Phenotypic Transitions the Processes Involved in Regulation of Growth and Proangiogenic Properties of Stem Cells, Cancer Stem Cells and Circulating Tumor Cells
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
38372877
PubMed Central
PMC11087301
DOI
10.1007/s12015-024-10691-w
PII: 10.1007/s12015-024-10691-w
Knihovny.cz E-zdroje
- Klíčová slova
- Cancer stem Cells, Circulating Tumor cell (CTC), Epithelial-mesenchymal Transition (EMT), Mesenchymal-epithelial Transition (MET),
- MeSH
- epitelo-mezenchymální tranzice * MeSH
- fenotyp MeSH
- kmenové buňky metabolismus cytologie patologie MeSH
- lidé MeSH
- nádorové cirkulující buňky * patologie metabolismus MeSH
- nádorové kmenové buňky * patologie metabolismus MeSH
- nádory patologie metabolismus MeSH
- patologická angiogeneze * patologie MeSH
- proliferace buněk genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Epithelial-mesenchymal transition (EMT) is a crucial process with significance in the metastasis of malignant tumors. It is through the acquisition of plasticity that cancer cells become more mobile and gain the ability to metastasize to other tissues. The mesenchymal-epithelial transition (MET) is the return to an epithelial state, which allows for the formation of secondary tumors. Both processes, EMT and MET, are regulated by different pathways and different mediators, which affects the sophistication of the overall tumorigenesis process. Not insignificant are also cancer stem cells and their participation in the angiogenesis, which occur very intensively within tumors. Difficulties in effectively treating cancer are primarily dependent on the potential of cancer cells to rapidly expand and occupy secondarily vital organs. Due to the ability of these cells to spread, the concept of the circulating tumor cell (CTC) has emerged. Interestingly, CTCs exhibit molecular diversity and stem-like and mesenchymal features, even when derived from primary tumor tissue from a single patient. While EMT is necessary for metastasis, MET is required for CTCs to establish a secondary site. A thorough understanding of the processes that govern the balance between EMT and MET in malignancy is crucial.
Atherosclerosis Research Center Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran
Department of Physiotherapy Wroclaw University School of Physical Education Wroclaw Poland
Department of Toxicology Poznan University of Medical Sciences Poznan Poland
Division of Anatomy and Histology University of Zielona Góra Zielona Góra Poland
Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran
Physiology Graduate Faculty North Carolina State University Raleigh NC USA
Prestage Department of Poultry Science North Carolina State University Raleigh NC USA
Veterinary Clinic of the Nicolaus Copernicus University in Torun Torun Poland
Zobrazit více v PubMed
Bellon, M., & Nicot, C. (Jan. 2023). Targeting pim kinases in hematological cancers: Molecular and clinical review. Molecular Cancer, 22(1, p. 18,). 10.1186/s12943-023-01721-1. PubMed PMC
Fares, J., Fares, M. Y., Khachfe, H. H., Salhab, H. A., & Fares, Y. (Mar. 2020). Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct Target Ther, 5(1), 28. 10.1038/s41392-020-0134-x. PubMed PMC
Meirson T, Gil-Henn H, Samson AO. Invasion and metastasis: The elusive hallmark of cancer. Oncogene. 2019;39(9):2024–2026. doi: 10.1038/s41388-019-1110-1. PubMed DOI
Lusby, R., Dunne, P., & Tiwari, V. K. (2022). Tumour invasion and dissemination, Biochem. Soc. Trans, vol. 50, no. 3, pp. 1245–1257, Jun. 10.1042/BST20220452. PubMed PMC
Muralidharan, S., et al. (Feb. 2022). Quantifying the patterns of metabolic plasticity and heterogeneity along the epithelial-hybrid-mesenchymal spectrum in Cancer. Biomolecules, 12(2), 297. 10.3390/biom12020297. PubMed PMC
