Incidental temporal binding in rats: A novel behavioral task
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37347773
PubMed Central
PMC10286974
DOI
10.1371/journal.pone.0274437
PII: PONE-D-22-24003
Knihovny.cz E-zdroje
- MeSH
- krysa rodu Rattus MeSH
- rozpomínání MeSH
- strach fyziologie MeSH
- úniková reakce MeSH
- vydry * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We designed a behavioral task called One-Trial Trace Escape Reaction (OTTER), in which rats incidentally associate two temporally discontinuous stimuli: a neutral acoustic cue (CS) with an aversive stimulus (US) which occurs two seconds later (CS-2s-US sequence). Rats are first habituated to two similar environmental contexts (A and B), each consisting of an interconnected dark and light chamber. Next, rats experience the CS-2s-US sequence in the dark chamber of one of the contexts (either A or B); the US is terminated immediately after a rat escapes into the light chamber. The CS-2s-US sequence is presented only once to ensure the incidental acquisition of the association. The recall is tested 24 h later when rats are presented with only the CS in the alternate context (B or A), and their behavioral response is observed. Our results show that 59% of the rats responded to the CS by escaping to the light chamber, although they experienced only one CS-2s-US pairing. The OTTER task offers a flexible high throughput tool to study memory acquired incidentally after a single experience. Incidental one-trial acquisition of association between temporally discontinuous events may be one of the essential components of episodic memory formation.
2nd Faculty of Medicine Charles University Prague Czechia
3rd Faculty of Medicine Charles University Prague Czechia
Institute of Physiology Czech Academy of Sciences Prague Czechia
Zobrazit více v PubMed
Tulving E. Episodic memory: From mind to brain. Annu Rev Psychol. 2002. Feb;53(1):1–25. doi: 10.1146/annurev.psych.53.100901.135114 PubMed DOI
Sellami A, Al Abed AS, Brayda-Bruno L, Etchamendy N, Valério S, Oulé M, et al.. Temporal binding function of dorsal CA1 is critical for declarative memory formation. Proc Natl Acad Sci U S A. 2017. Sep 19;114(38):10262–7. doi: 10.1073/pnas.1619657114 PubMed DOI PMC
DuBrow S, Davachi L. Temporal binding within and across events. Neurobiol Learn Mem. 2016. Oct;134:107–14. doi: 10.1016/j.nlm.2016.07.011 PubMed DOI PMC
Crystal JD. Animal models of episodic memory. Comp Cogn Behav Rev. 2018;13:105–22.
Zhou W, Crystal JD. Validation of a rodent model of episodic memory. Anim Cogn. 2011. May 17;14(3):325–40. doi: 10.1007/s10071-010-0367-0 PubMed DOI PMC
Zhou W, Hohmann AG, Crystal JD. Rats answer an unexpected question after incidental encoding. Current Biology. 2012. Jun 19;22(12):1149–53. doi: 10.1016/j.cub.2012.04.040 PubMed DOI PMC
Zentall TR. Animals represent the past and the future. Evolutionary Psychology. 2013. Jul 1;11(3):573–90. PubMed
Rugg MD, Fletcher PC, Frith CD, Frackowiak RSJ, Dolan RJ. Brain regions supporting intentional and incidental memory: a PET study. Neuroreport. 1997. Mar 24;8(5):1283–7. doi: 10.1097/00001756-199703240-00045 PubMed DOI
Trivedi MA, Murphy CM, Goetz C, Shah RC, Gabrieli JDE, Whitfield-Gabrieli S, et al.. fMRI activation changes during successful episodic memory encoding and recognition in amnestic mild cognitive impairment relative to cognitively healthy older adults. Dement Geriatr Cogn Disord. 2008;26(2):123–37. doi: 10.1159/000148190 PubMed DOI PMC
Wang WC, Giovanello KS. The role of medial temporal lobe regions in incidental and intentional retrieval of item and relational information in aging. Hippocampus. 2016. Jun;26(6):693–9. doi: 10.1002/hipo.22578 PubMed DOI PMC
Kuhnert MT, Bialonski S, Noennig N, Mai H, Hinrichs H, Helmstaedter C, et al.. Incidental and intentional learning of verbal episodic material differentially modifies functional brain networks. PLoS One. 2013. Nov 18;8(11):e80273. doi: 10.1371/journal.pone.0080273 PubMed DOI PMC
Lee JQ, Zelinski EL, McDonald RJ, Sutherland RJ. Heterarchic reinstatement of long-term memory: A concept on hippocampal amnesia in rodent memory research. Vol. 71, Neuroscience and Biobehavioral Reviews. Elsevier Ltd; 2016. p. 154–66. doi: 10.1016/j.neubiorev.2016.08.034 PubMed DOI
Kitamura T, Macdonald CJ, Tonegawa S. Entorhinal-hippocampal neuronal circuits bridge temporally discontiguous events. Learning and Memory [Internet]. 2015;22(9):438–43. Available from: http://www.learnmem.org/cgi/doi/10.1101/lm.038687. PubMed DOI PMC
Ahmed MS, Priestley JB, Castro A, Stefanini F, Solis Canales AS, Balough EM, et al.. Hippocampal Network Reorganization Underlies the Formation of a Temporal Association Memory. Neuron. 2020. Jul 22;107(2):283–291.e6. doi: 10.1016/j.neuron.2020.04.013 PubMed DOI PMC
Eichenbaum H. On the Integration of Space, Time, and Memory. Vol. 95, Neuron. Cell Press; 2017. p. 1007–18. doi: 10.1016/j.neuron.2017.06.036 PubMed DOI PMC
Keller FS. Light-aversion in the white rat. Psychol Rec. 1941. May 25;4(17):235–50.
