• This record comes from PubMed

Prioritization and functional validation of target genes from single-cell transcriptomics studies

. 2023 Jun 17 ; 6 (1) : 648. [epub] 20230617

Language English Country England, Great Britain Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 37330599
PubMed Central PMC10276815
DOI 10.1038/s42003-023-05006-7
PII: 10.1038/s42003-023-05006-7
Knihovny.cz E-resources

Translation of academic results into clinical practice is a formidable unmet medical need. Single-cell RNA-sequencing (scRNA-seq) studies generate long descriptive ranks of markers with predicted biological function, but without functional validation, it remains challenging to know which markers truly exert the putative function. Given the lengthy/costly nature of validation studies, gene prioritization is required to select candidates. We address these issues by studying tip endothelial cell (EC) marker genes because of their importance for angiogenesis. Here, by tailoring Guidelines On Target Assessment for Innovative Therapeutics, we in silico prioritize previously unreported/poorly described, high-ranking tip EC markers. Notably, functional validation reveals that four of six candidates behave as tip EC genes. We even discover a tip EC function for a gene lacking in-depth functional annotation. Thus, validating prioritized genes from scRNA-seq studies offers opportunities for identifying targets to be considered for possible translation, but not all top-ranked scRNA-seq markers exert the predicted function.

See more in PubMed

Seyhan AA. Lost in translation: the valley of death across preclinical and clinical divide—identification of problems and overcoming obstacles. Transl. Med. Commun. 2019;4:18. doi: 10.1186/s41231-019-0050-7. DOI

Hudson J, Khazragui HF. Into the valley of death: research to innovation. Drug Discov. Today. 2013;18:610–613. doi: 10.1016/j.drudis.2013.01.012. PubMed DOI

Fernandez-Moure JS. Lost in translation: the gap in scientific advancements and clinical application. Front. Bioeng. Biotechnol. 2016;4:43. doi: 10.3389/fbioe.2016.00043. PubMed DOI PMC

Collins FS, Fink L. The Human Genome Project. Alcohol Health Res. World. 1995;19:190–195. PubMed PMC

Wood V, et al. Hidden in plain sight: what remains to be discovered in the eukaryotic proteome? Open Biol. 2019;9:180241. doi: 10.1098/rsob.180241. PubMed DOI PMC

Dey G, Jaimovich A, Collins SR, Seki A, Meyer T. Systematic discovery of human gene function and principles of modular organization through phylogenetic profiling. Cell Rep. 2015;10:993–1006. doi: 10.1016/j.celrep.2015.01.025. PubMed DOI PMC

Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011;146:873–887. doi: 10.1016/j.cell.2011.08.039. PubMed DOI

Goveia J, et al. An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and angiogenic candidates. Cancer Cell. 2020;37:21–36.e13. doi: 10.1016/j.ccell.2019.12.001. PubMed DOI

Nowak-Sliwinska P, et al. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis. 2018;21:425–532. doi: 10.1007/s10456-018-9613-x. PubMed DOI PMC

Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature. 2011;473:298–307. doi: 10.1038/nature10144. PubMed DOI PMC

Niu G, Chen X. Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr. Drug Targets. 2010;11:1000–1017. doi: 10.2174/138945010791591395. PubMed DOI PMC

Jászai J, Schmidt MHH. Trends and challenges in tumor anti-angiogenic therapies. Cells. 2019;8:1102. doi: 10.3390/cells8091102. PubMed DOI PMC

Vasudev NS, Reynolds AR. Anti-angiogenic therapy for cancer: current progress, unresolved questions and future directions. Angiogenesis. 2014;17:471–494. doi: 10.1007/s10456-014-9420-y. PubMed DOI PMC

Haibe Y, et al. Resistance mechanisms to anti-angiogenic therapies in cancer. Front. Oncol. 2020;10:221. doi: 10.3389/fonc.2020.00221. PubMed DOI PMC

Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell. 2014;26:605–622. doi: 10.1016/j.ccell.2014.10.006. PubMed DOI PMC

Yang S, Zhao J, Sun X. Resistance to anti-VEGF therapy in neovascular age-related macular degeneration: a comprehensive review. Drug Des. Dev. Ther. 2016;10:1857–1867. PubMed PMC