Jeong, J., & Kim, J. (Mar. 2022). Combination effect of Cilengitide with Erlotinib on TGF-β1-Induced epithelial-to-mesenchymal transition in Human Non-small Cell Lung Cancer cells. International Journal of Molecular Sciences, 23(7), 3423. 10.3390/ijms23073423. PubMed PMC
Pastushenko I, et al. Identification of the tumour transition states occurring during EMT. Nature. 2018;556(7702):463–468. doi: 10.1038/s41586-018-0040-3. PubMed DOI
Zheng, X. (2015). Nov., Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer, Nature, vol. 527, no. 7579, pp. 525–530, 10.1038/nature16064. PubMed PMC
Primeaux, M., Gowrikumar, S., & Dhawan, P. (Jun. 2022). Role of CD44 isoforms in epithelial-mesenchymal plasticity and metastasis. Clinical & Experimental Metastasis, 39(3), 391–406. 10.1007/s10585-022-10146-x. PubMed PMC
Alotaibi H. Crif1 is required for proper mesenchymal to epithelial transition. Cumhur Sci J. 2022;43(2):165–170. doi: 10.17776/csj.1062126. DOI
Plygawko, A. T., Kan, S., & Campbell, K. (2020). Epithelial-mesenchymal plasticity: emerging parallels between tissue morphogenesis and cancer metastasis, Philos. Trans. R. Soc. Lond. B. Biol. Sci, vol. 375, no. 1809, p. 20200087, Oct. 10.1098/rstb.2020.0087. PubMed PMC
Chen J, Han Q, Pei D. EMT and MET as paradigms for cell fate switching. Journal of Molecular Cell Biology. 2011;4(2):66–69. doi: 10.1093/jmcb/mjr045. PubMed DOI
Safa, A. R. (2022). Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces, Cancer drug Resist. (Alhambra, Calif.), vol. 5, no. 4, pp. 850–872, Aug. 10.20517/cdr.2022.20. PubMed PMC
Rodriguez-Aznar, E., Wiesmüller, L., Sainz, B. Jr., & Hermann, P. C. (Aug. 2019). EMT and stemness-key players in pancreatic Cancer stem cells. Cancers (Basel), 11(8), 1136. 10.3390/cancers11081136. PubMed PMC
Ribatti, D., Tamma, R., & Annese, T. (Jun. 2020). Epithelial-mesenchymal transition in Cancer: A historical overview. Transl Oncol, 13(6), 100773. 10.1016/j.tranon.2020.100773. PubMed PMC
Huang, Y., Hong, W., & Wei, X. (Sep. 2022). The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. Journal of Hematology & Oncology, 15(1), 129. 10.1186/s13045-022-01347-8. PubMed PMC
Chiang, S. P. H., Cabrera, R. M., & Segall, J. E. (Jul. 2016). Tumor cell intravasation. American Journal of Physiology. Cell Physiology, 311(1), C1–C14. 10.1152/ajpcell.00238.2015. PubMed PMC
Kurma, K., & Alix-Panabières, C. (May 2023). Mechanobiology and survival strategies of circulating tumor cells: A process towards the invasive and metastatic phenotype. Front cell Dev Biol, 11, 1188499. 10.3389/fcell.2023.1188499. PubMed PMC
Yin W, Han YM, Li ZL, Huang ZX, Huang L, Zhong XG. Clinical significance of perioperative EMT-CTCs in rectal cancer patients receiving open/laparoscopic surgery. Neoplasma. 2020;67(05):1131–1138. doi: 10.4149/neo_2020_190709n611. PubMed DOI
Bian, X., Ma, K., Zhang, C., & Fu, X. (Jun. 2019). Therapeutic angiogenesis using stem cell-derived extracellular vesicles: An emerging approach for treatment of ischemic diseases. Stem Cell Research & Therapy, 10(1), 158. 10.1186/s13287-019-1276-z. PubMed PMC
Azari, Z. (2022). Jul., Stem cell-mediated angiogenesis in skin tissue engineering and wound healing, Wound Repair Regen, vol. 30, no. 4, pp. 421–435, 10.1111/wrr.13033. PubMed PMC
Butti R, Gunasekaran VP, Kumar TVS, Banerjee P, Kundu GC. Breast cancer stem cells: Biology and therapeutic implications. Int J Biochem & Cell Biol. 2019;107:38–52. doi: 10.1016/j.biocel.2018.12.001. PubMed DOI
Zakrzewski, W., Dobrzyński, M., Szymonowicz, M., & Rybak, Z. (Feb. 2019). Stem cells: Past, present, and future. Stem Cell Research & Therapy, 10(1), 68. 10.1186/s13287-019-1165-5. PubMed PMC
Rosner, M., Horer, S., Feichtinger, M., & Hengstschläger, M. (Jun. 2023). Multipotent fetal stem cells in reproductive biology research. Stem Cell Research & Therapy, 14(1), 157. 10.1186/s13287-023-03379-4. PubMed PMC
Musa, S., & Romano, N. (2023). Stem cell immunology. Immunology for Dentistry (pp. 48–60). Wiley. 10.1002/9781119893035.ch5.
