A hybridizing-enhanced differential evolution for optimization
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37346618
PubMed Central
PMC10280462
DOI
10.7717/peerj-cs.1420
PII: cs-1420
Knihovny.cz E-zdroje
- Klíčová slova
- CEC-2019 benchmark functions, Differential evolution, Exploation, Exploration, Generalized gray wolf optimization, Gray wolf optimizer, Hybrid optimization, Metaheuristic, Optimization, Stochastic optimization,
- Publikační typ
- časopisecké články MeSH
Differential evolution (DE) belongs to the most usable optimization algorithms, presented in many improved and modern versions in recent years. Generally, the low convergence rate is the main drawback of the DE algorithm. In this article, the gray wolf optimizer (GWO) is used to accelerate the convergence rate and the final optimal results of the DE algorithm. The new resulting algorithm is called Hunting Differential Evolution (HDE). The proposed HDE algorithm deploys the convergence speed of the GWO algorithm as well as the appropriate searching capability of the DE algorithm. Furthermore, by adjusting the crossover rate and mutation probability parameters, this algorithm can be adjusted to pay closer attention to the strengths of each of these two algorithms. The HDE/current-to-rand/1 performed the best on CEC-2019 functions compared to the other eight variants of HDE. HDE/current-to-best/1 is also chosen as having superior performance to other proposed HDE compared to seven improved algorithms on CEC-2014 functions, outperforming them in 15 test functions. Furthermore, jHDE performs well by improving in 17 functions, compared with jDE on these functions. The simulations indicate that the proposed HDE algorithm can provide reliable outcomes in finding the optimal solutions with a rapid convergence rate and avoiding the local minimum compared to the original DE algorithm.
Department of Electrical and Computer Engineering Tarbiat Modares University Tehran Iran
Department of Electrical Engineering Jahrom University Jahrom Iran
Department of Electronics and Electrical Engineering Shiraz University of Technology Shiraz Iran
Zobrazit více v PubMed
Akbari E, Rahimnejad A, Gadsden SA. A greedy non-hierarchical grey wolf optimizer for real-world optimization. Electronics Letters. 2021;57(13):499–501. doi: 10.1049/ell2.12176. DOI
Akyol S. A new hybrid method based on Aquila optimizer and tangent search algorithm for global optimization. Journal of Ambient Intelligence and Humanized Computing. 2022;23(11):1383. doi: 10.1007/s12652-022-04347-1. PubMed DOI PMC
Akyol S, Alatas B. Plant intelligence based metaheuristic optimization algorithms. Artificial Intelligence Review. 2017;47(4):417–462. doi: 10.1007/s10462-016-9486-6. DOI
Brest J, Greiner S, Boskovic B, Mernik M, Zumer V. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation. 2006;10(6):646–657. doi: 10.1109/TEVC.2006.872133. DOI
Brest J, Maučec MS, Bošković B. Single objective real-parameter optimization: algorithm jSO. Proceeding of IEEE Congress on Evolutionary Computation (IEEE CEC 2017); Piscataway: IEEE; 2017.
Cai Y, Chen Y, Wang T, Tian H. Improving differential evolution with a new selection method of parents for mutation. Frontiers of Computer Science. 2016;10(2):246–269. doi: 10.1007/s11704-015-4480-8. DOI
Cai Y, Liao J, Wang T, Chen Y, Tian H. Social learning differential evolution. Information Sciences. 2018;433–434(6):464–509. doi: 10.1016/j.ins.2016.10.003. DOI
Cai Y, Sun G, Wang T, Tian H, Chen Y, Wang J. Neighborhood-adaptive differential evolution for global numerical optimization. Applied Soft Computing. 2017a;59(4):659–706. doi: 10.1016/j.asoc.2017.06.002. DOI
Cai Y, Wang J. Differential evolution with neighborhood and direction information for numerical optimization. IEEE Transactions on Cybernetics. 2013;43(6):2202–2215. doi: 10.1109/TCYB.2013.2245501. PubMed DOI
Cai Y, Wang J. Differential evolution with hybrid linkage crossover. Information Sciences. 2015;320(6):244–287. doi: 10.1016/j.ins.2015.05.026. DOI
Cai Y, Wu D, Fu S, Zeng S. Self-regulated differential evolution for real parameter optimization. Applied Intelligence. 2021;51(8):5873–5897. doi: 10.1007/s10489-020-01973-0. DOI
Cai Y, Wu D, Zhou Y, Fu S, Tian H, Du Y. Self-organizing neighborhood-based differential evolution for global optimization. Swarm and Evolutionary Computation. 2020;56(4):100699. doi: 10.1016/j.swevo.2020.100699. DOI
Cai Y, Zhao M, Liao J, Wang T, Tian H, Chen Y. Neighborhood guided differential evolution. Soft Computing. 2017b;21(16):4769–4812. doi: 10.1007/s00500-016-2088-z. DOI
