A hybridizing-enhanced differential evolution for optimization

. 2023 ; 9 () : e1420. [epub] 20230601

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37346618

Differential evolution (DE) belongs to the most usable optimization algorithms, presented in many improved and modern versions in recent years. Generally, the low convergence rate is the main drawback of the DE algorithm. In this article, the gray wolf optimizer (GWO) is used to accelerate the convergence rate and the final optimal results of the DE algorithm. The new resulting algorithm is called Hunting Differential Evolution (HDE). The proposed HDE algorithm deploys the convergence speed of the GWO algorithm as well as the appropriate searching capability of the DE algorithm. Furthermore, by adjusting the crossover rate and mutation probability parameters, this algorithm can be adjusted to pay closer attention to the strengths of each of these two algorithms. The HDE/current-to-rand/1 performed the best on CEC-2019 functions compared to the other eight variants of HDE. HDE/current-to-best/1 is also chosen as having superior performance to other proposed HDE compared to seven improved algorithms on CEC-2014 functions, outperforming them in 15 test functions. Furthermore, jHDE performs well by improving in 17 functions, compared with jDE on these functions. The simulations indicate that the proposed HDE algorithm can provide reliable outcomes in finding the optimal solutions with a rapid convergence rate and avoiding the local minimum compared to the original DE algorithm.

Zobrazit více v PubMed

Akbari E, Rahimnejad A, Gadsden SA. A greedy non-hierarchical grey wolf optimizer for real-world optimization. Electronics Letters. 2021;57(13):499–501. doi: 10.1049/ell2.12176. DOI

Akyol S. A new hybrid method based on Aquila optimizer and tangent search algorithm for global optimization. Journal of Ambient Intelligence and Humanized Computing. 2022;23(11):1383. doi: 10.1007/s12652-022-04347-1. PubMed DOI PMC

Akyol S, Alatas B. Plant intelligence based metaheuristic optimization algorithms. Artificial Intelligence Review. 2017;47(4):417–462. doi: 10.1007/s10462-016-9486-6. DOI

Brest J, Greiner S, Boskovic B, Mernik M, Zumer V. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation. 2006;10(6):646–657. doi: 10.1109/TEVC.2006.872133. DOI

Brest J, Maučec MS, Bošković B. Single objective real-parameter optimization: algorithm jSO. Proceeding of IEEE Congress on Evolutionary Computation (IEEE CEC 2017); Piscataway: IEEE; 2017.

Cai Y, Chen Y, Wang T, Tian H. Improving differential evolution with a new selection method of parents for mutation. Frontiers of Computer Science. 2016;10(2):246–269. doi: 10.1007/s11704-015-4480-8. DOI

Cai Y, Liao J, Wang T, Chen Y, Tian H. Social learning differential evolution. Information Sciences. 2018;433–434(6):464–509. doi: 10.1016/j.ins.2016.10.003. DOI

Cai Y, Sun G, Wang T, Tian H, Chen Y, Wang J. Neighborhood-adaptive differential evolution for global numerical optimization. Applied Soft Computing. 2017a;59(4):659–706. doi: 10.1016/j.asoc.2017.06.002. DOI

Cai Y, Wang J. Differential evolution with neighborhood and direction information for numerical optimization. IEEE Transactions on Cybernetics. 2013;43(6):2202–2215. doi: 10.1109/TCYB.2013.2245501. PubMed DOI

Cai Y, Wang J. Differential evolution with hybrid linkage crossover. Information Sciences. 2015;320(6):244–287. doi: 10.1016/j.ins.2015.05.026. DOI

Cai Y, Wu D, Fu S, Zeng S. Self-regulated differential evolution for real parameter optimization. Applied Intelligence. 2021;51(8):5873–5897. doi: 10.1007/s10489-020-01973-0. DOI

Cai Y, Wu D, Zhou Y, Fu S, Tian H, Du Y. Self-organizing neighborhood-based differential evolution for global optimization. Swarm and Evolutionary Computation. 2020;56(4):100699. doi: 10.1016/j.swevo.2020.100699. DOI

Cai Y, Zhao M, Liao J, Wang T, Tian H, Chen Y. Neighborhood guided differential evolution. Soft Computing. 2017b;21(16):4769–4812. doi: 10.1007/s00500-016-2088-z. DOI