Charitos, I. A. (2021). Stem Cells: A Historical Review about Biological, Religious, and Ethical Issues, Stem Cells Int, vol. p. 9978837, Apr. 2021, 10.1155/2021/9978837. PubMed PMC
Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in Development and Disease. Cell. 2009;139(5):871–890. doi: 10.1016/j.cell.2009.11.007. PubMed DOI
Aban, C. E. (2048). Downregulation of E-cadherin in pluripotent stem cells triggers partial EMT, Sci. Rep, vol. 11, no. 1, p. Jan. 2021, 10.1038/s41598-021-81735-1. PubMed PMC
Lamouille, S., Xu, J., & Derynck, R. (2014). Molecular mechanisms of epithelial-mesenchymal transition, Nat. Rev. Mol. Cell Biol, vol. 15, no. 3, pp. 178–196, Mar. 10.1038/nrm3758. PubMed PMC
Gonzalez, D. M., & Medici, D. (Sep. 2014). Signaling mechanisms of the epithelial-mesenchymal transition. Science Signaling, 7(344), re8–re8. 10.1126/scisignal.2005189. PubMed PMC
Xiao, K., et al. (Oct. 2020). Mesenchymal stem cells reverse EMT process through blocking the activation of NF-κB and hedgehog pathways in LPS-induced acute lung injury. Cell Death and Disease, 11(10), 863. 10.1038/s41419-020-03034-3. PubMed PMC
Han B, et al. Adipose-derived mesenchymal stem cells treatments for fibroblasts of fibrotic scar via downregulating TGF-β1 and Notch-1 expression enhanced by photobiomodulation therapy. Lasers in Medical Science. 2018;34(1):1–10. doi: 10.1007/s10103-018-2567-9. PubMed DOI
Yao, Y., Chen, R., Wang, G., Zhang, Y., & Liu, F. (2019). Exosomes derived from mesenchymal stem cells reverse EMT via TGF-β1/Smad pathway and promote repair of damaged endometrium, Stem Cell Res. Ther, vol. 10, no. 1, p. 225, Jul. 10.1186/s13287-019-1332-8. PubMed PMC
Yu Y, et al. Human umbilical cord mesenchymal stem cell attenuates renal fibrosis via TGF-β/Smad signaling pathways in vivo and in vitro. European Journal of Pharmacology. 2020;883:173343. doi: 10.1016/j.ejphar.2020.173343. PubMed DOI
Meng Y, Liu Y, Dakou E, Gutierrez GJ, Leyns L. Polycomb group RING finger protein 5 influences several developmental signaling pathways during the in vitro differentiation of mouse embryonic stem cells. Dev Growth & Differ. 2020;62(4):232–242. doi: 10.1111/dgd.12659. PubMed DOI
Qiao B, Gopalan V, Chen Z, Smith RA, Tao Q, Lam AK. Epithelial–mesenchymal transition and mesenchymal–epithelial transition are essential for the acquisition of stem cell properties in hTERT-immortalised oral epithelial cells. Biology of the Cell. 2012;104(8):476–489. doi: 10.1111/boc.201100077. PubMed DOI
Li, B., Zheng, Y. W., Sano, Y., & Taniguchi, H. (Feb. 2011). Evidence for mesenchymal-epithelial transition associated with mouse hepatic stem cell differentiation. PLoS One, 6(2), e17092–e17092. 10.1371/journal.pone.0017092. PubMed PMC
Bisht, S., Nigam, M., Kunjwal, S. S., Sergey, P., Mishra, A. P., & Sharifi-Rad, J. (2022). Cancer Stem Cells: From an Insight into the Basics to Recent Advances and Therapeutic Targeting, Stem Cells Int, vol. p. 9653244, Jun. 2022, 10.1155/2022/9653244. PubMed PMC
Neumüller, R. A., & Knoblich, J. A. (2009). Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer, Genes Dev, vol. 23, no. 23, pp. 2675–2699, Dec. 10.1101/gad.1850809. PubMed PMC
