Phenotypic Transitions the Processes Involved in Regulation of Growth and Proangiogenic Properties of Stem Cells, Cancer Stem Cells and Circulating Tumor Cells

. 2024 May ; 20 (4) : 967-979. [epub] 20240219

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38372877
Odkazy

PubMed 38372877
PubMed Central PMC11087301
DOI 10.1007/s12015-024-10691-w
PII: 10.1007/s12015-024-10691-w
Knihovny.cz E-zdroje

Epithelial-mesenchymal transition (EMT) is a crucial process with significance in the metastasis of malignant tumors. It is through the acquisition of plasticity that cancer cells become more mobile and gain the ability to metastasize to other tissues. The mesenchymal-epithelial transition (MET) is the return to an epithelial state, which allows for the formation of secondary tumors. Both processes, EMT and MET, are regulated by different pathways and different mediators, which affects the sophistication of the overall tumorigenesis process. Not insignificant are also cancer stem cells and their participation in the angiogenesis, which occur very intensively within tumors. Difficulties in effectively treating cancer are primarily dependent on the potential of cancer cells to rapidly expand and occupy secondarily vital organs. Due to the ability of these cells to spread, the concept of the circulating tumor cell (CTC) has emerged. Interestingly, CTCs exhibit molecular diversity and stem-like and mesenchymal features, even when derived from primary tumor tissue from a single patient. While EMT is necessary for metastasis, MET is required for CTCs to establish a secondary site. A thorough understanding of the processes that govern the balance between EMT and MET in malignancy is crucial.

Atherosclerosis Research Center Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran

Department of Basic and Preclinical Sciences Institute of Veterinary Medicine Nicolaus Copernicus University in Torun Torun Poland

Department of Diagnostics and Clinical Sciences Institute of Veterinary Medicine Nicolaus Copernicus University in Torun Torun Poland

Department of Obstetrics and Gynecology School of Medicine Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran

Department of Obstetrics and Gynecology University Hospital and Masaryk University Brno Czech Republic

Department of Physiotherapy Wroclaw University School of Physical Education Wroclaw Poland

Department of Toxicology Poznan University of Medical Sciences Poznan Poland

Department of Veterinary Surgery Institute of Veterinary Medicine Nicolaus Copernicus University in Torun Torun Poland

Division of Anatomy and Histology University of Zielona Góra Zielona Góra Poland

Division of Anatomy Department of Human Morphology and Embryology Wroclaw Medical University Wroclaw Poland

Division of Histology and Embryology Department of Human Morphology and Embryology Wroclaw Medical University Wroclaw Poland

Fertility Infertility and Perinatology Research Center Ahvaz Jundishapur University of Medical Sciences Ahvaz Iran

Hematology and Oncology Research Center Tabriz University of Medical Sciences Tabriz Iran

Physiology Graduate Faculty North Carolina State University Raleigh NC USA

Prestage Department of Poultry Science North Carolina State University Raleigh NC USA

Veterinary Clinic of the Nicolaus Copernicus University in Torun Torun Poland

Zobrazit více v PubMed

Bellon, M., & Nicot, C. (Jan. 2023). Targeting pim kinases in hematological cancers: Molecular and clinical review. Molecular Cancer, 22(1, p. 18,). 10.1186/s12943-023-01721-1. PubMed PMC

Fares, J., Fares, M. Y., Khachfe, H. H., Salhab, H. A., & Fares, Y. (Mar. 2020). Molecular principles of metastasis: A hallmark of cancer revisited. Signal Transduct Target Ther, 5(1), 28. 10.1038/s41392-020-0134-x. PubMed PMC

Meirson T, Gil-Henn H, Samson AO. Invasion and metastasis: The elusive hallmark of cancer. Oncogene. 2019;39(9):2024–2026. doi: 10.1038/s41388-019-1110-1. PubMed DOI

Lusby, R., Dunne, P., & Tiwari, V. K. (2022). Tumour invasion and dissemination, Biochem. Soc. Trans, vol. 50, no. 3, pp. 1245–1257, Jun. 10.1042/BST20220452. PubMed PMC

