Components of the Gs signaling cascade exhibit distinct changes in mobility and membrane domain localization upon β2 -adrenergic receptor activation
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
20-11563Y
Grantová Agentura České Republiky - International
P303/17-14413Y
Grantová Agentura České Republiky - International
R01 GM130142
NIGMS NIH HHS - United States
GM130142
NIH HHS - United States
20-09628Y
Grantová Agentura České Republiky - International
PubMed
32096320
PubMed Central
PMC7333016
DOI
10.1111/tra.12724
Knihovny.cz E-zdroje
- Klíčová slova
- G protein-coupled receptor, Gs protein, adenylyl cyclase, adrenergic receptor, arrestin, caveolin, clathrin,
- MeSH
- beta-2-adrenergní receptory metabolismus MeSH
- buněčná membrána metabolismus MeSH
- kaveoly metabolismus MeSH
- proteiny vázající GTP metabolismus MeSH
- signální transdukce * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- beta-2-adrenergní receptory MeSH
- proteiny vázající GTP MeSH
The G protein signaling cascade is a key player in cell signaling. Cascade activation leads to a redistribution of its members in various cellular compartments. These changes are likely related to the "second wave" of signaling from endosomes. Here, we set out to determine whether Gs signaling cascade members expressed at very low levels exhibit altered mobility and localize in clathrin-coated structures (CCSs) or caveolae upon activation by β2 -adrenergic receptors (β2 AR). Activated β2 AR showed decreased mobility and sustained accumulation in CCSs but not in caveolae. Arrestin 3 translocated to the plasma membrane after β2 AR activation and showed very low mobility and pronounced accumulation in CCSs. In contrast, Gαs and Gγ2 exhibited a modest reduction in mobility but no detectable accumulation in or exclusion from CCSs or caveolae. The effector adenylyl cyclase 5 (AC5) showed a slight mobility increase upon β2 AR stimulation, no redistribution to CCSs, and weak activation-independent accumulation in caveolae. Our findings show an overall decrease in the mobility of most activated Gs signaling cascade members and confirm that β2 AR and arrestin 3 accumulate in CCSs, while Gαs , Gγ2 and AC5 can transiently enter CCSs and caveolae but do not accumulate in and are not excluded from these domains.
Zobrazit více v PubMed
de Mendoza A, Sebe-Pedros A, Ruiz-Trillo I. The evolution of the GPCR signaling system in eukaryotes: modularity, conservation, and the transition to metazoan multicellularity. Genome Biol Evol. 2014;6(3):606–619. PubMed PMC
McCudden CR, Hains MD, Kimple RJ, Siderovski DP, Willard FS. G-protein signaling: back to the future. Cell Mol Life Sci. 2005;62(5):551–577. PubMed PMC
Irannejad R, Tomshine JC, Tomshine JR, et al. Conformational biosensors reveal GPCR signalling from endosomes. Nature. 2013;495(7442):534-+. PubMed PMC
Kotowski SJ, Hopf FW, Seif T, Bonci A, von Zastrow M. Endocytosis promotes rapid dopaminergic signaling. Neuron. 2011;71(2):278–290. PubMed PMC
Calebiro D, Nikolaev VO, Persani L, Lohse MJ. Signaling by internalized G-protein-coupled receptors. Trends Pharmacol Sci. 2010;31(5):221–228. PubMed
Ferrandon S, Feinstein TN, Castro M, et al. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat Chem Biol. 2009;5(10):734–742. PubMed PMC
Goodman OB Jr., Krupnick JG, Santini F, et al. Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature. 1996;383(6599):447–450. PubMed
Zhang J, Barak LS, Winkler KE, Caron MG, Ferguson SS. A central role for beta-arrestins and clathrin-coated vesicle-mediated endocytosis in beta2-adrenergic receptor resensitization. Differential regulation of receptor resensitization in two distinct cell types. J Biol Chem. 1997;272(43):27005–27014. PubMed
Puthenveedu MA, von Zastrow M. Cargo regulates clathrin-coated pit dynamics. Cell. 2006;127(1):113–124. PubMed
Laporte SA, Oakley RH, Zhang J, et al. The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci U S A. 1999;96(7):3712–3717. PubMed PMC
Lin FT, Krueger KM, Kendall HE, et al. Clathrin-mediated endocytosis of the beta-adrenergic receptor is regulated by phosphorylation/dephosphorylation of beta-arrestin1. J Biol Chem. 1997;272(49):31051–31057. PubMed
Tsvetanova NG, Irannejad R, von Zastrow M. G Protein-coupled Receptor (GPCR) Signaling via Heterotrimeric G Proteins from Endosomes. J Biol Chem. 2015;290(11):6689–6696. PubMed PMC
Van Dyke RW. Heterotrimeric G protein subunits are located on rat liver endosomes. BMC Physiol. 2004;4:1. PubMed PMC
Sungkaworn T, Jobin ML, Burnecki K, Weron A, Lohse MJ, Calebiro D. Single-molecule imaging reveals receptor-G protein interactions at cell surface hot spots. Nature. 2017;550(7677):543–547. PubMed