Castillo O, Melin P, Ontiveros E, Peraza C, Ochoa P, Valdez F, Soria J. A high-speed interval type 2 fuzzy system approach for dynamic parameter adaptation in metaheuristics. Engineering Applications of Artificial Intelligence. 2019b;85(2):666–680. doi: 10.1016/j.engappai.2019.07.020. DOI
Castillo O, Melin P, Valdez F, Soria J, Ontiveros-Robles E, Peraza C, Ochoa P. Shadowed type-2 fuzzy systems for dynamic parameter adaptation in harmony search and differential evolution algorithms. Algorithms. 2019a;12(1):17. doi: 10.3390/a12010017. DOI
Cui L, Li G, Zhu Z, Lin Q, Wong K-C, Chen J, Lu N, Lu J. Adaptive multiple-elites-guided composite differential evolution algorithm with a shift mechanism. Information Sciences. 2018;422(3):122–143. doi: 10.1016/j.ins.2017.09.002. DOI
Das S, Abraham A, Chakraborty UK, Konar A. Differential evolution using a neighborhood-based mutation operator. IEEE Transactions on Evolutionary Computation. 2009;13(3):526–553. doi: 10.1109/TEVC.2008.2009457. DOI
Das S, Mullick SS, Suganthan PN. Recent advances in differential evolution-an updated survey. Swarm and Evolutionary Computation. 2016;27(3):1–30. doi: 10.1016/j.swevo.2016.01.004. DOI
De Falco I, Cioppa AD, Scafuri U, Tarantino E. Exploiting diversity in an asynchronous migration model for distributed differential evolution. Proceedings of the Genetic and Evolutionary Computation Conference Companion (GECCO 2017).2017.
Derrac J, García S, Molina D, Herrera F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation. 2011;1(1):3–18. doi: 10.1016/j.swevo.2011.02.002. DOI
Dorronsoro B, Bouvry P. Improving classical and decentralized differential evolution with new mutation operator and population topologies. IEEE Transactions on Evolutionary Computation. 2011;15(1):67–98. doi: 10.1109/TEVC.2010.2081369. DOI
Epitropakis MG, Tasoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN. Enhancing differential evolution utilizing proximity-based mutation operators. IEEE Transactions on Evolutionary Computation. 2011;15(1):99–119. doi: 10.1109/TEVC.2010.2083670. DOI
Fan Q, Yan X. Self-adaptive differential evolution algorithm with zoning evolution of control parameters and adaptive mutation strategies. IEEE Transactions on Cybernetics. 2015;46(1):219–232. doi: 10.1109/TCYB.2015.2399478. PubMed DOI
Fang H, Zhou A, Zhang H. Information fusion in offspring generation: a case study in DE and EDA. Swarm and Evolutionary Computation. 2018;42(4):99–108. doi: 10.1016/j.swevo.2018.02.014. DOI
Gao W, Yen GG, Liu S. A cluster-based differential evolution with self-adaptive strategy for multimodal optimization. IEEE Transactions on Cybernetics. 2013;44(8):1314–1327. doi: 10.1109/TCYB.2013.2282491. PubMed DOI
Ge Y-F, Yu W-J, Lin Y, Gong Y-J, Zhan Z-H, Chen W-N, Zhang J. Distributed differential evolution based on adaptive mergence and split for large-scale optimization. IEEE Transactions on Cybernetics. 2017;48(7):2166–2180. doi: 10.1109/TCYB.2017.2728725. PubMed DOI
Ghasemi M, Taghizadeh M, Ghavidel S, Abbasian A. Colonial competitive differential evolution: an experimental study for optimal economic load dispatch. Applied Soft Computing. 2016;40(4):342–363. doi: 10.1016/j.asoc.2015.11.033. DOI
Gong W, Cai Z. Differential evolution with ranking-based mutation operators. IEEE Transactions on Cybernetics. 2013;43(6):2066–2081. doi: 10.1109/TCYB.2013.2239988. PubMed DOI
Gong W, Fialho Á, Cai Z, Li H. Adaptive strategy selection in differential evolution for numerical optimization: an empirical study. Information Sciences. 2011;181(24):5364–5386. doi: 10.1016/j.ins.2011.07.049. DOI
Gupta S, Deep K. Cauchy grey wolf optimiser for continuous optimisation problems. Journal of Experimental & Theoretical Artificial Intelligence. 2018;30(6):1051–1075. doi: 10.1080/0952813X.2018.1513080. DOI
Gupta S, Deep K. A hybrid self-adaptive sine cosine algorithm with opposition based learning. Expert Systems with Applications. 2019a;119(1):210–230. doi: 10.1016/j.eswa.2018.10.050. DOI
Gupta S, Deep K. A novel random walk grey wolf optimizer. Swarm and Evolutionary Computation. 2019b;44(4):101–112. doi: 10.1016/j.swevo.2018.01.001. DOI
Gupta S, Deep K, Engelbrecht AP. A memory guided sine cosine algorithm for global optimization. Engineering Applications of Artificial Intelligence. 2020;93(2–4):103718. doi: 10.1016/j.engappai.2020.103718. DOI
Holland JH. Adaptation in natural and artificial systems. Cambridge: The MIT Press; 1992.
Iacca G, dos Santos Junior VC, de Melo VV. An improved Jaya optimization algorithm with Lévy flight. Expert Systems with Applications. 2021;165(1):113902. doi: 10.1016/j.eswa.2020.113902. DOI
Islam SM, Das S, Ghosh S, Roy S, Suganthan PN. An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 2012;42(2):482–500. doi: 10.1109/TSMCB.2011.2167966. PubMed DOI
Jadon SS, Tiwari R, Sharma H, Bansal JC. Hybrid artificial bee colony algorithm with differential evolution. Applied Soft Computing. 2017;58(1):11–24. doi: 10.1016/j.asoc.2017.04.018. DOI
Liang JJ, Qu BY, Gong DW, Yue CT. Problem definitions and evaluation criteria for the CEC 2019 special session on multimodal multiobjective optimization. 2019. Technical Report, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China. DOI
Liang JJ, Qu BY, Suganthan PN. Problem definitions and evaluation criteria for the CEC, 2014 special session and competition on single objective real-parameter numerical optimization. 2013. Technical Report 201311, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore.
Liu Z-Z, Wang Y, Yang S, Tang K. An adaptive framework to tune the coordinate systems in nature-inspired optimization algorithms. IEEE Transactions on Cybernetics. 2019;49(4):1403–1416. doi: 10.1109/TCYB.2018.2802912. PubMed DOI
Liu X-F, Zhan Z-H, Lin Y, Chen W-N, Gong Y-J, Gu T-L, Yuan H-Q, Zhang J. Historical and heuristic-based adaptive differential evolution. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2018;49(12):2623–2635. doi: 10.1109/TSMC.2018.2855155. DOI
Long W, Cai S, Jiao J, Tang M. An efficient and robust grey wolf optimizer algorithm for large-scale numerical optimization. Soft Computing. 2020;24(2):997–1026. doi: 10.1007/s00500-019-03939-y. DOI
Meng Z, Yang C. Hip-DE: historical population based mutation strategy in differential evolution with parameter adaptive mechanism. Information Sciences. 2021;562(3):44–77. doi: 10.1016/j.ins.2021.01.031. DOI
Meng Z, Yang C, Li X, Chen Y. Di-DE: depth information-based differential evolution with adaptive parameter control for numerical optimization. IEEE Access. 2020;8:40809–40827. doi: 10.1109/ACCESS.2020.2976845. DOI
Mininno E, Neri F, Cupertino F, Naso D. Compact differential evolution. IEEE Transactions on Evolutionary Computation. 2010;15(1):32–54. doi: 10.1109/TEVC.2010.2058120. DOI
Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Advances in Engineering Software. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI
Mohamed AW, Suganthan PN. Real-parameter unconstrained optimization based on enhanced fitness-adaptive differential evolution algorithm with novel mutation. Soft Computing. 2018;22(10):3215–3235. doi: 10.1007/s00500-017-2777-2. DOI
Ochoa P, Castillo O, Soria J. Differential evolution with dynamic adaptation of parameters for the optimization of fuzzy controllers. In: Castillo O, Melin P, Pedrycz W, Kacprzyk J, editors. Recent Advances on Hybrid Approaches for Designing Intelligent Systems. Studies in Computational Intelligence. Cham: Springer; 2014. pp. 275–288.
Ochoa P, Castillo O, Soria J. Optimization of fuzzy controller design using a differential evolution algorithm with dynamic parameter adaptation based on type-1 and interval type-2 fuzzy systems. Soft Computing. 2020;24(1):193–214. doi: 10.1007/s00500-019-04156-3. DOI
Qin AK, Huang VL, Suganthan PN. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation. 2009;13(2):398–417. doi: 10.1109/TEVC.2008.927706. DOI
Qiu X, Tan KC, Xu J-X. Multiple exponential recombination for differential evolution. IEEE Transactions on Cybernetics. 2017;47(4):995–1006. doi: 10.1109/TCYB.2016.2536167. PubMed DOI
Storn R, Price K. Minimizing the real functions of the ICEC’96 contest by differential evolution. Proceedings of IEEE International Conference on Evolutionary Computation (IEEE ICEC 1996); Piscataway: IEEE; 1996.
Storn R, Price K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization. 1997;11(4):341–359. doi: 10.1023/A:1008202821328. DOI
Sun G, Cai Y, Wang T, Tian H, Wang C, Chen Y. Differential evolution with individual-dependent topology adaptation. Information Sciences. 2018;450(6):1–38. doi: 10.1016/j.ins.2018.02.048. DOI
Tian L, Li Z, Yan X. Differential evolution algorithm directed by individual difference information between generations and current individual information. Applied Intelligence. 2019;49(2):628–649. doi: 10.1007/s10489-018-1255-6. DOI
Wang Y, Cai Z, Zhang Q. Differential evolution with composite trial vector generation strategies and control parameters. IEEE Transactions on Evolutionary Computation. 2011;15(1):55–66. doi: 10.1109/TEVC.2010.2087271. DOI
Wang J, Liao J, Zhou Y, Cai Y. Differential evolution enhanced with multiobjective sorting-based mutation operators. IEEE Transactions on Cybernetics. 2014;44(12):2792–2805. doi: 10.1109/TCYB.2014.2316552. PubMed DOI
Wang Z-J, Zhan Z-H, Lin Y, Yu W-J, Yuan H-Q, Gu T-L, Kwong S, Zhang J. Dual-strategy differential evolution with affinity propagation clustering for multimodal optimization problems. IEEE Transactions on Evolutionary Computation. 2017;22(6):894–908. doi: 10.1109/TEVC.2017.2769108. DOI
Wu G, Mallipeddi R, Suganthan PN, Wang R, Chen H. Differential evolution with multi-population based ensemble of mutation strategies. Information Sciences. 2016;329:329–345. doi: 10.1016/j.ins.2015.09.009. DOI
Xin B, Chen J, Zhang J, Fang H, Peng Z-H. Hybridizing differential evolution and particle swarm optimization to design powerful optimizers: a review and taxonomy. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 2011;42(5):744–767. doi: 10.1109/TSMCC.2011.2160941. DOI
Yang Z, Li K, Guo Y. A new compact teaching-learning-based optimization method. In: Huang DS, Jo KH, Wang L, editors. Intelligent Computing Methodologies. Lecture Notes in Computer Science. Cham: Springer; 2014. pp. 717–726.
Yu W-J, Shen M, Chen W-N, Zhan Z-H, Gong Y-J, Lin Y, Liu O, Zhang J. Differential evolution with two-level parameter adaptation. IEEE Transactions on Cybernetics. 2013;44(7):1080–1099. doi: 10.1109/TCYB.2013.2279211. PubMed DOI
Zhang J, Sanderson AC. JADE: adaptive differential evolution with optional external archive. IEEE Transactions on Evolutionary Computation. 2009;13(5):945–958. doi: 10.1109/TEVC.2009.2014613. DOI
Zhang H, Zhou A, Song S, Zhang Q, Gao X-Z, Zhang J. A self-organizing multiobjective evolutionary algorithm. IEEE Transactions on Evolutionary Computation. 2016;20(5):792–806. doi: 10.1109/TEVC.2016.2521868. DOI
Zheng LM, Liu L, Zhang SX, Zheng SY. Enhancing differential evolution with interactive information. Soft Computing. 2018;22(23):7919–7938. doi: 10.1007/s00500-017-2740-2. DOI