Muralidharan, S., et al. (Feb. 2022). Quantifying the patterns of metabolic plasticity and heterogeneity along the epithelial-hybrid-mesenchymal spectrum in Cancer. Biomolecules, 12(2), 297. 10.3390/biom12020297. PubMed PMC

Jeong, J., & Kim, J. (Mar. 2022). Combination effect of Cilengitide with Erlotinib on TGF-β1-Induced epithelial-to-mesenchymal transition in Human Non-small Cell Lung Cancer cells. International Journal of Molecular Sciences, 23(7), 3423. 10.3390/ijms23073423. PubMed PMC

Pastushenko I, et al. Identification of the tumour transition states occurring during EMT. Nature. 2018;556(7702):463–468. doi: 10.1038/s41586-018-0040-3. PubMed DOI

Zheng, X. (2015). Nov., Epithelial-to-mesenchymal transition is dispensable for metastasis but induces chemoresistance in pancreatic cancer, Nature, vol. 527, no. 7579, pp. 525–530, 10.1038/nature16064. PubMed PMC

Primeaux, M., Gowrikumar, S., & Dhawan, P. (Jun. 2022). Role of CD44 isoforms in epithelial-mesenchymal plasticity and metastasis. Clinical & Experimental Metastasis, 39(3), 391–406. 10.1007/s10585-022-10146-x. PubMed PMC

Alotaibi H. Crif1 is required for proper mesenchymal to epithelial transition. Cumhur Sci J. 2022;43(2):165–170. doi: 10.17776/csj.1062126. DOI

Plygawko, A. T., Kan, S., & Campbell, K. (2020). Epithelial-mesenchymal plasticity: emerging parallels between tissue morphogenesis and cancer metastasis, Philos. Trans. R. Soc. Lond. B. Biol. Sci, vol. 375, no. 1809, p. 20200087, Oct. 10.1098/rstb.2020.0087. PubMed PMC

Chen J, Han Q, Pei D. EMT and MET as paradigms for cell fate switching. Journal of Molecular Cell Biology. 2011;4(2):66–69. doi: 10.1093/jmcb/mjr045. PubMed DOI

Safa, A. R. (2022). Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces, Cancer drug Resist. (Alhambra, Calif.), vol. 5, no. 4, pp. 850–872, Aug. 10.20517/cdr.2022.20. PubMed PMC

Rodriguez-Aznar, E., Wiesmüller, L., Sainz, B. Jr., & Hermann, P. C. (Aug. 2019). EMT and stemness-key players in pancreatic Cancer stem cells. Cancers (Basel), 11(8), 1136. 10.3390/cancers11081136. PubMed PMC

Ribatti, D., Tamma, R., & Annese, T. (Jun. 2020). Epithelial-mesenchymal transition in Cancer: A historical overview. Transl Oncol, 13(6), 100773. 10.1016/j.tranon.2020.100773. PubMed PMC

Huang, Y., Hong, W., & Wei, X. (Sep. 2022). The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. Journal of Hematology & Oncology, 15(1), 129. 10.1186/s13045-022-01347-8. PubMed PMC

Chiang, S. P. H., Cabrera, R. M., & Segall, J. E. (Jul. 2016). Tumor cell intravasation. American Journal of Physiology. Cell Physiology, 311(1), C1–C14. 10.1152/ajpcell.00238.2015. PubMed PMC

Kurma, K., & Alix-Panabières, C. (May 2023). Mechanobiology and survival strategies of circulating tumor cells: A process towards the invasive and metastatic phenotype. Front cell Dev Biol, 11, 1188499. 10.3389/fcell.2023.1188499. PubMed PMC

Yin W, Han YM, Li ZL, Huang ZX, Huang L, Zhong XG. Clinical significance of perioperative EMT-CTCs in rectal cancer patients receiving open/laparoscopic surgery. Neoplasma. 2020;67(05):1131–1138. doi: 10.4149/neo_2020_190709n611. PubMed DOI

Bian, X., Ma, K., Zhang, C., & Fu, X. (Jun. 2019). Therapeutic angiogenesis using stem cell-derived extracellular vesicles: An emerging approach for treatment of ischemic diseases. Stem Cell Research & Therapy, 10(1), 158. 10.1186/s13287-019-1276-z. PubMed PMC