Wang, R., et al. (Feb. 2016). Notch and Wnt/β-catenin signaling pathway play important roles in activating liver cancer stem cells. Oncotarget, 7(5), 5754–5768. 10.18632/oncotarget.6805. PubMed PMC
Aramini, B., et al. (Feb. 2022). Dissecting Tumor Growth: The role of Cancer Stem cells in Drug Resistance and Recurrence. Cancers (Basel), 14(4), 976. 10.3390/cancers14040976. PubMed PMC
Maugeri-Saccà, M., Bartucci, M., & De Maria, R. (2012). DNA Damage Repair Pathways in Cancer Stem Cells, Mol. Cancer Ther, vol. 11, no. 8, pp. 1627–1636, 10.1158/1535-7163.mct-11-1040. PubMed
Hollier, B. G. (2013). Mar., FOXC2 expression links epithelial-mesenchymal transition and stem cell properties in breast cancer, Cancer Res, vol. 73, no. 6, pp. 1981–1992, 10.1158/0008-5472.CAN-12-2962. PubMed PMC
Mani, S. A., et al. (May 2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715. 10.1016/j.cell.2008.03.027. PubMed PMC
Morel, A. P., Lièvre, M., Thomas, C., Hinkal, G., Ansieau, S., & Puisieux, A. (2008). Generation of breast cancer stem cells through epithelial-mesenchymal transition, PLoS One, vol. 3, no. 8, pp. e2888–e2888, Aug. 10.1371/journal.pone.0002888. PubMed PMC
McCoy, E. L. (2009). Sep., Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition, J. Clin. Invest, vol. 119, no. 9, pp. 2663–2677, 10.1172/JCI37691. PubMed PMC
Evdokimova V, et al. Translational activation of Snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition. Cancer Cell. 2009;15(5):402–415. doi: 10.1016/j.ccr.2009.03.017. PubMed DOI
Yin, X. (2010). Oct., ATF3, an adaptive-response gene, enhances TGF{beta} signaling and cancer-initiating cell features in breast cancer cells, J. Cell Sci, vol. 123, no. Pt 20, pp. 3558–3565, 10.1242/jcs.064915. PubMed PMC
Jo, M., Eastman, B. M., Webb, D. L., Stoletov, K., Klemke, R., & Gonias, S. L. (2010). Cell signaling by urokinase-type plasminogen activator receptor induces stem cell-like properties in breast cancer cells, Cancer Res, vol. 70, no. 21, pp. 8948–8958, Nov. 10.1158/0008-5472.CAN-10-1936. PubMed PMC
Wellner U, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biology. 2009;11(12):1487–1495. doi: 10.1038/ncb1998. PubMed DOI
Shimono, Y. (2009). Aug., Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells, Cell, vol. 138, no. 3, pp. 592–603, 10.1016/j.cell.2009.07.011. PubMed PMC
Tam, W. L., et al. (Sep. 2013). Protein kinase C α is a central signaling node and therapeutic target for breast cancer stem cells. Cancer Cell, 24(3), 347–364. 10.1016/j.ccr.2013.08.005. PubMed PMC
Bowers, L. W., et al. (May 2018). Leptin Signaling mediates obesity-Associated CSC Enrichment and EMT in Preclinical TNBC models. Molecular Cancer Research, 16(5), 869–879. 10.1158/1541-7786.MCR-17-0508. PubMed PMC
Jiang R, et al. EMT and CSC-like properties mediated by the IKKβ/IκBα/RelA signal pathway via the transcriptional regulator, Snail, are involved in the arsenite-induced neoplastic transformation of human keratinocytes. Archives of Toxicology. 2012;87(6):991–1000. doi: 10.1007/s00204-012-0933-0. PubMed DOI
Wang Y, et al. PM2.5 induces EMT and promotes CSC properties by activating notch pathway in vivo and vitro. Ecotoxicology and Environmental Safety. 2019;178:159–167. doi: 10.1016/j.ecoenv.2019.03.086. PubMed DOI
