Serotonin 5-HT7 receptor slows down the Gs protein: a single molecule perspective
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM130142
NIGMS NIH HHS - United States
R35 GM145284
NIGMS NIH HHS - United States
PubMed
37342875
PubMed Central
PMC10398887
DOI
10.1091/mbc.e23-03-0117
Knihovny.cz E-zdroje
- MeSH
- gastrointestinální trakt MeSH
- receptory serotoninové * metabolismus MeSH
- receptory spřažené s G-proteiny MeSH
- serotonin * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- receptory serotoninové * MeSH
- receptory spřažené s G-proteiny MeSH
- serotonin * MeSH
The 5-hydroxytryptamine (serotonin) receptor type 7 (5-HT7R) is a G protein-coupled receptor present primarily in the nervous system and gastrointestinal tract, where it regulates mood, cognition, digestion, and vasoconstriction. 5-HT7R has previously been shown to bind to its cognate stimulatory Gs protein in the inactive state. This phenomenon, termed "inverse coupling," is thought to counteract the atypically high intrinsic activity of 5-HT7R. However, it is not clear how active and inactive 5-HT7 receptors affect the mobility of the Gs protein in the plasma membrane. Here, we used single-molecule imaging of the Gs protein and 5-HT7R to evaluate Gs mobility in the membrane in the presence of 5-HT7R and its mutants. We show that expression of 5-HT7R dramatically reduces the diffusion rate of Gs. Expression of the constitutively active mutant 5-HT7R (L173A) is less effective at slowing Gs diffusion presumably due to the reduced ability to form long-lasting inactive complexes. An inactive 5-HT7R (N380K) mutant slows down Gs to the same extent as the wild-type receptor. We conclude that inactive 5-HT7R profoundly affects Gs mobility, which could lead to Gs redistribution in the plasma membrane and alter its availability to other G protein-coupled receptors and effectors.
Zobrazit více v PubMed
Andressen KW, Ulsund AH, Krobert KA, Lohse MJ, Bunemann M, Levy FO (2018). Related GPCRs couple differently to Gs: preassociation between G protein and 5-HT7 serotonin receptor reveals movement of Gαs upon receptor activation. FASEB J 32, 1059–1069. PubMed
Axelrod D (1981). Cell-substrate contacts illuminated by total internal reflection fluorescence. J Cell Biol 89, 141–145. PubMed PMC
Berger M, Gray JA, Roth BL (2009). The expanded biology of serotonin. Annu Rev Med 60, 355–366. PubMed PMC
Bondar A, Jang W, Sviridova E, Lambert NA (2020). Components of the Gs signaling cascade exhibit distinct changes in mobility and membrane domain localization upon β2 -adrenergic receptor activation. Traffic 21, 324–332. PubMed PMC
Bondar A, Lazar J (2014). Dissociated GαGTP and Gβγ protein subunits are the major activated form of heterotrimeric Gi/o proteins. J Biol Chem 289, 1271–1281. PubMed PMC
Gasbarri A, Pompili A (2014). Serotonergic 5-HT7 receptors and cognition. Rev Neurosci 25, 311–323. PubMed
Guseva D, Wirth A, Ponimaskin E (2014). Cellular mechanisms of the 5-HT7 receptor-mediated signaling. Front Behav Neurosci 8, 306. PubMed PMC
Guzel T, Mirowska-Guzel D (2022). The role of serotonin neurotransmission in gastrointestinal tract and pharmacotherapy. Molecules 27, 1680. PubMed PMC
Hedlund PB (2009). The 5-HT7 receptor and disorders of the nervous system: an overview. Psychopharmacology (Berl) 206, 345–354. PubMed PMC
Jang W, Adams CE, Liu H, Zhang C, Levy FO, Andressen KW, Lambert NA (2020). An inactive receptor-G protein complex maintains the dynamic range of agonist-induced signaling. Proc Natl Acad Sci USA 117, 30755–30762. PubMed PMC
Keppler A, Gendreizig S, Gronemeyer T, Pick H, Vogel H, Johnsson K (2003). A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol 21, 86–89. PubMed
Kim JJ, Khan WI (2014). 5-HT7 receptor signaling: improved therapeutic strategy in gut disorders. Front Behav Neurosci 8, 396. PubMed PMC
Kroeze WK, Sassano MF, Huang XP, Lansu K, McCorvy JD, Giguere PM, Sciaky N, Roth BL (2015). PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome. Nat Struct Mol Biol 22, 362–369. PubMed PMC
Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohana RF, Urh M, et al. (2008). HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3, 373–382. PubMed
Mahe C, Bernhard M, Bobirnac I, Keser C, Loetscher E, Feuerbach D, Dev KK, Schoeffter P (2004). Functional expression of the serotonin 5-HT7 receptor in human glioblastoma cell lines. Br J Pharmacol 143, 404–410. PubMed PMC
Nehme R, Carpenter B, Singhal A, Strege A, Edwards PC, White CF, Du H, Grisshammer R, Tate CG (2017). Mini-G proteins: novel tools for studying GPCRs in their active conformation. PLoS One 12, e0175642. PubMed PMC
Pourhamzeh M, Moravej FG, Arabi M, Shahriari E, Mehrabi S, Ward R, Ahadi R, Joghataei MT (2022). The roles of serotonin in neuropsychiatric disorders. Cell Mol Neurobiol 42, 1671–1692. PubMed PMC
Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, Bednarek SY, Shorte SL, Eliceiri KW (2017). TrackMate: an open and extensible platform for single-particle tracking. Methods 115, 80–90. PubMed
Ulsund AH, Dahl M, Frimurer TM, Manfra O, Schwartz TW, Levy FO, Andressen KW (2019). Preassociation between the 5-HT7 serotonin receptor and G protein Gs: molecular determinants and association with low potency activation of adenylyl cyclase. FASEB J 33, 3870–3886. PubMed
Vega AR, Freeman SA, Grinstein S, Jaqaman K (2018). Multistep track segmentation and motion classification for transient mobility analysis. Biophys J 114, 1018–1025. PubMed PMC