Azari, Z. (2022). Jul., Stem cell-mediated angiogenesis in skin tissue engineering and wound healing, Wound Repair Regen, vol. 30, no. 4, pp. 421–435, 10.1111/wrr.13033. PubMed PMC

Butti R, Gunasekaran VP, Kumar TVS, Banerjee P, Kundu GC. Breast cancer stem cells: Biology and therapeutic implications. Int J Biochem & Cell Biol. 2019;107:38–52. doi: 10.1016/j.biocel.2018.12.001. PubMed DOI

Zakrzewski, W., Dobrzyński, M., Szymonowicz, M., & Rybak, Z. (Feb. 2019). Stem cells: Past, present, and future. Stem Cell Research & Therapy, 10(1), 68. 10.1186/s13287-019-1165-5. PubMed PMC

Rosner, M., Horer, S., Feichtinger, M., & Hengstschläger, M. (Jun. 2023). Multipotent fetal stem cells in reproductive biology research. Stem Cell Research & Therapy, 14(1), 157. 10.1186/s13287-023-03379-4. PubMed PMC

Musa, S., & Romano, N. (2023). Stem cell immunology. Immunology for Dentistry (pp. 48–60). Wiley. 10.1002/9781119893035.ch5.

Charitos, I. A. (2021). Stem Cells: A Historical Review about Biological, Religious, and Ethical Issues, Stem Cells Int, vol. p. 9978837, Apr. 2021, 10.1155/2021/9978837. PubMed PMC

Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial-mesenchymal transitions in Development and Disease. Cell. 2009;139(5):871–890. doi: 10.1016/j.cell.2009.11.007. PubMed DOI

Aban, C. E. (2048). Downregulation of E-cadherin in pluripotent stem cells triggers partial EMT, Sci. Rep, vol. 11, no. 1, p. Jan. 2021, 10.1038/s41598-021-81735-1. PubMed PMC

Lamouille, S., Xu, J., & Derynck, R. (2014). Molecular mechanisms of epithelial-mesenchymal transition, Nat. Rev. Mol. Cell Biol, vol. 15, no. 3, pp. 178–196, Mar. 10.1038/nrm3758. PubMed PMC

Gonzalez, D. M., & Medici, D. (Sep. 2014). Signaling mechanisms of the epithelial-mesenchymal transition. Science Signaling, 7(344), re8–re8. 10.1126/scisignal.2005189. PubMed PMC

Xiao, K., et al. (Oct. 2020). Mesenchymal stem cells reverse EMT process through blocking the activation of NF-κB and hedgehog pathways in LPS-induced acute lung injury. Cell Death and Disease, 11(10), 863. 10.1038/s41419-020-03034-3. PubMed PMC

Han B, et al. Adipose-derived mesenchymal stem cells treatments for fibroblasts of fibrotic scar via downregulating TGF-β1 and Notch-1 expression enhanced by photobiomodulation therapy. Lasers in Medical Science. 2018;34(1):1–10. doi: 10.1007/s10103-018-2567-9. PubMed DOI

Yao, Y., Chen, R., Wang, G., Zhang, Y., & Liu, F. (2019). Exosomes derived from mesenchymal stem cells reverse EMT via TGF-β1/Smad pathway and promote repair of damaged endometrium, Stem Cell Res. Ther, vol. 10, no. 1, p. 225, Jul. 10.1186/s13287-019-1332-8. PubMed PMC

Yu Y, et al. Human umbilical cord mesenchymal stem cell attenuates renal fibrosis via TGF-β/Smad signaling pathways in vivo and in vitro. European Journal of Pharmacology. 2020;883:173343. doi: 10.1016/j.ejphar.2020.173343. PubMed DOI

Meng Y, Liu Y, Dakou E, Gutierrez GJ, Leyns L. Polycomb group RING finger protein 5 influences several developmental signaling pathways during the in vitro differentiation of mouse embryonic stem cells. Dev Growth & Differ. 2020;62(4):232–242. doi: 10.1111/dgd.12659. PubMed DOI