Bosukonda A, Carlson WD. Harnessing the BMP signaling pathway to control the formation of cancer stem cells by effects on epithelial-to-mesenchymal transition. Biochemical Society Transactions. 2017;45(1):223–228. doi: 10.1042/bst20160177. PubMed DOI
Burk, U. (2008). Jun., A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells, EMBO Rep, vol. 9, no. 6, pp. 582–589, 10.1038/embor.2008.74. PubMed PMC
Biddle A, et al. Cancer Stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Research. 2011;71:5317–5326. doi: 10.1158/0008-5472.can-11-1059. PubMed DOI
Guo Y, et al. PKD-1 signaling is required for the maintenance of CSCs with epithelial-mesenchymal plasticity in pancreatic neuroendocrine tumors. Cold Spring Harbor Laboratory. 2022 doi: 10.1101/2022.02.17.480869. DOI
Farabaugh, S. M., Micalizzi, D. S., Jedlicka, P., Zhao, R., & Ford, H. L. (2012). Eya2 is required to mediate the pro-metastatic functions of Six1 via the induction of TGF-β signaling, epithelial-mesenchymal transition, and cancer stem cell properties, Oncogene, vol. 31, no. 5, pp. 552–562, Feb. 10.1038/onc.2011.259. PubMed PMC
Li, J., & Zhou, B. P. (Feb. 2011). Activation of β-catenin and akt pathways by twist are critical for the maintenance of EMT associated cancer stem cell-like characters. Bmc Cancer, 11, 49. 10.1186/1471-2407-11-49. PubMed PMC
Deng, Z., Wu, S., Wang, Y., & Shi, D. (Sep. 2022). Circulating tumor cell isolation for cancer diagnosis and prognosis. EBioMedicine, 83, 104237. 10.1016/j.ebiom.2022.104237. PubMed PMC
Raeisi M, Zehtabi M, Velaei K, Fayyazpour P, Aghaei N, Mehdizadeh A. Anoikis in cancer: The role of lipid signaling. Cell Biology International. 2022;46(11):1717–1728. doi: 10.1002/cbin.11896. PubMed DOI
Gkountela, S. (2019). Jan., Circulating Tumor Cell Clustering Shapes DNA Methylation to Enable Metastasis Seeding, Cell, vol. 176, no. 1–2, pp. 98–112.e14, 10.1016/j.cell.2018.11.046. PubMed PMC
Lin, D., et al. (Nov. 2021). Circulating tumor cells: Biology and clinical significance. Signal Transduct Target Ther, 6(1), 404. 10.1038/s41392-021-00817-8. PubMed PMC
Ring, A., Nguyen-Sträuli, B. D., Wicki, A., & Aceto, N. (2023). Biology, vulnerabilities and clinical applications of circulating tumour cells, Nat. Rev. Cancer, vol. 23, no. 2, pp. 95–111, Feb. 10.1038/s41568-022-00536-4. PubMed PMC
Armstrong, A. J. (2011). Aug., Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers, Mol. Cancer Res, vol. 9, no. 8, pp. 997–1007, 10.1158/1541-7786.MCR-10-0490. PubMed PMC
Padmanaban, V. (2019). Sep., E-cadherin is required for metastasis in multiple models of breast cancer, Nature, vol. 573, no. 7774, pp. 439–444, 10.1038/s41586-019-1526-3. PubMed PMC
Tashireva, L. A. (2021). Mar., Heterogeneous Manifestations of Epithelial-Mesenchymal Plasticity of Circulating Tumor Cells in Breast Cancer Patients, Int. J. Mol. Sci, vol. 22, no. 5, p. 2504, 10.3390/ijms22052504. PubMed PMC
Xin, Y., Li, K., Yang, M., & Tan, Y. (Oct. 2020). Fluid shear stress induces EMT of circulating Tumor cells via JNK Signaling in Favor of their survival during Hematogenous Dissemination. International Journal of Molecular Sciences, 21(21), 8115. 10.3390/ijms21218115. PubMed PMC