Castillo O, Melin P, Ontiveros E, Peraza C, Ochoa P, Valdez F, Soria J. A high-speed interval type 2 fuzzy system approach for dynamic parameter adaptation in metaheuristics. Engineering Applications of Artificial Intelligence. 2019b;85(2):666–680. doi: 10.1016/j.engappai.2019.07.020. DOI

Castillo O, Melin P, Valdez F, Soria J, Ontiveros-Robles E, Peraza C, Ochoa P. Shadowed type-2 fuzzy systems for dynamic parameter adaptation in harmony search and differential evolution algorithms. Algorithms. 2019a;12(1):17. doi: 10.3390/a12010017. DOI

Cui L, Li G, Zhu Z, Lin Q, Wong K-C, Chen J, Lu N, Lu J. Adaptive multiple-elites-guided composite differential evolution algorithm with a shift mechanism. Information Sciences. 2018;422(3):122–143. doi: 10.1016/j.ins.2017.09.002. DOI

Das S, Abraham A, Chakraborty UK, Konar A. Differential evolution using a neighborhood-based mutation operator. IEEE Transactions on Evolutionary Computation. 2009;13(3):526–553. doi: 10.1109/TEVC.2008.2009457. DOI

Das S, Mullick SS, Suganthan PN. Recent advances in differential evolution-an updated survey. Swarm and Evolutionary Computation. 2016;27(3):1–30. doi: 10.1016/j.swevo.2016.01.004. DOI

De Falco I, Cioppa AD, Scafuri U, Tarantino E. Exploiting diversity in an asynchronous migration model for distributed differential evolution. Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO 2017).2017.

Derrac J, García S, Molina D, Herrera F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation. 2011;1(1):3–18. doi: 10.1016/j.swevo.2011.02.002. DOI

Dorronsoro B, Bouvry P. Improving classical and decentralized differential evolution with new mutation operator and population topologies. IEEE Transactions on Evolutionary Computation. 2011;15(1):67–98. doi: 10.1109/TEVC.2010.2081369. DOI

Epitropakis MG, Tasoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN. Enhancing differential evolution utilizing proximity-based mutation operators. IEEE Transactions on Evolutionary Computation. 2011;15(1):99–119. doi: 10.1109/TEVC.2010.2083670. DOI

Fan Q, Yan X. Self-adaptive differential evolution algorithm with zoning evolution of control parameters and adaptive mutation strategies. IEEE Transactions on Cybernetics. 2015;46(1):219–232. doi: 10.1109/TCYB.2015.2399478. PubMed DOI

Fang H, Zhou A, Zhang H. Information fusion in offspring generation: a case study in DE and EDA. Swarm and Evolutionary Computation. 2018;42(4):99–108. doi: 10.1016/j.swevo.2018.02.014. DOI

Gao W, Yen GG, Liu S. A cluster-based differential evolution with self-adaptive strategy for multimodal optimization. IEEE Transactions on Cybernetics. 2013;44(8):1314–1327. doi: 10.1109/TCYB.2013.2282491. PubMed DOI

Ge Y-F, Yu W-J, Lin Y, Gong Y-J, Zhan Z-H, Chen W-N, Zhang J. Distributed differential evolution based on adaptive mergence and split for large-scale optimization. IEEE Transactions on Cybernetics. 2017;48(7):2166–2180. doi: 10.1109/TCYB.2017.2728725. PubMed DOI

Ghasemi M, Taghizadeh M, Ghavidel S, Abbasian A. Colonial competitive differential evolution: an experimental study for optimal economic load dispatch. Applied Soft Computing. 2016;40(4):342–363. doi: 10.1016/j.asoc.2015.11.033. DOI

Gong W, Cai Z. Differential evolution with ranking-based mutation operators. IEEE Transactions on Cybernetics. 2013;43(6):2066–2081. doi: 10.1109/TCYB.2013.2239988. PubMed DOI

Gong W, Fialho Á, Cai Z, Li H. Adaptive strategy selection in differential evolution for numerical optimization: an empirical study. Information Sciences. 2011;181(24):5364–5386. doi: 10.1016/j.ins.2011.07.049. DOI