Qiao B, Gopalan V, Chen Z, Smith RA, Tao Q, Lam AK. Epithelial–mesenchymal transition and mesenchymal–epithelial transition are essential for the acquisition of stem cell properties in hTERT-immortalised oral epithelial cells. Biology of the Cell. 2012;104(8):476–489. doi: 10.1111/boc.201100077. PubMed DOI

Li, B., Zheng, Y. W., Sano, Y., & Taniguchi, H. (Feb. 2011). Evidence for mesenchymal-epithelial transition associated with mouse hepatic stem cell differentiation. PLoS One, 6(2), e17092–e17092. 10.1371/journal.pone.0017092. PubMed PMC

Bisht, S., Nigam, M., Kunjwal, S. S., Sergey, P., Mishra, A. P., & Sharifi-Rad, J. (2022). Cancer Stem Cells: From an Insight into the Basics to Recent Advances and Therapeutic Targeting, Stem Cells Int, vol. p. 9653244, Jun. 2022, 10.1155/2022/9653244. PubMed PMC

Neumüller, R. A., & Knoblich, J. A. (2009). Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer, Genes Dev, vol. 23, no. 23, pp. 2675–2699, Dec. 10.1101/gad.1850809. PubMed PMC

Wang, R., et al. (Feb. 2016). Notch and Wnt/β-catenin signaling pathway play important roles in activating liver cancer stem cells. Oncotarget, 7(5), 5754–5768. 10.18632/oncotarget.6805. PubMed PMC

Aramini, B., et al. (Feb. 2022). Dissecting Tumor Growth: The role of Cancer Stem cells in Drug Resistance and Recurrence. Cancers (Basel), 14(4), 976. 10.3390/cancers14040976. PubMed PMC

Maugeri-Saccà, M., Bartucci, M., & De Maria, R. (2012). DNA Damage Repair Pathways in Cancer Stem Cells, Mol. Cancer Ther, vol. 11, no. 8, pp. 1627–1636, 10.1158/1535-7163.mct-11-1040. PubMed

Hollier, B. G. (2013). Mar., FOXC2 expression links epithelial-mesenchymal transition and stem cell properties in breast cancer, Cancer Res, vol. 73, no. 6, pp. 1981–1992, 10.1158/0008-5472.CAN-12-2962. PubMed PMC

Mani, S. A., et al. (May 2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704–715. 10.1016/j.cell.2008.03.027. PubMed PMC

Morel, A. P., Lièvre, M., Thomas, C., Hinkal, G., Ansieau, S., & Puisieux, A. (2008). Generation of breast cancer stem cells through epithelial-mesenchymal transition, PLoS One, vol. 3, no. 8, pp. e2888–e2888, Aug. 10.1371/journal.pone.0002888. PubMed PMC

McCoy, E. L. (2009). Sep., Six1 expands the mouse mammary epithelial stem/progenitor cell pool and induces mammary tumors that undergo epithelial-mesenchymal transition, J. Clin. Invest, vol. 119, no. 9, pp. 2663–2677, 10.1172/JCI37691. PubMed PMC

Evdokimova V, et al. Translational activation of Snail1 and other developmentally regulated transcription factors by YB-1 promotes an epithelial-mesenchymal transition. Cancer Cell. 2009;15(5):402–415. doi: 10.1016/j.ccr.2009.03.017. PubMed DOI

Yin, X. (2010). Oct., ATF3, an adaptive-response gene, enhances TGF{beta} signaling and cancer-initiating cell features in breast cancer cells, J. Cell Sci, vol. 123, no. Pt 20, pp. 3558–3565, 10.1242/jcs.064915. PubMed PMC

Jo, M., Eastman, B. M., Webb, D. L., Stoletov, K., Klemke, R., & Gonias, S. L. (2010). Cell signaling by urokinase-type plasminogen activator receptor induces stem cell-like properties in breast cancer cells, Cancer Res, vol. 70, no. 21, pp. 8948–8958, Nov. 10.1158/0008-5472.CAN-10-1936. PubMed PMC

Wellner U, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nature Cell Biology. 2009;11(12):1487–1495. doi: 10.1038/ncb1998. PubMed DOI