Genna, A., et al. (Jun. 2020). EMT-Associated Heterogeneity in circulating Tumor cells: Sticky friends on the Road to Metastasis. Cancers (Basel), 12(6), 1632. 10.3390/cancers12061632. PubMed PMC
Dou, R. (2021). Dec., EMT-cancer cells-derived exosomal miR-27b-3p promotes circulating tumour cells-mediated metastasis by modulating vascular permeability in colorectal cancer, Clin. Transl. Med, vol. 11, no. 12, pp. e595–e595, 10.1002/ctm2.595. PubMed PMC
Wang, X. (2023). Mar., µ-opioid receptor agonist facilitates circulating tumor cell formation in bladder cancer via the MOR/AKT/Slug pathway: a comprehensive study including randomized controlled trial, Cancer Commun. (London, England), vol. 43, no. 3, pp. 365–386, 10.1002/cac2.12408. PubMed PMC
Orrapin, S. (2022). Jul., Clinical Implication of Circulating Tumor Cells Expressing Epithelial Mesenchymal Transition (EMT) and Cancer Stem Cell (CSC) Markers and Their Perspective in HCC: A Systematic Review, Cancers (Basel), vol. 14, no. 14, p. 3373, 10.3390/cancers14143373. PubMed PMC
Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nature Reviews. Clinical Oncology. 2017;14(10):611–629. doi: 10.1038/nrclinonc.2017.44. PubMed DOI PMC
De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nature Reviews Cancer. 2013;13(2):97–110. doi: 10.1038/nrc3447. PubMed DOI
Babaei G, Aziz SGG, Jaghi NZZ. EMT, cancer stem cells and autophagy; the three main axes of metastasis. Biomed & Pharmacother. 2021;133:110909. doi: 10.1016/j.biopha.2020.110909. PubMed DOI
Kaufhold, S., & Bonavida, B. (Aug. 2014). Central role of Snail1 in the regulation of EMT and resistance in cancer: A target for therapeutic intervention. Journal of Experimental & Clinical Cancer Research : Cr, 33(1), 62. 10.1186/s13046-014-0062-0. PubMed PMC
Jones, C. A., & Hazlehurst, L. A. (Sep. 2021). Role of Calcium Homeostasis in modulating EMT in Cancer. Biomedicines, 9(9), 1200. 10.3390/biomedicines9091200. PubMed PMC
Battista, T., Fiorillo, A., Chiarini, V., Genovese, I., Ilari, A., & Colotti, G. (Apr. 2020). Roles of sorcin in Drug Resistance in Cancer: One protein, many mechanisms, for a novel potential Anticancer Drug Target. Cancers (Basel), 12(4), 887. 10.3390/cancers12040887. PubMed PMC
Mantovani, A., Allavena, P., Marchesi, F., & Garlanda, C. (2022). Macrophages as tools and targets in cancer therapy, Nat. Rev. Drug Discov, vol. 21, no. 11, pp. 799–820, Nov. 10.1038/s41573-022-00520-5. PubMed PMC
Chen, X., et al. (Jun. 2022). Tumor-associated macrophages promote epithelial-mesenchymal transition and the cancer stem cell properties in triple-negative breast cancer through CCL2/AKT/β-catenin signaling. Cell Commun Signal, 20(1), 92. 10.1186/s12964-022-00888-2. PubMed PMC
Wu, Z., Bai, X., Lu, Z., Liu, S., & Jiang, H. (2022). LINC01094/SPI1/CCL7 Axis Promotes Macrophage Accumulation in Lung Adenocarcinoma and Tumor Cell Dissemination, J. Immunol. Res, vol. p. 6450721, Sep. 2022, 10.1155/2022/6450721. PubMed PMC