Rezzola S, et al. Therapeutic potential of anti-angiogenic multitarget N,O-sulfated E. coli K5 polysaccharide in diabetic retinopathy. Diabetes. 2015;64:2581. doi: 10.2337/db14-1378. PubMed DOI

Bunnage ME. Getting pharmaceutical R&D back on target. Nat. Chem. Biol. 2011;7:335–339. doi: 10.1038/nchembio.581. PubMed DOI

Hayes A. Key role of publication of clinical data for target validation. Pharmacol. Res. Perspect. 2015;3:e00163. doi: 10.1002/prp2.163. PubMed DOI PMC

Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat. Biotechnol. 2014;32:40–51. doi: 10.1038/nbt.2786. PubMed DOI

Dowden H, Munro J. Trends in clinical success rates and therapeutic focus. Nat. Rev. Drug Discov. 2019;18:495–496. doi: 10.1038/d41573-019-00074-z. PubMed DOI

Emmerich CH, et al. Improving target assessment in biomedical research: the GOT-IT recommendations. Nat. Rev. Drug Discov. 2021;20:64–81. doi: 10.1038/s41573-020-0087-3. PubMed DOI PMC

Chen S, et al. Regulation of SPARC family proteins in disorders of the central nervous system. Brain Res. Bull. 2020;163:178–189. doi: 10.1016/j.brainresbull.2020.05.005. PubMed DOI

Xiaozhen S, et al. Novel truncating and missense variants in SEMA6B in patients with early-onset epilepsy. Front. Cell Dev. Biol. 2021;9:633819. doi: 10.3389/fcell.2021.633819. PubMed DOI PMC

Koscielny G, et al. Open Targets: a platform for therapeutic target identification and validation. Nucleic Acids Res. 2017;45:D985–D994. doi: 10.1093/nar/gkw1055. PubMed DOI PMC

Qian J, et al. A pan-cancer blueprint of the heterogeneous tumor microenvironment revealed by single-cell profiling. Cell Res. 2020;30:745–762. doi: 10.1038/s41422-020-0355-0. PubMed DOI PMC

Pecci A, Ma X, Savoia A, Adelstein RS. MYH9: structure, functions and role of non-muscle myosin IIA in human disease. Gene. 2018;664:152–167. doi: 10.1016/j.gene.2018.04.048. PubMed DOI PMC

Zhong X, Drgonova J, Li C-Y, Uhl GR. Human cell adhesion molecules: annotated functional subtypes and overrepresentation of addiction-associated genes. Ann. N. Y. Acad. Sci. 2015;1349:83–95. doi: 10.1111/nyas.12776. PubMed DOI PMC

Favara DM, Banham AH, Harris AL. ADGRL4/ELTD1 is a highly conserved angiogenesis-associated orphan adhesion GPCR that emerged with the first vertebrates and comprises 3 evolutionary variants. BMC Evol. Biol. 2019;19:143. doi: 10.1186/s12862-019-1445-9. PubMed DOI PMC

Goodenough DA, Paul DL. Gap junctions. Cold Spring Harb. Perspect. Biol. 2009;1:a002576. doi: 10.1101/cshperspect.a002576. PubMed DOI PMC

Chen HY, Bohlen JF, Maher BJ. Molecular and cellular function of transcription factor 4 in Pitt-Hopkins syndrome. Dev. Neurosci. 2021;43:159–167. doi: 10.1159/000516666. PubMed DOI PMC

Du X, Wang Q, Hirohashi Y, Greene MI. DIPA, which can localize to the centrosome, associates with p78/MCRS1/MSP58 and acts as a repressor of gene transcription. Exp. Mol. Pathol. 2006;81:184–190. doi: 10.1016/j.yexmp.2006.07.008. PubMed DOI

Yang B, et al. MYH9 promotes cell metastasis via inducing angiogenesis and epithelial mesenchymal transition in esophageal squamous cell carcinoma. Int. J. Med. Sci. 2020;17:2013–2023. doi: 10.7150/ijms.46234. PubMed DOI PMC

Lugano R, et al. CD93 promotes β1 integrin activation and fibronectin fibrillogenesis during tumor angiogenesis. J. Clin. Investig. 2018;128:3280–3297. doi: 10.1172/JCI97459. PubMed DOI PMC