Shimono, Y. (2009). Aug., Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells, Cell, vol. 138, no. 3, pp. 592–603, 10.1016/j.cell.2009.07.011. PubMed PMC

Tam, W. L., et al. (Sep. 2013). Protein kinase C α is a central signaling node and therapeutic target for breast cancer stem cells. Cancer Cell, 24(3), 347–364. 10.1016/j.ccr.2013.08.005. PubMed PMC

Bowers, L. W., et al. (May 2018). Leptin Signaling mediates obesity-Associated CSC Enrichment and EMT in Preclinical TNBC models. Molecular Cancer Research, 16(5), 869–879. 10.1158/1541-7786.MCR-17-0508. PubMed PMC

Jiang R, et al. EMT and CSC-like properties mediated by the IKKβ/IκBα/RelA signal pathway via the transcriptional regulator, Snail, are involved in the arsenite-induced neoplastic transformation of human keratinocytes. Archives of Toxicology. 2012;87(6):991–1000. doi: 10.1007/s00204-012-0933-0. PubMed DOI

Wang Y, et al. PM2.5 induces EMT and promotes CSC properties by activating notch pathway in vivo and vitro. Ecotoxicology and Environmental Safety. 2019;178:159–167. doi: 10.1016/j.ecoenv.2019.03.086. PubMed DOI

Bosukonda A, Carlson WD. Harnessing the BMP signaling pathway to control the formation of cancer stem cells by effects on epithelial-to-mesenchymal transition. Biochemical Society Transactions. 2017;45(1):223–228. doi: 10.1042/bst20160177. PubMed DOI

Burk, U. (2008). Jun., A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells, EMBO Rep, vol. 9, no. 6, pp. 582–589, 10.1038/embor.2008.74. PubMed PMC

Biddle A, et al. Cancer Stem cells in squamous cell carcinoma switch between two distinct phenotypes that are preferentially migratory or proliferative. Cancer Research. 2011;71:5317–5326. doi: 10.1158/0008-5472.can-11-1059. PubMed DOI

Guo Y, et al. PKD-1 signaling is required for the maintenance of CSCs with epithelial-mesenchymal plasticity in pancreatic neuroendocrine tumors. Cold Spring Harbor Laboratory. 2022 doi: 10.1101/2022.02.17.480869. DOI

Farabaugh, S. M., Micalizzi, D. S., Jedlicka, P., Zhao, R., & Ford, H. L. (2012). Eya2 is required to mediate the pro-metastatic functions of Six1 via the induction of TGF-β signaling, epithelial-mesenchymal transition, and cancer stem cell properties, Oncogene, vol. 31, no. 5, pp. 552–562, Feb. 10.1038/onc.2011.259. PubMed PMC

Li, J., & Zhou, B. P. (Feb. 2011). Activation of β-catenin and akt pathways by twist are critical for the maintenance of EMT associated cancer stem cell-like characters. Bmc Cancer, 11, 49. 10.1186/1471-2407-11-49. PubMed PMC

Deng, Z., Wu, S., Wang, Y., & Shi, D. (Sep. 2022). Circulating tumor cell isolation for cancer diagnosis and prognosis. EBioMedicine, 83, 104237. 10.1016/j.ebiom.2022.104237. PubMed PMC

Raeisi M, Zehtabi M, Velaei K, Fayyazpour P, Aghaei N, Mehdizadeh A. Anoikis in cancer: The role of lipid signaling. Cell Biology International. 2022;46(11):1717–1728. doi: 10.1002/cbin.11896. PubMed DOI

Gkountela, S. (2019). Jan., Circulating Tumor Cell Clustering Shapes DNA Methylation to Enable Metastasis Seeding, Cell, vol. 176, no. 1–2, pp. 98–112.e14, 10.1016/j.cell.2018.11.046. PubMed PMC

Lin, D., et al. (Nov. 2021). Circulating tumor cells: Biology and clinical significance. Signal Transduct Target Ther, 6(1), 404. 10.1038/s41392-021-00817-8. PubMed PMC