Gupta S, Deep K. Cauchy grey wolf optimiser for continuous optimisation problems. Journal of Experimental & Theoretical Artificial Intelligence. 2018;30(6):1051–1075. doi: 10.1080/0952813X.2018.1513080. DOI

Gupta S, Deep K. A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Systems with Applications. 2019a;119(1):210–230. doi: 10.1016/j.eswa.2018.10.050. DOI

Gupta S, Deep K. A novel random walk grey wolf optimizer. Swarm and Evolutionary Computation. 2019b;44(4):101–112. doi: 10.1016/j.swevo.2018.01.001. DOI

Gupta S, Deep K, Engelbrecht AP. A memory guided sine cosine algorithm for global optimization. Engineering Applications of Artificial Intelligence. 2020;93(2–4):103718. doi: 10.1016/j.engappai.2020.103718. DOI

Holland JH. Adaptation in natural and artificial systems. Cambridge: The MIT Press; 1992.

Iacca G, dos Santos Junior VC, de Melo VV. An improved Jaya optimization algorithm with Lévy flight. Expert Systems with Applications. 2021;165(1):113902. doi: 10.1016/j.eswa.2020.113902. DOI

Islam SM, Das S, Ghosh S, Roy S, Suganthan PN. An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 2012;42(2):482–500. doi: 10.1109/TSMCB.2011.2167966. PubMed DOI

Jadon SS, Tiwari R, Sharma H, Bansal JC. Hybrid artificial bee colony algorithm with differential evolution. Applied Soft Computing. 2017;58(1):11–24. doi: 10.1016/j.asoc.2017.04.018. DOI

Liang JJ, Qu BY, Gong DW, Yue CT. Problem definitions and evaluation criteria for the CEC 2019 special session on multimodal multiobjective optimization. 2019. Technical Report, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China. DOI

Liang JJ, Qu BY, Suganthan PN. Problem definitions and evaluation criteria for the CEC, 2014 special session and competition on single objective real-parameter numerical optimization. 2013. Technical Report 201311, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore.

Liu Z-Z, Wang Y, Yang S, Tang K. An adaptive framework to tune the coordinate systems in nature-inspired optimization algorithms. IEEE Transactions on Cybernetics. 2019;49(4):1403–1416. doi: 10.1109/TCYB.2018.2802912. PubMed DOI

Liu X-F, Zhan Z-H, Lin Y, Chen W-N, Gong Y-J, Gu T-L, Yuan H-Q, Zhang J. Historical and heuristic-based adaptive differential evolution. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2018;49(12):2623–2635. doi: 10.1109/TSMC.2018.2855155. DOI

Long W, Cai S, Jiao J, Tang M. An efficient and robust grey wolf optimizer algorithm for large-scale numerical optimization. Soft Computing. 2020;24(2):997–1026. doi: 10.1007/s00500-019-03939-y. DOI

Meng Z, Yang C. Hip-DE: historical population based mutation strategy in differential evolution with parameter adaptive mechanism. Information Sciences. 2021;562(3):44–77. doi: 10.1016/j.ins.2021.01.031. DOI

Meng Z, Yang C, Li X, Chen Y. Di-DE: depth information-based differential evolution with adaptive parameter control for numerical optimization. IEEE Access. 2020;8:40809–40827. doi: 10.1109/ACCESS.2020.2976845. DOI

Mininno E, Neri F, Cupertino F, Naso D. Compact differential evolution. IEEE Transactions on Evolutionary Computation. 2010;15(1):32–54. doi: 10.1109/TEVC.2010.2058120. DOI

Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Advances in Engineering Software. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI

Mohamed AW, Suganthan PN. Real-parameter unconstrained optimization based on enhanced fitness-adaptive differential evolution algorithm with novel mutation. Soft Computing. 2018;22(10):3215–3235. doi: 10.1007/s00500-017-2777-2. DOI

Ochoa P, Castillo O, Soria J. Differential evolution with dynamic adaptation of parameters for the optimization of fuzzy controllers. In: Castillo O, Melin P, Pedrycz W, Kacprzyk J, editors. Recent Advances on Hybrid Approaches for Designing Intelligent Systems. Studies in Computational Intelligence. Cham: Springer; 2014. pp. 275–288.