Zehtabi M, et al. Estimation of Autophagy Activity by evaluating possible MicroRNA biomarkers and FOXO1 mRNA level in papillary thyroid carcinoma. Research Square Platform LLC. 2021 doi: 10.21203/rs.3.rs-802917/v1. DOI
Hou, X., et al. (Apr. 2021). LDHA induces EMT gene transcription and regulates autophagy to promote the metastasis and tumorigenesis of papillary thyroid carcinoma. Cell Death and Disease, 12(4), 347. 10.1038/s41419-021-03641-8. PubMed PMC
Bao, Y., et al. (Apr. 2020). Autophagy inhibition potentiates the anti-EMT effects of alteronol through TGF-β/Smad3 signaling in melanoma cells. Cell Death and Disease, 11(4), 223. 10.1038/s41419-020-2419-y. PubMed PMC
Pan, G., Liu, Y., Shang, L., Zhou, F., & Yang, S. (2021). EMT-associated microRNAs and their roles in cancer stemness and drug resistance, Cancer Commun. (London, England), vol. 41, no. 3, pp. 199–217, Mar. 10.1002/cac2.12138. PubMed PMC
Islam Khan, M. Z., & Law, H. K. W. (Jun. 2021). RAMS11 promotes CRC through mTOR-dependent inhibition of autophagy, suppression of apoptosis, and promotion of epithelial-mesenchymal transition. Cancer Cell International, 21(1), 321. 10.1186/s12935-021-02023-6. PubMed PMC
Si L, Yang Z, Ding L, Zhang D. Regulatory effects of lncRNAs and miRNAs on the crosstalk between autophagy and EMT in cancer: A new era for cancer treatment. Journal of Cancer Research and Clinical Oncology. 2022;148(3):547–564. doi: 10.1007/s00432-021-03892-0. PubMed DOI
Li W, Yan P, Meng X, Zhang J, Yang Y. The microRNA cluster miR-214/miR-3120 prevents tumor cell switching from an epithelial to a mesenchymal-like phenotype and inhibits autophagy in gallbladder cancer. Cellular Signalling. 2021;80:109887. doi: 10.1016/j.cellsig.2020.109887. PubMed DOI
Li, Y. (2022). Jun., CCT5 induces epithelial-mesenchymal transition to promote gastric cancer lymph node metastasis by activating the Wnt/β-catenin signalling pathway, Br. J. Cancer, vol. 126, no. 12, pp. 1684–1694, 10.1038/s41416-022-01747-0. PubMed PMC
Nalluri SM, et al. Crosstalk between ERK and MRTF-A signaling regulates TGFβ1‐induced epithelial‐mesenchymal transition. Journal of Cellular Physiology. 2022;237(5):2503–2515. doi: 10.1002/jcp.30705. PubMed DOI
Saman, H., Raza, S. S., Uddin, S., & Rasul, K. (May 2020). Inducing angiogenesis, a key step in Cancer Vascularization, and treatment approaches. Cancers (Basel), 12(5), 1172. 10.3390/cancers12051172. PubMed PMC
Kuczynski EA, Vermeulen PB, Pezzella F, Kerbel RS, Reynolds AR. Vessel co-option in cancer. Nature Reviews. Clinical Oncology. 2019;16(8):469–493. doi: 10.1038/s41571-019-0181-9. PubMed DOI
Finn RS, et al. Pembrolizumab as Second-Line therapy in patients with Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, phase III trial. Journal of Clinical Oncology. 2020;38(3):193–202. doi: 10.1200/jco.19.01307. PubMed DOI
Treps L, Faure S, Clere N. Vasculogenic mimicry, a complex and devious process favoring tumorigenesis – interest in making it a therapeutic target. Pharmacol & Ther. 2021;223:107805. doi: 10.1016/j.pharmthera.2021.107805. PubMed DOI
Angara, K. (2017). Abstract 787: Vascular mimicry mediated mechanisms drive therapy resistance in glioblastoma, Cancer Res, vol. 77, no. 13_Supplement, p. 787, 10.1158/1538-7445.am2017-787.