Ring, A., Nguyen-Sträuli, B. D., Wicki, A., & Aceto, N. (2023). Biology, vulnerabilities and clinical applications of circulating tumour cells, Nat. Rev. Cancer, vol. 23, no. 2, pp. 95–111, Feb. 10.1038/s41568-022-00536-4. PubMed PMC

Armstrong, A. J. (2011). Aug., Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers, Mol. Cancer Res, vol. 9, no. 8, pp. 997–1007, 10.1158/1541-7786.MCR-10-0490. PubMed PMC

Padmanaban, V. (2019). Sep., E-cadherin is required for metastasis in multiple models of breast cancer, Nature, vol. 573, no. 7774, pp. 439–444, 10.1038/s41586-019-1526-3. PubMed PMC

Tashireva, L. A. (2021). Mar., Heterogeneous Manifestations of Epithelial-Mesenchymal Plasticity of Circulating Tumor Cells in Breast Cancer Patients, Int. J. Mol. Sci, vol. 22, no. 5, p. 2504, 10.3390/ijms22052504. PubMed PMC

Xin, Y., Li, K., Yang, M., & Tan, Y. (Oct. 2020). Fluid shear stress induces EMT of circulating Tumor cells via JNK Signaling in Favor of their survival during Hematogenous Dissemination. International Journal of Molecular Sciences, 21(21), 8115. 10.3390/ijms21218115. PubMed PMC

Genna, A., et al. (Jun. 2020). EMT-Associated Heterogeneity in circulating Tumor cells: Sticky friends on the Road to Metastasis. Cancers (Basel), 12(6), 1632. 10.3390/cancers12061632. PubMed PMC

Dou, R. (2021). Dec., EMT-cancer cells-derived exosomal miR-27b-3p promotes circulating tumour cells-mediated metastasis by modulating vascular permeability in colorectal cancer, Clin. Transl. Med, vol. 11, no. 12, pp. e595–e595, 10.1002/ctm2.595. PubMed PMC

Wang, X. (2023). Mar., µ-opioid receptor agonist facilitates circulating tumor cell formation in bladder cancer via the MOR/AKT/Slug pathway: a comprehensive study including randomized controlled trial, Cancer Commun. (London, England), vol. 43, no. 3, pp. 365–386, 10.1002/cac2.12408. PubMed PMC

Orrapin, S. (2022). Jul., Clinical Implication of Circulating Tumor Cells Expressing Epithelial Mesenchymal Transition (EMT) and Cancer Stem Cell (CSC) Markers and Their Perspective in HCC: A Systematic Review, Cancers (Basel), vol. 14, no. 14, p. 3373, 10.3390/cancers14143373. PubMed PMC

Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nature Reviews. Clinical Oncology. 2017;14(10):611–629. doi: 10.1038/nrclinonc.2017.44. PubMed DOI PMC

De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nature Reviews Cancer. 2013;13(2):97–110. doi: 10.1038/nrc3447. PubMed DOI

Babaei G, Aziz SGG, Jaghi NZZ. EMT, cancer stem cells and autophagy; the three main axes of metastasis. Biomed & Pharmacother. 2021;133:110909. doi: 10.1016/j.biopha.2020.110909. PubMed DOI

Kaufhold, S., & Bonavida, B. (Aug. 2014). Central role of Snail1 in the regulation of EMT and resistance in cancer: A target for therapeutic intervention. Journal of Experimental & Clinical Cancer Research : Cr, 33(1), 62. 10.1186/s13046-014-0062-0. PubMed PMC

Jones, C. A., & Hazlehurst, L. A. (Sep. 2021). Role of Calcium Homeostasis in modulating EMT in Cancer. Biomedicines, 9(9), 1200. 10.3390/biomedicines9091200. PubMed PMC

Battista, T., Fiorillo, A., Chiarini, V., Genovese, I., Ilari, A., & Colotti, G. (Apr. 2020). Roles of sorcin in Drug Resistance in Cancer: One protein, many mechanisms, for a novel potential Anticancer Drug Target. Cancers (Basel), 12(4), 887. 10.3390/cancers12040887. PubMed PMC

Mantovani, A., Allavena, P., Marchesi, F., & Garlanda, C. (2022). Macrophages as tools and targets in cancer therapy, Nat. Rev. Drug Discov, vol. 21, no. 11, pp. 799–820, Nov. 10.1038/s41573-022-00520-5. PubMed PMC

