMed DOI
Emmerich CH, et al. Improving target assessment in biomedical research: the GOT-IT recommendations. Nat. Rev. Drug Discov. 2021;20:64–81. doi: 10.1038/s41573-020-0087-3. PubMed DOI PMC
Chen S, et al. Regulation of SPARC family proteins in disorders of the central nervous system. Brain Res. Bull. 2020;163:178–189. doi: 10.1016/j.brainresbull.2020.05.005. PubMed DOI
Xiaozhen S, et al. Novel truncating and missense variants in SEMA6B in patients with early-onset epilepsy. Front. Cell Dev. Biol. 2021;9:633819. doi: 10.3389/fcell.2021.633819. PubMed DOI PMC
Koscielny G, et al. Open Targets: a platform for therapeutic target identification and validation. Nucleic Acids Res. 2017;45:D985–D994. doi: 10.1093/nar/gkw1055. PubMed DOI PMC
Qian J, et al. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res. 2020;30:745–762. doi: 10.1038/s41422-020-0355-0. PubMed DOI PMC
Pecci A, Ma X, Savoia A, Adelstein RS. MYH9: structure, functions and role of non-muscle myosin IIA in human disease. Gene. 2018;664:152–167. doi: 10.1016/j.gene.2018.04.048. PubMed DOI PMC
Zhong X, Drgonova J, Li C-Y, Uhl GR. Human cell adhesion molecules: annotated functional subtypes and overrepresentation of addiction-associated genes. Ann. N. Y. Acad. Sci. 2015;1349:83–95. doi: 10.1111/nyas.12776. PubMed DOI PMC
Favara DM, Banham AH, Harris AL. ADGRL4/ELTD1 is a highly conserved angiogenesis-associated orphan adhesion GPCR that emerged with the first vertebrates and comprises 3 evolutionary variants. BMC Evol. Biol. 2019;19:143. doi: 10.1186/s12862-019-1445-9. PubMed DOI PMC
Goodenough DA, Paul DL. Gap junctions. Cold Spring Harb. Perspect. Biol. 2009;1:a002576. doi: 10.1101/cshperspect.a002576. PubMed DOI PMC
Chen HY, Bohlen JF, Maher BJ. Molecular and cellular function of transcription factor 4 in Pitt-Hopkins syndrome. Dev. Neurosci. 2021;43:159–167. doi: 10.1159/000516666. PubMed DOI PMC
Du X, Wang Q, Hirohashi Y, Greene MI. DIPA, which can localize to the centrosome, associates with p78/MCRS1/MSP58 and acts as a repressor of gene transcription. Exp. Mol. Pathol. 2006;81:184–190. doi: 10.1016/j.yexmp.2006.07.008. PubMed DOI
Yang B, et al. MYH9 promotes cell metastasis via inducing angiogenesis and epithelial mesenchymal transition in esophageal squamous cell carcinoma. Int. J. Med. Sci. 2020;17:2013–2023. doi: 10.7150/ijms.46234. PubMed DOI PMC
Lugano R, et al. CD93 promotes β1 integrin activation and fibronectin fibrillogenesis during tumor angiogenesis. J. Clin. Investig. 2018;128:3280–3297. doi: 10.1172/JCI97459. PubMed DOI PMC
Okamoto T, Usuda H, Tanaka T, Wada K, Shimaoka M. The functional implications of endothelial gap junctions and cellular mechanics in vascular angiogenesis. Cancers. 2019;11:237. doi: 10.3390/cancers11020237. PubMed DOI PMC
Favara DM, et al. ADGRL4/ELTD1 silencing in endothelial cells induces ACLY and SLC25A1 and alters the cellular metabolic profile. Metabolites. 2019;9:287. doi: 10.3390/metabo9120287. PubMed DOI PMC
Kanda S, Miyata Y, Kanetake H. T-cell factor-4-dependent up-regulation of fibronectin is involved in fibroblast growth factor-2-induced tube formation by endothelial cells. J. Cell Biochem. 2005;94:835–847. doi: 10.1002/jcb.20354. PubMed DOI
Tanaka A, et al. Inhibition of endothelial cell activation by bHLH protein E2-2 and its impairment of angiogenesis. Blood. 2010;115:4138–4147. doi: 10.1182/blood-2009-05-223057. PubMed DOI
Huang Y, et al. The angiogenic function of nucleolin is mediated by vascular endothelial growth factor and nonmuscle myosin. Blood. 2006;107:3564–3571. doi: 10.1182/blood-2005-07-2961. PubMed DOI
Tosi GM, et al. The binding of CD93 to multimerin-2 promotes choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 2020;61:30. doi: 10.1167/iovs.61.8.30. PubMed DOI PMC
Favara DM, et al. Elevated expression of the adhesion GPCR ADGRL4/ELTD1 promotes endothelial sprouting angiogenesis without activating canonical GPCR signalling. Sci. Rep. 2021;11:8870. doi: 10.1038/s41598-021-85408-x. PubMed DOI PMC
Masiero M, et al. A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis. Cancer Cell. 2013;24:229–241. doi: 10.1016/j.ccr.2013.06.004. PubMed DOI PMC
Feng Y, et al. CCDC85B promotes non-small cell lung cancer cell proliferation and invasion. Mol. Carcinog. 2019;58:126–134. doi: 10.1002/mc.22914. PubMed DOI
Li SS, et al. The HSA21 gene EURL/C21ORF91 controls neurogenesis within the cerebral cortex and is implicated in the pathogenesis of Down Syndrome. Sci. Rep. 2016;6:29514. doi: 10.1038/srep29514. PubMed DOI PMC