Maiti, A., Qi, Q., Peng, X., Yan, L., Takabe, K., & Hait, N. C. (2019). Class I histone deacetylase inhibitor suppresses vasculogenic mimicry by enhancing the expression of tumor suppressor and anti-angiogenesis genes in aggressive human TNBC cells, Int. J. Oncol, vol. 55, no. 1, pp. 116–130, Jul. 10.3892/ijo.2019.4796. PubMed PMC
Jun J, et al. Golph3 promotes vascular mimicry via the epithelial mesenchymal transition in glioblastoma cells. Turk Neurosurg. 2021 doi: 10.5137/1019-5149.jtn.34807-21.2. PubMed DOI
Li, F., Xu, J., & Liu, S. (Apr. 2021). Cancer Stem cells and neovascularization. Cells, 10(5), 1070. 10.3390/cells10051070. PubMed PMC
Irani S, Dehghan A. The expression and functional significance of vascular Endothelial-Cadherin, CD44, and Vimentin in oral squamous cell carcinoma. J Int Soc Prev Community Dent. 2018;8(2):110–117. doi: 10.4103/jispcd.JISPCD_408_17. PubMed DOI PMC
Cheng, T. (2022). EBV promotes vascular mimicry of dormant cancer cells by potentiating stemness and EMT, Exp. Cell Res, vol. 421, no. 2, p. 113403, 10.1016/j.yexcr.2022.113403. PubMed
He M, et al. Sunitinib increases the cancer stem cells and vasculogenic mimicry formation via modulating the lncRNA-ECVSR/ERβ/Hif2-α signaling. Cancer Letters. 2022;524:15–28. doi: 10.1016/j.canlet.2021.08.028. PubMed DOI
Izawa, Y. (2018). Dec., Stem-like Human Breast Cancer Cells Initiate Vasculogenic Mimicry on Matrigel, Acta Histochem. Cytochem, vol. 51, no. 6, pp. 173–183, 10.1267/ahc.18041. PubMed PMC
Gielata, M., Karpińska, K., Gwiazdowska, A., Boryń, Ł., & Kobielak, A. (2022). Catulin reporter marks a heterogeneous population of invasive breast cancer cells with some demonstrating plasticity and participating in vascular mimicry, Sci. Rep, vol. 12, no. 1, p. 12673, Jul. 10.1038/s41598-022-16802-2. PubMed PMC
Zhu, Z. (2020). Jul., Effect of gastric cancer stem cell on gastric cancer invasion, migration and angiogenesis, Int. J. Med. Sci, vol. 17, no. 13, pp. 2040–2051, 10.7150/ijms.46774. PubMed PMC
Chen, J., Chen, S., Zhuo, L., Zhu, Y., & Zheng, H. (2020). Regulation of cancer stem cell properties, angiogenesis, and vasculogenic mimicry by miR-450a-5p/SOX2 axis in colorectal cancer, Cell Death Dis, vol. 11, no. 3, p. 173, Mar. 10.1038/s41419-020-2361-z. PubMed PMC
Yang, C., Shi, S., Su, Y., Tong, J. S., & Li, L. (2020). P2X7R promotes angiogenesis and tumour-associated macrophage recruitment by regulating the NF-κB signalling pathway in colorectal cancer cells, J. Cell. Mol. Med, vol. 24, no. 18, pp. 10830–10841, Sep. 10.1111/jcmm.15708. PubMed PMC