Chen, X., et al. (Jun. 2022). Tumor-associated macrophages promote epithelial-mesenchymal transition and the cancer stem cell properties in triple-negative breast cancer through CCL2/AKT/β-catenin signaling. Cell Commun Signal, 20(1), 92. 10.1186/s12964-022-00888-2. PubMed PMC

Wu, Z., Bai, X., Lu, Z., Liu, S., & Jiang, H. (2022). LINC01094/SPI1/CCL7 Axis Promotes Macrophage Accumulation in Lung Adenocarcinoma and Tumor Cell Dissemination, J. Immunol. Res, vol. p. 6450721, Sep. 2022, 10.1155/2022/6450721. PubMed PMC

Zehtabi M, et al. Estimation of Autophagy Activity by evaluating possible MicroRNA biomarkers and FOXO1 mRNA level in papillary thyroid carcinoma. Research Square Platform LLC. 2021 doi: 10.21203/rs.3.rs-802917/v1. DOI

Hou, X., et al. (Apr. 2021). LDHA induces EMT gene transcription and regulates autophagy to promote the metastasis and tumorigenesis of papillary thyroid carcinoma. Cell Death and Disease, 12(4), 347. 10.1038/s41419-021-03641-8. PubMed PMC

Bao, Y., et al. (Apr. 2020). Autophagy inhibition potentiates the anti-EMT effects of alteronol through TGF-β/Smad3 signaling in melanoma cells. Cell Death and Disease, 11(4), 223. 10.1038/s41419-020-2419-y. PubMed PMC

Pan, G., Liu, Y., Shang, L., Zhou, F., & Yang, S. (2021). EMT-associated microRNAs and their roles in cancer stemness and drug resistance, Cancer Commun. (London, England), vol. 41, no. 3, pp. 199–217, Mar. 10.1002/cac2.12138. PubMed PMC

Islam Khan, M. Z., & Law, H. K. W. (Jun. 2021). RAMS11 promotes CRC through mTOR-dependent inhibition of autophagy, suppression of apoptosis, and promotion of epithelial-mesenchymal transition. Cancer Cell International, 21(1), 321. 10.1186/s12935-021-02023-6. PubMed PMC

Si L, Yang Z, Ding L, Zhang D. Regulatory effects of lncRNAs and miRNAs on the crosstalk between autophagy and EMT in cancer: A new era for cancer treatment. Journal of Cancer Research and Clinical Oncology. 2022;148(3):547–564. doi: 10.1007/s00432-021-03892-0. PubMed DOI

Li W, Yan P, Meng X, Zhang J, Yang Y. The microRNA cluster miR-214/miR-3120 prevents tumor cell switching from an epithelial to a mesenchymal-like phenotype and inhibits autophagy in gallbladder cancer. Cellular Signalling. 2021;80:109887. doi: 10.1016/j.cellsig.2020.109887. PubMed DOI

Li, Y. (2022). Jun., CCT5 induces epithelial-mesenchymal transition to promote gastric cancer lymph node metastasis by activating the Wnt/β-catenin signalling pathway, Br. J. Cancer, vol. 126, no. 12, pp. 1684–1694, 10.1038/s41416-022-01747-0. PubMed PMC

Nalluri SM, et al. Crosstalk between ERK and MRTF-A signaling regulates TGFβ1‐induced epithelial‐mesenchymal transition. Journal of Cellular Physiology. 2022;237(5):2503–2515. doi: 10.1002/jcp.30705. PubMed DOI

Saman, H., Raza, S. S., Uddin, S., & Rasul, K. (May 2020). Inducing angiogenesis, a key step in Cancer Vascularization, and treatment approaches. Cancers (Basel), 12(5), 1172. 10.3390/cancers12051172. PubMed PMC

Kuczynski EA, Vermeulen PB, Pezzella F, Kerbel RS, Reynolds AR. Vessel co-option in cancer. Nature Reviews. Clinical Oncology. 2019;16(8):469–493. doi: 10.1038/s41571-019-0181-9. PubMed DOI