Okamoto T, Usuda H, Tanaka T, Wada K, Shimaoka M. The functional implications of endothelial gap junctions and cellular mechanics in vascular angiogenesis. Cancers. 2019;11:237. doi: 10.3390/cancers11020237. PubMed DOI PMC

Favara DM, et al. ADGRL4/ELTD1 silencing in endothelial cells induces ACLY and SLC25A1 and alters the cellular metabolic profile. Metabolites. 2019;9:287. doi: 10.3390/metabo9120287. PubMed DOI PMC

Kanda S, Miyata Y, Kanetake H. T-cell factor-4-dependent up-regulation of fibronectin is involved in fibroblast growth factor-2-induced tube formation by endothelial cells. J. Cell Biochem. 2005;94:835–847. doi: 10.1002/jcb.20354. PubMed DOI

Tanaka A, et al. Inhibition of endothelial cell activation by bHLH protein E2-2 and its impairment of angiogenesis. Blood. 2010;115:4138–4147. doi: 10.1182/blood-2009-05-223057. PubMed DOI

Huang Y, et al. The angiogenic function of nucleolin is mediated by vascular endothelial growth factor and nonmuscle myosin. Blood. 2006;107:3564–3571. doi: 10.1182/blood-2005-07-2961. PubMed DOI

Tosi GM, et al. The binding of CD93 to multimerin-2 promotes choroidal neovascularization. Invest. Ophthalmol. Vis. Sci. 2020;61:30. doi: 10.1167/iovs.61.8.30. PubMed DOI PMC

Favara DM, et al. Elevated expression of the adhesion GPCR ADGRL4/ELTD1 promotes endothelial sprouting angiogenesis without activating canonical GPCR signalling. Sci. Rep. 2021;11:8870. doi: 10.1038/s41598-021-85408-x. PubMed DOI PMC

Masiero M, et al. A core human primary tumor angiogenesis signature identifies the endothelial orphan receptor ELTD1 as a key regulator of angiogenesis. Cancer Cell. 2013;24:229–241. doi: 10.1016/j.ccr.2013.06.004. PubMed DOI PMC

Feng Y, et al. CCDC85B promotes non-small cell lung cancer cell proliferation and invasion. Mol. Carcinog. 2019;58:126–134. doi: 10.1002/mc.22914. PubMed DOI

Li SS, et al. The HSA21 gene EURL/C21ORF91 controls neurogenesis within the cerebral cortex and is implicated in the pathogenesis of Down Syndrome. Sci. Rep. 2016;6:29514. doi: 10.1038/srep29514. PubMed DOI PMC

Iwai A, et al. Coiled-coil domain containing 85B suppresses the β-catenin activity in a p53-dependent manner. Oncogene. 2008;27:1520–1526. doi: 10.1038/sj.onc.1210801. PubMed DOI

De Bock K, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 2013;154:651–663. doi: 10.1016/j.cell.2013.06.037. PubMed DOI

Mühleder S, Fernández-Chacón M, Garcia-Gonzalez I, Benedito R. Endothelial sprouting, proliferation, or senescence: tipping the balance from physiology to pathology. Cell. Mol. Life Sci. 2021;78:1329–1354. doi: 10.1007/s00018-020-03664-y. PubMed DOI PMC

Yetkin-Arik B, et al. Endothelial tip cells in vitro are less glycolytic and have a more flexible response to metabolic stress than non-tip cells. Sci. Rep. 2019;9:10414. doi: 10.1038/s41598-019-46503-2. PubMed DOI PMC

Zahra FT, Choleva E, Sajib MS, Papadimitriou E, Mikelis CM. In vitro spheroid sprouting assay of angiogenesis. Methods Mol. Biol. 2019;1952:211–218. doi: 10.1007/978-1-4939-9133-4_17. PubMed DOI

Benn A, et al. BMP-SMAD1/5 signaling regulates retinal vascular development. Biomolecules. 2020;10:488. doi: 10.3390/biom10030488. PubMed DOI PMC

Moya IM, et al. Stalk cell phenotype depends on integration of Notch and Smad1/5 signaling cascades. Dev. Cell. 2012;22:501–514. doi: 10.1016/j.devcel.2012.01.007. PubMed DOI PMC