Ochoa P, Castillo O, Soria J. Optimization of fuzzy controller design using a differential evolution algorithm with dynamic parameter adaptation based on type-1 and interval type-2 fuzzy systems. Soft Computing. 2020;24(1):193–214. doi: 10.1007/s00500-019-04156-3. DOI

Qin AK, Huang VL, Suganthan PN. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation. 2009;13(2):398–417. doi: 10.1109/TEVC.2008.927706. DOI

Qiu X, Tan KC, Xu J-X. Multiple exponential recombination for differential evolution. IEEE Transactions on Cybernetics. 2017;47(4):995–1006. doi: 10.1109/TCYB.2016.2536167. PubMed DOI

Storn R, Price K. Minimizing the real functions of the ICEC’96 contest by differential evolution. Proceedings of IEEE International Conference on Evolutionary Computation (IEEE ICEC 1996); Piscataway: IEEE; 1996.

Storn R, Price K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization. 1997;11(4):341–359. doi: 10.1023/A:1008202821328. DOI

Sun G, Cai Y, Wang T, Tian H, Wang C, Chen Y. Differential evolution with individual-dependent topology adaptation. Information Sciences. 2018;450(6):1–38. doi: 10.1016/j.ins.2018.02.048. DOI

Tian L, Li Z, Yan X. Differential evolution algorithm directed by individual difference information between generations and current individual information. Applied Intelligence. 2019;49(2):628–649. doi: 10.1007/s10489-018-1255-6. DOI

Wang Y, Cai Z, Zhang Q. Differential evolution with composite trial vector generation strategies and control parameters. IEEE Transactions on Evolutionary Computation. 2011;15(1):55–66. doi: 10.1109/TEVC.2010.2087271. DOI

Wang J, Liao J, Zhou Y, Cai Y. Differential evolution enhanced with multiobjective sorting-based mutation operators. IEEE Transactions on Cybernetics. 2014;44(12):2792–2805. doi: 10.1109/TCYB.2014.2316552. PubMed DOI

Wang Z-J, Zhan Z-H, Lin Y, Yu W-J, Yuan H-Q, Gu T-L, Kwong S, Zhang J. Dual-strategy differential evolution with affinity propagation clustering for multimodal optimization problems. IEEE Transactions on Evolutionary Computation. 2017;22(6):894–908. doi: 10.1109/TEVC.2017.2769108. DOI

Wu G, Mallipeddi R, Suganthan PN, Wang R, Chen H. Differential evolution with multi-population based ensemble of mutation strategies. Information Sciences. 2016;329:329–345. doi: 10.1016/j.ins.2015.09.009. DOI

Xin B, Chen J, Zhang J, Fang H, Peng Z-H. Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: a review and taxonomy. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 2011;42(5):744–767. doi: 10.1109/TSMCC.2011.2160941. DOI

Yang Z, Li K, Guo Y. A new compact teaching-learning-based optimization method. In: Huang DS, Jo KH, Wang L, editors. Intelligent Computing Methodologies. Lecture Notes in Computer Science. Cham: Springer; 2014. pp. 717–726.

Yu W-J, Shen M, Chen W-N, Zhan Z-H, Gong Y-J, Lin Y, Liu O, Zhang J. Differential evolution with two-level parameter adaptation. IEEE Transactions on Cybernetics. 2013;44(7):1080–1099. doi: 10.1109/TCYB.2013.2279211. PubMed DOI

Zhang J, Sanderson AC. JADE: adaptive differential evolution with optional external archive. IEEE Transactions on Evolutionary Computation. 2009;13(5):945–958. doi: 10.1109/TEVC.2009.2014613. DOI

Zhang H, Zhou A, Song S, Zhang Q, Gao X-Z, Zhang J. A self-organizing multiobjective evolutionary algorithm. IEEE Transactions on Evolutionary Computation. 2016;20(5):792–806. doi: 10.1109/TEVC.2016.2521868. DOI

Zheng LM, Liu L, Zhang SX, Zheng SY. Enhancing differential evolution with interactive information. Soft Computing. 2018;22(23):7919–7938. doi: 10.1007/s00500-017-2740-2. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

An improved hybrid whale optimization algorithm for global optimization and engineering design problems

. 2023 ; 9 () : e1557. [epub] 20231109

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...