Components of the Gs signaling cascade exhibit distinct changes in mobility and membrane domain localization upon β2 -adrenergic receptor activation

. 2020 Apr ; 21 (4) : 324-332.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32096320

Grantová podpora
20-11563Y Grantová Agentura České Republiky - International
P303/17-14413Y Grantová Agentura České Republiky - International
R01 GM130142 NIGMS NIH HHS - United States
GM130142 NIH HHS - United States
20-09628Y Grantová Agentura České Republiky - International

The G protein signaling cascade is a key player in cell signaling. Cascade activation leads to a redistribution of its members in various cellular compartments. These changes are likely related to the "second wave" of signaling from endosomes. Here, we set out to determine whether Gs signaling cascade members expressed at very low levels exhibit altered mobility and localize in clathrin-coated structures (CCSs) or caveolae upon activation by β2 -adrenergic receptors (β2 AR). Activated β2 AR showed decreased mobility and sustained accumulation in CCSs but not in caveolae. Arrestin 3 translocated to the plasma membrane after β2 AR activation and showed very low mobility and pronounced accumulation in CCSs. In contrast, Gαs and Gγ2 exhibited a modest reduction in mobility but no detectable accumulation in or exclusion from CCSs or caveolae. The effector adenylyl cyclase 5 (AC5) showed a slight mobility increase upon β2 AR stimulation, no redistribution to CCSs, and weak activation-independent accumulation in caveolae. Our findings show an overall decrease in the mobility of most activated Gs signaling cascade members and confirm that β2 AR and arrestin 3 accumulate in CCSs, while Gαs , Gγ2 and AC5 can transiently enter CCSs and caveolae but do not accumulate in and are not excluded from these domains.

Zobrazit více v PubMed

de Mendoza A, Sebe-Pedros A, Ruiz-Trillo I. The evolution of the GPCR signaling system in eukaryotes: modularity, conservation, and the transition to metazoan multicellularity. Genome Biol Evol. 2014;6(3):606–619. PubMed PMC

McCudden CR, Hains MD, Kimple RJ, Siderovski DP, Willard FS. G-protein signaling: back to the future. Cell Mol Life Sci. 2005;62(5):551–577. PubMed PMC

Irannejad R, Tomshine JC, Tomshine JR, et al. Conformational biosensors reveal GPCR signalling from endosomes. Nature. 2013;495(7442):534-+. PubMed PMC

Kotowski SJ, Hopf FW, Seif T, Bonci A, von Zastrow M. Endocytosis promotes rapid dopaminergic signaling. Neuron. 2011;71(2):278–290. PubMed PMC

Calebiro D, Nikolaev VO, Persani L, Lohse MJ. Signaling by internalized G-protein-coupled receptors. Trends Pharmacol Sci. 2010;31(5):221–228. PubMed

Ferrandon S, Feinstein TN, Castro M, et al. Sustained cyclic AMP production by parathyroid hormone receptor endocytosis. Nat Chem Biol. 2009;5(10):734–742. PubMed PMC

Goodman OB Jr., Krupnick JG, Santini F, et al. Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature. 1996;383(6599):447–450. PubMed

Zhang J, Barak LS, Winkler KE, Caron MG, Ferguson SS. A central role for beta-arrestins and clathrin-coated vesicle-mediated endocytosis in beta2-adrenergic receptor resensitization. Differential regulation of receptor resensitization in two distinct cell types. J Biol Chem. 1997;272(43):27005–27014. PubMed

Puthenveedu MA, von Zastrow M. Cargo regulates clathrin-coated pit dynamics. Cell. 2006;127(1):113–124. PubMed

Laporte SA, Oakley RH, Zhang J, et al. The beta2-adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci U S A. 1999;96(7):3712–3717. PubMed PMC

Lin FT, Krueger KM, Kendall HE, et al. Clathrin-mediated endocytosis of the beta-adrenergic receptor is regulated by phosphorylation/dephosphorylation of beta-arrestin1. J Biol Chem. 1997;272(49):31051–31057. PubMed

Tsvetanova NG, Irannejad R, von Zastrow M. G Protein-coupled Receptor (GPCR) Signaling via Heterotrimeric G Proteins from Endosomes. J Biol Chem. 2015;290(11):6689–6696. PubMed PMC

Van Dyke RW. Heterotrimeric G protein subunits are located on rat liver endosomes. BMC Physiol. 2004;4:1. PubMed PMC

Sungkaworn T, Jobin ML, Burnecki K, Weron A, Lohse MJ, Calebiro D. Single-molecule imaging reveals receptor-G protein interactions at cell surface hot spots. Nature. 2017;550(7677):543–547. PubMed

Schwencke C, Okumura S, Yamamoto M, Geng YJ, Ishikawa Y. Colocalization of beta-adrenergic receptors and caveolin within the plasma membrane. J Cell Biochem. 1999;75(1):64–72. PubMed

Schwarzer S, Nobles M, Tinker A. Do Caveolae Have a Role in the Fidelity and Dynamics of Receptor Activation of G-protein-gated Inwardly Rectifying Potassium Channels? J Biol Chem. 2010;285(36):27817–27826. PubMed PMC

Rybin VO, Xu X, Lisanti MP, Steinberg SF. Differential targeting of beta -adrenergic receptor subtypes and adenylyl cyclase to cardiomyocyte caveolae. A mechanism to functionally regulate the cAMP signaling pathway. J Biol Chem. 2000;275(52):41447–41457. PubMed