Schwencke C, Okumura S, Yamamoto M, Geng YJ, Ishikawa Y. Colocalization of beta-adrenergic receptors and caveolin within the plasma membrane. J Cell Biochem. 1999;75(1):64–72. PubMed
Schwarzer S, Nobles M, Tinker A. Do Caveolae Have a Role in the Fidelity and Dynamics of Receptor Activation of G-protein-gated Inwardly Rectifying Potassium Channels? J Biol Chem. 2010;285(36):27817–27826. PubMed PMC
Rybin VO, Xu X, Lisanti MP, Steinberg SF. Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem. 2000;275(52):41447–41457. PubMed
Sato M, Hutchinson DS, Halls ML, et al. Interaction with caveolin-1 modulates G protein coupling of mouse beta3-adrenoceptor. J Biol Chem. 2012;287(24):20674–20688. PubMed PMC
Oh P, Schnitzer JE. Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default. Mol Biol Cell. 2001;12(3):685–698. PubMed PMC
Calizo RC, Scarlata S. A role for G-proteins in directing G-protein-coupled receptor-caveolae localization. Biochemistry. 2012;51(47):9513–9523. PubMed PMC
Tinevez JY, Perry N, Schindelin J, et al. TrackMate: An open and extensible platform for single-particle tracking. Methods. 2017;115:80–90. PubMed
Tarantino N, Tinevez JY, Crowell EF, et al. TNF and IL-1 exhibit distinct ubiquitin requirements for inducing NEMO-IKK supramolecular structures. J Cell Biol. 2014;204(2):231–245. PubMed PMC
Goodman OB Jr., Krupnick JG, Santini F, et al. Role of arrestins in G-protein-coupled receptor endocytosis. Adv Pharmacol. 1998;42:429–433. PubMed
Ibach J, Radon Y, Gelleri M, et al. Single Particle Tracking Reveals that EGFR Signaling Activity Is Amplified in Clathrin-Coated Pits. PLoS One. 2015;10(11):e0143162. PubMed PMC
Githaka JM, Vega AR, Baird MA, Davidson MW, Jaqaman K, Touret N. Ligand-induced growth and compaction of CD36 nanoclusters enriched in Fyn induces Fyn signaling. J Cell Sci. 2016;129(22):4175–4189. PubMed
Eichel K, Jullie D, Barsi-Rhyne B, et al. Catalytic activation of beta-arrestin by GPCRs. Nature. 2018;557(7705):381–386. PubMed PMC
Krasel C, Bunemann M, Lorenz K, Lohse MJ. Beta-arrestin binding to the beta2-adrenergic receptor requires both receptor phosphorylation and receptor activation. J Biol Chem. 2005;280(10):9528–9535. PubMed
Digby GJ, Sethi PR, Lambert NA. Differential dissociation of G protein heterotrimers. J Physiol. 2008;586(14):3325–3335. PubMed PMC
Timofeyev V, Myers RE, Kim HJ, et al. Adenylyl cyclase subtype-specific compartmentalization: differential regulation of L-type Ca2+ current in ventricular myocytes. Circ Res. 2013;112(12):1567–1576. PubMed PMC
Gao X, Sadana R, Dessauer CW, Patel TB. Conditional stimulation of type V and VI adenylyl cyclases by G protein betagamma subunits. J Biol Chem. 2007;282(1):294–302. PubMed
Allen JA, Yu JZ, Dave RH, Bhatnagar A, Roth BL, Rasenick MM. Caveolin-1 and lipid microdomains regulate Gs trafficking and attenuate Gs/adenylyl cyclase signaling. Mol Pharmacol. 2009;76(5):1082–1093. PubMed PMC
Chakrabarti S, Chang A, Gintzler AR. Subcellular localization of mu-opioid receptor G(s) signaling. J Pharmacol Exp Ther. 2010;333(1):193–200. PubMed PMC
Thomsen ARB, Plouffe B, Cahill TJ, 3rd, et al. GPCR-G Protein-beta-Arrestin Super-Complex Mediates Sustained G Protein Signaling. Cell. 2016;166(4):907–919. PubMed PMC
Nguyen AH, Thomsen ARB, Cahill TJ, 3rd, et al. Structure of an endosomal signaling GPCR-G protein-beta-arrestin megacomplex. Nat Struct Mol Biol. 2019;26(12):1123–1131. PubMed PMC
Martin BR, Lambert NA. Activated G Protein Galphas Samples Multiple Endomembrane Compartments. J Biol Chem. 2016;291(39):20295–20302. PubMed PMC
Valentine CD, Haggie PM. Confinement of beta(1)- and beta(2)-adrenergic receptors in the plasma membrane of cardiomyocyte-like H9c2 cells is mediated by selective interactions with PDZ domain and A-kinase anchoring proteins but not caveolae. Mol Biol Cell. 2011;22(16):2970–2982. PubMed PMC
Calebiro D, Rieken F, Wagner J, et al. Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci U S A. 2013;110(2):743–748. PubMed PMC
Patel HH, Murray F, Insel PA. Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu Rev Pharmacol Toxicol. 2008;48:359–391. PubMed PMC
Li S, Okamoto T, Chun M, et al. Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem. 1995;270(26):15693–15701. PubMed
Jaqaman K, Loerke D, Mettlen M, et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods. 2008;5(8):695–702. PubMed PMC
Culley S, Tosheva KL, Matos Pereira P, Henriques R. SRRF: Universal live-cell super-resolution microscopy. Int J Biochem Cell Biol. 2018;101:74–79. PubMed PMC
Serotonin 5-HT7 receptor slows down the Gs protein: a single molecule perspective