Kerr G, et al. A small molecule targeting ALK1 prevents Notch cooperativity and inhibits functional angiogenesis. Angiogenesis. 2015;18:209–217. doi: 10.1007/s10456-014-9457-y. PubMed DOI PMC

Ambati J, Fowler BJ. Mechanisms of age-related macular degeneration. Neuron. 2012;75:26–39. doi: 10.1016/j.neuron.2012.06.018. PubMed DOI PMC

Yeo NJY, Chan EJJ, Cheung C. Choroidal neovascularization: mechanisms of endothelial dysfunction. Front. Pharmacol. 2019;10:1363. doi: 10.3389/fphar.2019.01363. PubMed DOI PMC

Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–257. doi: 10.1038/35025220. PubMed DOI

Lambert V, et al. Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nat. Protoc. 2013;8:2197–2211. doi: 10.1038/nprot.2013.135. PubMed DOI

Conchinha NV, et al. Protocols for endothelial cell isolation from mouse tissues: brain, choroid, lung, and muscle. STAR Protoc. 2021;2:100508. doi: 10.1016/j.xpro.2021.100508. PubMed DOI PMC

Niinivirta M, et al. Tumor endothelial ELTD1 as a predictive marker for treatment of renal cancer patients with sunitinib. BMC Cancer. 2020;20:339–339. doi: 10.1186/s12885-020-06770-z. PubMed DOI PMC

Teixeira JR, Szeto RA, Carvalho VMA, Muotri AR, Papes F. Transcription factor 4 and its association with psychiatric disorders. Transl. Psychiatry. 2021;11:19. doi: 10.1038/s41398-020-01138-0. PubMed DOI PMC

Heskes T, Eisinga R, Breitling R. A fast algorithm for determining bounds and accurate approximate p-values of the rank product statistic for replicate experiments. BMC Bioinformatics. 2014;15:367. PubMed PMC

Hong F, et al. RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics. 2006;22:2825–2827. doi: 10.1093/bioinformatics/btl476. PubMed DOI

Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc. Natl Acad. Sci. USA. 2003;100:9440–9445. doi: 10.1073/pnas.1530509100. PubMed DOI PMC

Taverna F, et al. BIOMEX: an interactive workflow for (single cell) omics data interpretation and visualization. Nucleic Acids Res. 2020;48:W385–W394. doi: 10.1093/nar/gkaa332. PubMed DOI PMC

Kalucka J, et al. Single-cell transcriptome atlas of murine endothelial cells. Cell. 2020;180:764–779.e720. doi: 10.1016/j.cell.2020.01.015. PubMed DOI

Stuart T, et al. Comprehensive integration of single-cell data. Cell. 2019;177:1888–1902.e1821. doi: 10.1016/j.cell.2019.05.031. PubMed DOI PMC

Schoors S, et al. Fatty acid carbon is essential for dNTP synthesis in endothelial cells. Nature. 2015;520:192–197. doi: 10.1038/nature14362. PubMed DOI PMC

Schoors S, et al. Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab. 2014;19:37–48. doi: 10.1016/j.cmet.2013.11.008. PubMed DOI

Guzman-Aranguez A, Loma P, Pintor J. Small-interfering RNAs (siRNAs) as a promising tool for ocular therapy. Br. J. Pharmacol. 2013;170:730–747. doi: 10.1111/bph.12330. PubMed DOI PMC

Rohlenova K, et al. Single-cell RNA sequencing maps endothelial metabolic plasticity in pathological angiogenesis. Cell Metab. 2020;31:862–877.e814. doi: 10.1016/j.cmet.2020.03.009. PubMed DOI

Voigt AP, et al. Single-cell transcriptomics of the human retinal pigment epithelium and choroid in health and macular degeneration. Proc. Natl Acad. Sci. USA. 2019;116:24100–24107. doi: 10.1073/pnas.1914143116. PubMed DOI PMC

Lehmann GL, et al. Single-cell profiling reveals an endothelium-mediated immunomodulatory pathway in the eye choroid. J. Exp. Med. 2020;217:e20190730. doi: 10.1084/jem.20190730. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...