Iwai A, et al. Coiled-coil domain containing 85B suppresses the β-catenin activity in a p53-dependent manner. Oncogene. 2008;27:1520–1526. doi: 10.1038/sj.onc.1210801. PubMed DOI
De Bock K, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013;154:651–663. doi: 10.1016/j.cell.2013.06.037. PubMed DOI
Mühleder S, Fernández-Chacón M, Garcia-Gonzalez I, Benedito R. Endothelial sprouting, proliferation, or senescence: tipping the balance from physiology to pathology. Cell. Mol. Life Sci. 2021;78:1329–1354. doi: 10.1007/s00018-020-03664-y. PubMed DOI PMC
Yetkin-Arik B, et al. Endothelial tip cells in vitro are less glycolytic and have a more flexible response to metabolic stress than non-tip cells. Sci. Rep. 2019;9:10414. doi: 10.1038/s41598-019-46503-2. PubMed DOI PMC
Zahra FT, Choleva E, Sajib MS, Papadimitriou E, Mikelis CM. In vitro spheroid sprouting assay of angiogenesis. Methods Mol. Biol. 2019;1952:211–218. doi: 10.1007/978-1-4939-9133-4_17. PubMed DOI
Benn A, et al. BMP-SMAD1/5 signaling regulates retinal vascular development. Biomolecules. 2020;10:488. doi: 10.3390/biom10030488. PubMed DOI PMC
Moya IM, et al. Stalk cell phenotype depends on integration of Notch and Smad1/5 signaling cascades. Dev. Cell. 2012;22:501–514. doi: 10.1016/j.devcel.2012.01.007. PubMed DOI PMC
Kerr G, et al. A small molecule targeting ALK1 prevents Notch cooperativity and inhibits functional angiogenesis. Angiogenesis. 2015;18:209–217. doi: 10.1007/s10456-014-9457-y. PubMed DOI PMC
Ambati J, Fowler BJ. Mechanisms of age-related macular degeneration. Neuron. 2012;75:26–39. doi: 10.1016/j.neuron.2012.06.018. PubMed DOI PMC
Yeo NJY, Chan EJJ, Cheung C. Choroidal neovascularization: mechanisms of endothelial dysfunction. Front. Pharmacol. 2019;10:1363. doi: 10.3389/fphar.2019.01363. PubMed DOI PMC
Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–257. doi: 10.1038/35025220. PubMed DOI
Lambert V, et al. Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nat. Protoc. 2013;8:2197–2211. doi: 10.1038/nprot.2013.135. PubMed DOI
Conchinha NV, et al. Protocols for endothelial cell isolation from mouse tissues: brain, choroid, lung, and muscle. STAR Protoc. 2021;2:100508. doi: 10.1016/j.xpro.2021.100508. PubMed DOI PMC
Niinivirta M, et al. Tumor endothelial ELTD1 as a predictive marker for treatment of renal cancer patients with sunitinib. BMC Cancer. 2020;20:339–339. doi: 10.1186/s12885-020-06770-z. PubMed DOI PMC
Teixeira JR, Szeto RA, Carvalho VMA, Muotri AR, Papes F. Transcription factor 4 and its association with psychiatric disorders. Transl. Psychiatry. 2021;11:19. doi: 10.1038/s41398-020-01138-0. PubMed DOI PMC
Heskes T, Eisinga R, Breitling R. A fast algorithm for determining bounds and accurate approximate p-values of the rank product statistic for replicate experiments. BMC Bioinformatics. 2014;15:367. PubMed PMC
Hong F, et al. RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics. 2006;22:2825–2827. doi: 10.1093/bioinformatics/btl476. PubMed DOI
Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA. 2003;100:9440–9445. doi: 10.1073/pnas.1530509100. PubMed DOI PMC
Taverna F, et al. BIOMEX: an interactive workflow for (single cell) omics data interpretation and visualization. Nucleic Acids Res. 2020;48:W385–W394. doi: 10.1093/nar/gkaa332. PubMed DOI PMC
Kalucka J, et al. Single-cell transcriptome atlas of murine endothelial cells. Cell. 2020;180:764–779.e720. doi: 10.1016/j.cell.2020.01.015. PubMed DOI
Stuart T, et al. Comprehensive integration of single-cell data. Cell. 2019;177:1888–1902.e1821. doi: 10.1016/j.cell.2019.05.031. PubMed DOI PMC
Schoors S, et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature. 2015;520:192–197. doi: 10.1038/nature14362. PubMed DOI PMC
Schoors S, et al. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab. 2014;19:37–48. doi: 10.1016/j.cmet.2013.11.008. PubMed DOI
Guzman-Aranguez A, Loma P, Pintor J. Small-interfering RNAs (siRNAs) as a promising tool for ocular therapy. Br. J. Pharmacol. 2013;170:730–747. doi: 10.1111/bph.12330. PubMed DOI PMC
Rohlenova K, et al. Single-cell RNA sequencing maps endothelial metabolic plasticity in pathological angiogenesis. Cell Metab. 2020;31:862–877.e814. doi: 10.1016/j.cmet.2020.03.009. PubMed DOI
Voigt AP, et al. Single-cell transcriptomics of the human retinal pigment epithelium and choroid in health and macular degeneration. Proc. Natl Acad. Sci. USA. 2019;116:24100–24107. doi: 10.1073/pnas.1914143116. PubMed DOI PMC
Lehmann GL, et al. Single-cell profiling reveals an endothelium-mediated immunomodulatory pathway in the eye choroid. J. Exp. Med. 2020;217:e20190730. doi: 10.1084/jem.20190730. PubMed DOI PMC