Sato M, Hutchinson DS, Halls ML, et al. Interaction with caveolin-1 modulates G protein coupling of mouse beta3-adrenoceptor. J Biol Chem. 2012;287(24):20674–20688. PubMed PMC

Oh P, Schnitzer JE. Segregation of heterotrimeric G proteins in cell surface microdomains. G(q) binds caveolin to concentrate in caveolae, whereas G(i) and G(s) target lipid rafts by default. Mol Biol Cell. 2001;12(3):685–698. PubMed PMC

Calizo RC, Scarlata S. A role for G-proteins in directing G-protein-coupled receptor-caveolae localization. Biochemistry. 2012;51(47):9513–9523. PubMed PMC

Tinevez JY, Perry N, Schindelin J, et al. TrackMate: An open and extensible platform for single-particle tracking. Methods. 2017;115:80–90. PubMed

Tarantino N, Tinevez JY, Crowell EF, et al. TNF and IL-1 exhibit distinct ubiquitin requirements for inducing NEMO-IKK supramolecular structures. J Cell Biol. 2014;204(2):231–245. PubMed PMC

Goodman OB Jr., Krupnick JG, Santini F, et al. Role of arrestins in G-protein-coupled receptor endocytosis. Adv Pharmacol. 1998;42:429–433. PubMed

Ibach J, Radon Y, Gelleri M, et al. Single Particle Tracking Reveals that EGFR Signaling Activity Is Amplified in Clathrin-Coated Pits. PLoS One. 2015;10(11):e0143162. PubMed PMC

Githaka JM, Vega AR, Baird MA, Davidson MW, Jaqaman K, Touret N. Ligand-induced growth and compaction of CD36 nanoclusters enriched in Fyn induces Fyn signaling. J Cell Sci. 2016;129(22):4175–4189. PubMed

Eichel K, Jullie D, Barsi-Rhyne B, et al. Catalytic activation of beta-arrestin by GPCRs. Nature. 2018;557(7705):381–386. PubMed PMC

Krasel C, Bunemann M, Lorenz K, Lohse MJ. Beta-arrestin binding to the beta2-adrenergic receptor requires both receptor phosphorylation and receptor activation. J Biol Chem. 2005;280(10):9528–9535. PubMed

Digby GJ, Sethi PR, Lambert NA. Differential dissociation of G protein heterotrimers. J Physiol. 2008;586(14):3325–3335. PubMed PMC

Timofeyev V, Myers RE, Kim HJ, et al. Adenylyl cyclase subtype-specific compartmentalization: differential regulation of L-type Ca2+ current in ventricular myocytes. Circ Res. 2013;112(12):1567–1576. PubMed PMC

Gao X, Sadana R, Dessauer CW, Patel TB. Conditional stimulation of type V and VI adenylyl cyclases by G protein betagamma subunits. J Biol Chem. 2007;282(1):294–302. PubMed

Allen JA, Yu JZ, Dave RH, Bhatnagar A, Roth BL, Rasenick MM. Caveolin-1 and lipid microdomains regulate Gs trafficking and attenuate Gs/adenylyl cyclase signaling. Mol Pharmacol. 2009;76(5):1082–1093. PubMed PMC

Chakrabarti S, Chang A, Gintzler AR. Subcellular localization of mu-opioid receptor G(s) signaling. J Pharmacol Exp Ther. 2010;333(1):193–200. PubMed PMC

Thomsen ARB, Plouffe B, Cahill TJ, 3rd, et al. GPCR-G Protein-beta-Arrestin Super-Complex Mediates Sustained G Protein Signaling. Cell. 2016;166(4):907–919. PubMed PMC

Nguyen AH, Thomsen ARB, Cahill TJ, 3rd, et al. Structure of an endosomal signaling GPCR-G protein-beta-arrestin megacomplex. Nat Struct Mol Biol. 2019;26(12):1123–1131. PubMed PMC

Martin BR, Lambert NA. Activated G Protein Galphas Samples Multiple Endomembrane Compartments. J Biol Chem. 2016;291(39):20295–20302. PubMed PMC

Valentine CD, Haggie PM. Confinement of beta(1)- and beta(2)-adrenergic receptors in the plasma membrane of cardiomyocyte-like H9c2 cells is mediated by selective interactions with PDZ domain and A-kinase anchoring proteins but not caveolae. Mol Biol Cell. 2011;22(16):2970–2982. PubMed PMC

Calebiro D, Rieken F, Wagner J, et al. Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci U S A. 2013;110(2):743–748. PubMed PMC

Patel HH, Murray F, Insel PA. Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu Rev Pharmacol Toxicol. 2008;48:359–391. PubMed PMC

Li S, Okamoto T, Chun M, et al. Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem. 1995;270(26):15693–15701. PubMed

Jaqaman K, Loerke D, Mettlen M, et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods. 2008;5(8):695–702. PubMed PMC

Culley S, Tosheva KL, Matos Pereira P, Henriques R. SRRF: Universal live-cell super-resolution microscopy. Int J Biochem Cell Biol. 2018;101:74–79. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Serotonin 5-HT7 receptor slows down the Gs protein: a single molecule perspective

. 2023 Aug 01 ; 34 (9) : br14. [epub] 20230621

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...