Finn RS, et al. Pembrolizumab as Second-Line therapy in patients with Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, phase III trial. Journal of Clinical Oncology. 2020;38(3):193–202. doi: 10.1200/jco.19.01307. PubMed DOI

Treps L, Faure S, Clere N. Vasculogenic mimicry, a complex and devious process favoring tumorigenesis – interest in making it a therapeutic target. Pharmacol & Ther. 2021;223:107805. doi: 10.1016/j.pharmthera.2021.107805. PubMed DOI

Angara, K. (2017). Abstract 787: Vascular mimicry mediated mechanisms drive therapy resistance in glioblastoma, Cancer Res, vol. 77, no. 13_Supplement, p. 787, 10.1158/1538-7445.am2017-787.

Maiti, A., Qi, Q., Peng, X., Yan, L., Takabe, K., & Hait, N. C. (2019). Class I histone deacetylase inhibitor suppresses vasculogenic mimicry by enhancing the expression of tumor suppressor and anti-angiogenesis genes in aggressive human TNBC cells, Int. J. Oncol, vol. 55, no. 1, pp. 116–130, Jul. 10.3892/ijo.2019.4796. PubMed PMC

Jun J, et al. Golph3 promotes vascular mimicry via the epithelial mesenchymal transition in glioblastoma cells. Turk Neurosurg. 2021 doi: 10.5137/1019-5149.jtn.34807-21.2. PubMed DOI

Li, F., Xu, J., & Liu, S. (Apr. 2021). Cancer Stem cells and neovascularization. Cells, 10(5), 1070. 10.3390/cells10051070. PubMed PMC

Irani S, Dehghan A. The expression and functional significance of vascular Endothelial-Cadherin, CD44, and Vimentin in oral squamous cell carcinoma. J Int Soc Prev Community Dent. 2018;8(2):110–117. doi: 10.4103/jispcd.JISPCD_408_17. PubMed DOI PMC

Cheng, T. (2022). EBV promotes vascular mimicry of dormant cancer cells by potentiating stemness and EMT, Exp. Cell Res, vol. 421, no. 2, p. 113403, 10.1016/j.yexcr.2022.113403. PubMed

He M, et al. Sunitinib increases the cancer stem cells and vasculogenic mimicry formation via modulating the lncRNA-ECVSR/ERβ/Hif2-α signaling. Cancer Letters. 2022;524:15–28. doi: 10.1016/j.canlet.2021.08.028. PubMed DOI

Izawa, Y. (2018). Dec., Stem-like Human Breast Cancer Cells Initiate Vasculogenic Mimicry on Matrigel, Acta Histochem. Cytochem, vol. 51, no. 6, pp. 173–183, 10.1267/ahc.18041. PubMed PMC

Gielata, M., Karpińska, K., Gwiazdowska, A., Boryń, Ł., & Kobielak, A. (2022). Catulin reporter marks a heterogeneous population of invasive breast cancer cells with some demonstrating plasticity and participating in vascular mimicry, Sci. Rep, vol. 12, no. 1, p. 12673, Jul. 10.1038/s41598-022-16802-2. PubMed PMC

Zhu, Z. (2020). Jul., Effect of gastric cancer stem cell on gastric cancer invasion, migration and angiogenesis, Int. J. Med. Sci, vol. 17, no. 13, pp. 2040–2051, 10.7150/ijms.46774. PubMed PMC

Chen, J., Chen, S., Zhuo, L., Zhu, Y., & Zheng, H. (2020). Regulation of cancer stem cell properties, angiogenesis, and vasculogenic mimicry by miR-450a-5p/SOX2 axis in colorectal cancer, Cell Death Dis, vol. 11, no. 3, p. 173, Mar. 10.1038/s41419-020-2361-z. PubMed PMC

Yang, C., Shi, S., Su, Y., Tong, J. S., & Li, L. (2020). P2X7R promotes angiogenesis and tumour-associated macrophage recruitment by regulating the NF-κB signalling pathway in colorectal cancer cells, J. Cell. Mol. Med, vol. 24, no. 18, pp. 10830–10841, Sep. 10.1111/jcmm.15708. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace