An improved hybrid whale optimization algorithm for global optimization and engineering design problems
Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
38077609
PubMed Central
PMC10702722
DOI
10.7717/peerj-cs.1557
PII: cs-1557
Knihovny.cz E-resources
- Keywords
- Differential evolution algorithm, Friedman test, Metaheuristic optimization, Pbest-guided algorithm, Statistical tests, Whale optimization algorithm, Wilcoxon signed-rank test,
- Publication type
- Journal Article MeSH
The whale optimization algorithm (WOA) is a widely used metaheuristic optimization approach with applications in various scientific and industrial domains. However, WOA has a limitation of relying solely on the best solution to guide the population in subsequent iterations, overlooking the valuable information embedded in other candidate solutions. To address this limitation, we propose a novel and improved variant called Pbest-guided differential WOA (PDWOA). PDWOA combines the strengths of WOA, particle swarm optimizer (PSO), and differential evolution (DE) algorithms to overcome these shortcomings. In this study, we conduct a comprehensive evaluation of the proposed PDWOA algorithm on both benchmark and real-world optimization problems. The benchmark tests comprise 30-dimensional functions from CEC 2014 Test Functions, while the real-world problems include pressure vessel optimal design, tension/compression spring optimal design, and welded beam optimal design. We present the simulation results, including the outcomes of non-parametric statistical tests including the Wilcoxon signed-rank test and the Friedman test, which validate the performance improvements achieved by PDWOA over other algorithms. The results of our evaluation demonstrate the superiority of PDWOA compared to recent methods, including the original WOA. These findings provide valuable insights into the effectiveness of the proposed hybrid WOA algorithm. Furthermore, we offer recommendations for future research to further enhance its performance and open new avenues for exploration in the field of optimization algorithms. The MATLAB Codes of FISA are publicly available at https://github.com/ebrahimakbary/PDWOA.
Department of Mathematics University of Hradec Králové Hradec Králové Czech Republic
Department of Mechanical Engineering McMaster University Hamilton Canada
See more in PubMed
Abd Elaziz M, Oliva D. Parameter estimation of solar cells diode models by an improved opposition-based whale optimization algorithm. Energy Conversion and Management. 2018;171:1843–1859. doi: 10.1016/j.enconman.2018.05.062. DOI
Abdel-Basset M, Abdle-Fatah L, Sangaiah AK. An improved Lévy based whale optimization algorithm for bandwidth-efficient virtual machine placement in cloud computing environment. Cluster Computing. 2018;22:8319–8334. doi: 10.1007/s10586-018-1769-z. DOI
Abdel-Basset M, Mohamed R, Mirjalili S. A novel Whale optimization algorithm integrated with Nelder–Mead simplex for multi-objective optimization problems. Knowledge-Based Systems. 2021;212:106619. doi: 10.1016/j.knosys.2020.106619. DOI
Abualigah L, Diabat A, Mirjalili S, Abd Elaziz M, Gandomi AH. The arithmetic optimization algorithm. Computer Methods in Applied Mechanics and Engineering. 2021;376:113609. doi: 10.1016/J.CMA.2020.113609. DOI
Akay B, Karaboga D. Artificial bee colony algorithm for large-scale problems and engineering design optimization. Journal of Intelligent Manufacturing. 2012;23:1001–1014. doi: 10.1007/s10845-010-0393-4. DOI
Akyol S, Alatas B. Sentiment classification within online social media using whale optimization algorithm and social impact theory based optimization. Physica A: Statistical Mechanics and its Applications. 2020;540:123094. doi: 10.1016/j.physa.2019.123094. DOI
Al-Dabbagh RD, Kinsheel A, Mekhilef S, Baba MS, Shamshirband S. System identification and control of robot manipulator based on fuzzy adaptive differential evolution algorithm. Advances in Engineering Software. 2014;78:60–66. doi: 10.1016/J.ADVENGSOFT.2014.08.009. DOI
Aragón VS, Esquivel SC, Coello CAC. A modified version of a T-Cell Algorithm for constrained optimization problems. International Journal for Numerical Methods in Engineering. 2010;84.3(2010):351–378. doi: 10.1002/nme.2904. DOI
Askarzadeh A. A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Computers & Structures. 2016;169:1–12. doi: 10.1016/j.compstruc.2016.03.001. DOI
Aziz MA El, Ewees AA, Hassanien AE. Multi-objective whale optimization algorithm for content-based image retrieval. Multimedia Tools and Applications. 2018;77:26135–26172. doi: 10.1007/s11042-018-5840-9. DOI
Band SS, Ardabili S, Seyed Danesh A, Mansor Z, AlShourbaji I, Mosavi A. Colonial competitive evolutionary Rao algorithm for optimal engineering design. Alexandria Engineering Journal. 2022;61:11537–11563. doi: 10.1016/J.AEJ.2022.05.018. DOI
Brest J, Greiner S, Boskovic B, Mernik M, Zumer V. Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation. 2006;10:646–657. doi: 10.1109/tevc.2006.872133. DOI
Buch H, Trivedi IN, Jangir P. Moth flame optimization to solve optimal power flow with non-parametric statistical evaluation validation. Cogent Engineering. 2017;4:1286731. doi: 10.1080/23311916.2017.1286731. DOI
Canayaz M, Özdağ R. Data clustering based on the whale optimization. Middle East Journal of Technic. 2017;2:178–187.
Cao Y, Li Y, Zhang G, Jermsittiparsert K, Nasseri M. An efficient terminal voltage control for PEMFC based on an improved version of whale optimization algorithm. Energy Reports. 2020;6:530–542. doi: 10.1016/j.egyr.2020.02.035. DOI
Chen Y, Li L, Peng H, Xiao J, Wu Q. Dynamic multi-swarm differential learning particle swarm optimizer. Swarm and Evolutionary Computation. 2018;39:209–221. doi: 10.1016/j.swevo.2017.10.004. DOI
Chen H, Li W, Yang X. A whale optimization algorithm with chaos mechanism based on quasi-opposition for global optimization problems. Expert Systems with Applications. 2020;158:113612. doi: 10.1016/j.eswa.2020.113612. DOI
Chen H, Yang C, Heidari AA, Zhao X. An efficient double adaptive random spare reinforced whale optimization algorithm. Expert Systems with Applications. 2020;154:113018. doi: 10.1016/j.eswa.2019.113018. DOI
Coello Coello CA. Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry. 2000;41:113–127. doi: 10.1016/s0166-3615(99)00046-9. DOI
Coello Coello CA, Becerra RL. Efficient evolutionary optimization through the use of a cultural algorithm. Engineering Optimization. 2004;36:219–236. doi: 10.1080/03052150410001647966. DOI
Coello CAC, Cortés NC. Hybridizing a genetic algorithm with an artificial immune system for global optimization. Engineering Optimization. 2004;36:607–634. doi: 10.1080/03052150410001704845. DOI
Coelho L dos S, dos Santos Coelho L, Coelho L dos S. Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Systems with Applications. 2010;37:1676–1683. doi: 10.1016/j.eswa.2009.06.044. DOI
Coello Coello CA, Mezura Montes E, Coello CAC, Montes EM, Coello Coello CA, Mezura Montes E. Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Advanced Engineering Informatics. 2002;16:193–203. doi: 10.1016/s1474-0346(02)00011-3. DOI
Cuong-Le T, Minh H-L, Khatir S, Wahab MA, Tran MT, Mirjalili S. A novel version of Cuckoo search algorithm for solving optimization problems. Expert Systems with Applications. 2021;186:115669. doi: 10.1016/j.eswa.2021.115669. DOI
Derrac J, García S, Molina D, Herrera F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation. 2011;1:3–18. doi: 10.1016/j.swevo.2011.02.002. DOI
Eberhart R, Kennedy J. A new optimizer using particle swarm theory. MHS’95. Proceedings of the sixth international symposium on micro machine and human science; 1995. DOI
Eid HF. Binary whale optimisation: an effective swarm algorithm for feature selection. International Journal of Metaheuristics. 2018;7:67. doi: 10.1504/ijmheur.2018.10012912. DOI
Eskandar H, Sadollah A, Bahreininejad A, Hamdi M. Water cycle algorithm—a novel metaheuristic optimization method for solving constrained engineering optimization problems. Computers & Structures. 2012;110–111:151–166. doi: 10.1016/j.compstruc.2012.07.010. DOI
Gharehchopogh FS, Gholizadeh H. A comprehensive survey: whale optimization algorithm and its applications. Swarm and Evolutionary Computation. 2019;48:1–24. doi: 10.1016/j.swevo.2019.03.004. DOI
Ghasemi M, Taghizadeh M, Ghavidel S, Abbasian A. Colonial competitive differential evolution: an experimental study for optimal economic load dispatch. Applied Soft Computing. 2016;40:342–363. doi: 10.1016/j.asoc.2015.11.033. DOI
Ghasemi M, Zare M, Trojovský P, Zahedibialvaei A, Trojovská E. A hybridizing-enhanced differential evolution for optimization. PeerJ Computer Science. 2023;9:e1420. doi: 10.7717/peerj-cs.1420. PubMed DOI PMC
Guo W, Liu T, Dai F, Xu P. An improved whale optimization algorithm for forecasting water resources demand. Applied Soft Computing. 2020;86:105925. doi: 10.1016/j.asoc.2019.105925. DOI
Hashim FA, Houssein EH, Mabrouk MS, Al-Atabany W, Mirjalili S. Henry gas solubility optimization: a novel physics-based algorithm. Future Generation Computer Systems. 2019;101:646–667. doi: 10.1016/j.future.2019.07.015. DOI
He B, Huang Y, Wang D, Yan B, Dong D. A parameter-adaptive stochastic resonance based on whale optimization algorithm for weak signal detection for rotating machinery. Measurement. 2019;136:658–667. doi: 10.1016/j.measurement.2019.01.017. DOI
He Q, Wang L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Engineering Applications of Artificial Intelligence. 2007;20:89–99. doi: 10.1016/j.engappai.2006.03.003. DOI
Hedar A-R, Fukushima M. Derivative-free filter simulated annealing method for constrained continuous global optimization. Journal of Global Optimization. 2006;35:521–549. doi: 10.1007/s10898-005-3693-z. DOI
Holland JH. Genetic algorithms. Scientific American. 1992;267:66–72. doi: 10.1038/scientificamerican0792-66. PubMed DOI
Hou G, Gong L, Yang Z, Zhang J. Multi-objective economic model predictive control for gas turbine system based on quantum simultaneous whale optimization algorithm. Energy Conversion and Management. 2020;207:112498. doi: 10.1016/j.enconman.2020.112498. DOI
Huang F, Wang L, He Q. An effective co-evolutionary differential evolution for constrained optimization. Applied Mathematics and Computation. 2007;186:340–356. doi: 10.1016/j.amc.2006.07.105. DOI
Iacca G, dos Santos Junior VC, Veloso de Melo V. An improved Jaya optimization algorithm with Lévy flight. Expert Systems with Applications. 2021;165:113902. doi: 10.1016/J.ESWA.2020.113902. DOI
Jain L, Katarya R, Sachdeva S. Opinion leader detection using whale optimization algorithm in online social network. Expert Systems with Applications. 2020;142:113016. doi: 10.1016/j.eswa.2019.113016. DOI
Kaveh A, Dadras A. A novel meta-heuristic optimization algorithm: thermal exchange optimization. Advances in Engineering Software. 2017;110:69–84. doi: 10.1016/j.advengsoft.2017.03.014. DOI
Kennedy J, Eberhart R. Particle swarm optimization. Proceedings of ICNN’95-international conference on neural networks; Piscataway. 1995. pp. 1942–1948.
Khalilpourazari S, Pasandideh SHR, Ghodratnama A. Robust possibilistic programming for multi-item EOQ model with defective supply batches: whale optimization and water cycle algorithms. Neural Computing and Applications. 2018;31:6587–6614. doi: 10.1007/s00521-018-3492-3. DOI
Liang JJ, Qu BY, Suganthan PN. Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore2013:635.2.
Liu D, Fan Z, Fu Q, Li M, Faiz MA, Ali S, Li T, Zhang L, Khan MI. Random forest regression evaluation model of regional flood disaster resilience based on the whale optimization algorithm. Journal of Cleaner Production. 2020;250:119468. doi: 10.1016/j.jclepro.2019.119468. DOI
Liu W, Wang Z, Yuan Y, Zeng N, Hone K, Liu X. A novel sigmoid-function-based adaptive weighted particle swarm optimizer. IEEE Transactions on Cybernetics. 2021;51:1085–1093. doi: 10.1109/TCYB.2019.2925015. PubMed DOI
Liu M, Yao X, Li Y. Hybrid whale optimization algorithm enhanced with Lévy flight and differential evolution for job shop scheduling problems. Applied Soft Computing. 2020;87:105954. doi: 10.1016/j.asoc.2019.105954. DOI
Mafarja MM, Mirjalili S. Hybrid whale optimization algorithm with simulated annealing for feature selection. Neurocomputing. 2017;260:302–312. doi: 10.1016/j.neucom.2017.04.053. DOI
Mahdad B. Improvement optimal power flow solution under loading margin stability using new partitioning whale algorithm. International Journal of Management Science and Engineering Management. 2018;14:64–77. doi: 10.1080/17509653.2018.1488225. DOI
Mallipeddi R, Suganthan PN, Pan QK, Tasgetiren MF. Differential evolution algorithm with ensemble of parameters and mutation strategies. Applied Soft Computing. 2011;11:1679–1696. doi: 10.1016/j.asoc.2010.04.024. DOI
Mezura-Montes E, Coello CAC. Useful infeasible solutions in engineering optimization with evolutionary algorithms. In: Gelbukh A, de Albornoz A, Terashima-Marín H, editors. MICAI 2005: advances in artificial intelligence. MICAI 2005. Lecture notes in computer science, vol 3789. Springer; Berlin, Heidelberg: 2005. DOI
Mezura-Montes E, Coello CAC. An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. International Journal of General Systems. 2008;37:443–473. doi: 10.1080/03081070701303470. DOI
Mezura-Montes E, Hernández-Ocana B. Bacterial foraging for engineering design problems: preliminary results. Laboratorio Nacional de Informática Avanzada (LANIA AC)-Universidad Juárez Autónoma de Tabasco; México: 2008.
Minh H-L, Sang-To T, Khatir S, Wahab MA, Cuong-Le T. Damage identification in high-rise concrete structures using a bio-inspired meta-heuristic optimization algorithm. Advances in Engineering Software. 2023a;176:103399. doi: 10.1016/j.advengsoft.2022.103399. DOI
Minh H-L, Sang-To T, Theraulaz G, Wahab MA, Cuong-Le T. Termite life cycle optimizer. Expert Systems with Applications. 2023b;213:119211. doi: 10.1016/j.eswa.2022.119211. DOI
Minh H-L, Sang-To T, Wahab MA, Cuong-Le T. A new metaheuristic optimization based on K-means clustering algorithm and its application to structural damage identification. Knowledge-Based Systems. 2022;251:109189. doi: 10.1016/j.knosys.2022.109189. DOI
Mirjalili S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowledge-Based Systems. 2015;89:228–249. doi: 10.1016/J.KNOSYS.2015.07.006. DOI
Mirjalili S, Lewis A. The whale optimization algorithm. Advances in Engineering Software. 2016;95:51–67. doi: 10.1016/j.advengsoft.2016.01.008. DOI
Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Advances in Engineering Software. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI
Mohammadi B, Mehdizadeh S. Modeling daily reference evapotranspiration via a novel approach based on support vector regression coupled with whale optimization algorithm. Agricultural Water Management. 2020;237:106145. doi: 10.1016/j.agwat.2020.106145. DOI
Montemurro M, Vincenti A, Vannucci P. The automatic dynamic penalisation method (ADP) for handling constraints with genetic algorithms. Computer Methods in Applied Mechanics and Engineering. 2013;256:70–87. doi: 10.1016/j.cma.2012.12.009. DOI
Nazari-Heris M, Mehdinejad M, Mohammadi-Ivatloo B, Babamalek-Gharehpetian G. Combined heat and power economic dispatch problem solution by implementation of whale optimization method. Neural Computing and Applications. 2017;31:421–436. doi: 10.1007/s00521-017-3074-9. DOI
Ngo TT, Sadollah A, Kim JH. A cooperative particle swarm optimizer with stochastic movements for computationally expensive numerical optimization problems. Journal of Computational Science. 2016;13:68–82. doi: 10.1016/j.jocs.2016.01.004. DOI
Parsopoulos KE, Vrahatis MN. Unified particle swarm optimization for solving constrained engineering optimization problems. International conference on natural computation; 2005. pp. 582–591.
Pham Q-V, Mirjalili S, Kumar N, Alazab M, Hwang W-J. Whale optimization algorithm with applications to resource allocation in wireless networks. IEEE Transactions on Vehicular Technology. 2020;69:4285–4297. doi: 10.1109/tvt.2020.2973294. DOI
Qais MH, Hasanien HM, Alghuwainem S. Enhanced whale optimization algorithm for maximum power point tracking of variable-speed wind generators. Applied Soft Computing. 2020a;86:105937. doi: 10.1016/j.asoc.2019.105937. DOI
Qais MH, Hasanien HM, Alghuwainem S. Whale optimization algorithm-based Sugeno fuzzy logic controller for fault ride-through improvement of grid-connected variable speed wind generators. Engineering Applications of Artificial Intelligence. 2020b;87:103328. doi: 10.1016/j.engappai.2019.103328. DOI
Qiao Z, Shan W, Jiang N, Heidari AA, Chen H, Teng Y, Turabieh H, Mafarja M. Gaussian bare-bones gradient-based optimization: towards mitigating the performance concerns. International Journal of Intelligent Systems. 2022;37:3193–3254. doi: 10.1002/int.22658. DOI
Qiao W, Yang Z, Kang Z, Pan Z. Short-term natural gas consumption prediction based on Volterra adaptive filter and improved whale optimization algorithm. Engineering Applications of Artificial Intelligence. 2020;87:103323. doi: 10.1016/j.engappai.2019.103323. DOI
Ray T, Liew K-M. Society and civilization: an optimization algorithm based on the simulation of social behavior. IEEE Transactions on Evolutionary Computation. 2003;7:386–396. doi: 10.1109/TEVC.2003.814902. DOI
Reddy PDP, Reddy VCV, Manohar TG. Whale optimization algorithm for optimal sizing of renewable resources for loss reduction in distribution systems. Renewables: Wind, Water, and Solar. 2017;4(3) doi: 10.1186/s40807-017-0040-1. DOI
Rosyadi A, Penangsang O, Soeprijanto A. Optimal filter placement and sizing in radial distribution system using whale optimization algorithm. 2017 international seminar on intelligent technology and its applications (ISITIA); 2017. DOI
Saidala RK, Devarakonda N. Improved whale optimization algorithm case study: clinical data of anaemic pregnant woman. Advances in Intelligent Systems and Computing. 2017:271–281. doi: 10.1007/978-981-10-3223-3_25. DOI
Samadianfard S, Hashemi S, Kargar K, Izadyar M, Mostafaeipour A, Mosavi A, Nabipour N, Shamshirband S. Wind speed prediction using a hybrid model of the multi-layer perceptron and whale optimization algorithm. Energy Reports. 2020;6:1147–1159. doi: 10.1016/j.egyr.2020.05.001. DOI
Sang-To T, Hoang-Le M, Wahab MA, Cuong-Le T. An efficient planet optimization algorithm for solving engineering problems. Scientific Reports. 2022;12:1–18. doi: 10.1038/s41598-021-99269-x. PubMed DOI PMC
Shadravan S, Naji HR, Bardsiri VK. The sailfish optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Engineering Applications of Artificial Intelligence. 2019;80:20–34. doi: 10.1016/j.engappai.2019.01.001. DOI
Sreenu K, Sreelatha M. W-Scheduler: whale optimization for task scheduling in cloud computing. Cluster Computing. 2017;22:1087–1098. doi: 10.1007/s10586-017-1055-5. DOI
Srivastava A, Das DK, Rai A, Raj R. Parameter estimation of a permanent magnet synchronous motor using whale optimization algorithm. 2018 recent advances on engineering, technology and computational sciences (RAETCS); 2018. DOI
Storn R, Price K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization. 1997;11:341–359. doi: 10.1023/a:1008202821328. DOI
Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y-P, Auger A, Tiwari S. Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Nanyang Technological University; Singapore: 2005.
Talbi E-G. Metaheuristics: from design to implementation. John Wiley & Sons, Inc; Hoboken: 2009. DOI
Tran V-T, Nguyen T-K, Nguyen-Xuan H, Wahab MA. Vibration and buckling optimization of functionally graded porous microplates using BCMO-ANN algorithm. Thin-Walled Structures. 2023;182:110267. doi: 10.1016/j.tws.2022.110267. DOI
Trivedi IN, Bhoye M, Bhesdadiya RH, Jangir P, Jangir N, Kumar A. An emission constraint environment dispatch problem solution with microgrid using Whale Optimization Algorithm. 2016 national power systems conference (NPSC); 2016. DOI
Tu J, Chen H, Liu J, Heidari AA, Zhang X, Wang M, Ruby R, Pham Q-V. Evolutionary biogeography-based whale optimization methods with communication structure: towards measuring the balance. Knowledge-Based Systems. 2021;212:106642. doi: 10.1016/j.knosys.2020.106642. DOI
Wang M, Chen H. Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Applied Soft Computing. 2020;88:105946. doi: 10.1016/j.asoc.2019.105946. DOI
Wang WL, Li WK, Wang Z, Li L. Opposition-based multi-objective whale optimization algorithm with global grid ranking. Neurocomputing. 2019;341:41–59. doi: 10.1016/j.neucom.2019.02.054. DOI
Wang H, Rahnamayan S, Sun H, Omran MGH. Gaussian bare-bones differential evolution. IEEE Transactions on Cybernetics. 2013;43:634–647. doi: 10.1109/tsmcb.2012.2213808. PubMed DOI
Wang H, Rahnamayan S, Wu Z. Parallel differential evolution with self-adapting control parameters and generalized opposition-based learning for solving high-dimensional optimization problems. Journal of Parallel and Distributed Computing. 2013;73:62–73. doi: 10.1016/j.jpdc.2012.02.019. DOI
Wolpert DHH, Macready WGG. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation. 1997;1:67–82. doi: 10.1109/4235.585893. DOI
Wu J, Wang H, Li N, Yao P, Huang Y, Yang H. Path planning for solar-powered UAV in urban environment. Neurocomputing. 2018;275:2055–2065. doi: 10.1016/j.neucom.2017.10.037. DOI
Yuan P, Guo C, Zheng Q, Ding J. Sidelobe suppression with constraint for MIMO radar via chaotic whale optimisation. Electronics Letters. 2018;54:311–313. doi: 10.1049/el.2017.4286. DOI
Zeng N, Song D, Li H, You Y, Liu Y, Alsaadi FE. A competitive mechanism integrated multi-objective whale optimization algorithm with differential evolution. Neurocomputing. 2021;432:170–182. doi: 10.1016/j.neucom.2020.12.065. DOI
Zhang Z. A new multi-population-based differential evolution. International Journal of Computing Science and Mathematics. 2015;6:88–96. doi: 10.1504/IJCSM.2015.067546. DOI
Zhang J, Sanderson AC. JADE: adaptive differential evolution with optional external archive. IEEE Transactions on Evolutionary Computation. 2009;13:945–958. doi: 10.1109/tevc.2009.2014613. DOI
Zhang J, Xiao M, Gao L, Pan Q. Queuing search algorithm: a novel metaheuristic algorithm for solving engineering optimization problems. Applied Mathematical Modelling. 2018;63:464–490. doi: 10.1016/j.apm.2018.06.036. DOI
Zhao W, Wang L, Zhang Z. Supply-demand-based optimization: a novel economics-inspired algorithm for global optimization. IEEE Access. 2019;7:73182–73206. doi: 10.1109/ACCESS.2019.2918753. DOI
Zhu W, Tang Y, Fang J, Zhang W. Adaptive population tuning scheme for differential evolution. Information Sciences. 2013;223:164–191. doi: 10.1016/j.ins.2012.09.019. DOI
Zou F, Chen D, Lu R, Wang P. Hierarchical multi-swarm cooperative teaching—learning-based optimization for global optimization. Soft Computing. 2017;21:6983–7004. doi: 10.1007/S00500-016-2237-4/METRICS. DOI