Fanselow MS. Neural organization of the defensive behavior system responsible for fear. Psychon Bull Rev. 1994. Dec;1(4):429–38. doi: 10.3758/BF03210947 PubMed DOI
Wendt J, Löw A, Weymar M, Lotze M, Hamm AO. Active avoidance and attentive freezing in the face of approaching threat. Neuroimage. 2017. Sep;158:196–204. doi: 10.1016/j.neuroimage.2017.06.054 PubMed DOI
Borbély AA, Neuhaus HU. Daily pattern of sleep, motor activity and feeding in the rat: Effects of regular and gradually extended photoperiods. J Comp Physiol. 1978;124(1):1–14.
Barker DJ, Sanabria F, Lasswell A, Thrailkill EA, Pawlak AP, Killeen PR. Brief light as a practical aversive stimulus for the albino rat. Behavioural Brain Research. 2010. Dec 25;214(2):402–8. doi: 10.1016/j.bbr.2010.06.020 PubMed DOI PMC
Wickham H. ggplot2: Elegant graphics for data analysis. Springer-Verlag; New York; 2016.
Venables WN, Ripley BD. Modern Applied Statistics with S. Fourth edition. New York: Springer; 2002.
LeDoux JE, Moscarello J, Sears R, Campese V. The birth, death and resurrection of avoidance: A reconceptualization of a troubled paradigm. Vol. 22, Molecular Psychiatry. Nature Publishing Group; 2017. p. 24–36. doi: 10.1038/mp.2016.166 PubMed DOI PMC
Krypotos AM, Effting M, Kindt M, Beckers T. Avoidance learning: A review of theoretical models and recent developments. Vol. 9, Frontiers in Behavioral Neuroscience. Frontiers Research Foundation; 2015. doi: 10.3389/fnbeh.2015.00189 PubMed DOI PMC
Diehl MM, Bravo-Rivera C, Quirk GJ. The study of active avoidance: A platform for discussion. Vol. 107, Neuroscience and Biobehavioral Reviews. Elsevier Ltd; 2019. p. 229–37. PubMed PMC
Kavaliers M, Choleris E. Antipredator responses and defensive behavior: ecological and ethological approaches for the neurosciences. Neurosci Biobehav Rev [Internet]. 2001;25(7–8):577–86. Available from: www.elsevier.com/locate/neubiorev. doi: 10.1016/s0149-7634(01)00042-2 PubMed DOI
Eichenbaum H, Fortin NJ, Ergorul C, Wright SP, Agster KL. Episodic recollection in animals: “If it walks like a duck and quacks like a duck….” Learn Motiv. 2005. May;36(2):190–207.
Bermudez-Rattoni F, Forthman DL, Sanchez MA, Perez JL, Garcia J. Odor and Taste Aversions Conditioned in Anesthetized Rats. Behavioral Neuroscience. 1988. Oct;102(5):726–32. doi: 10.1037//0735-7044.102.5.726 PubMed DOI
Lin JY, Arthurs J, Reilly S. Conditioned taste aversions: From poisons to pain to drugs of abuse. Psychon Bull Rev. 2017. Apr 1;24(2):335–51. doi: 10.3758/s13423-016-1092-8 PubMed DOI PMC
Dere E, Huston JP, de Souza Silva MA. Integrated memory for objects, places, and temporal order: Evidence for episodic-like memory in mice. Neurobiol Learn Mem. 2005. Nov;84(3):214–21. doi: 10.1016/j.nlm.2005.07.002 PubMed DOI
Kart-Teke E, de Souza Silva MA, Huston JP, Dere E. Wistar rats show episodic-like memory for unique experiences. Neurobiol Learn Mem. 2006. Mar;85(2):173–82. doi: 10.1016/j.nlm.2005.10.002 PubMed DOI
Eacott MJ, Norman G. Integrated Memory for Object, Place, and Context in Rats: A Possible Model of Episodic-Like Memory? Journal of Neuroscience. 2004. Feb 25;24(8):1948–53. doi: 10.1523/JNEUROSCI.2975-03.2004 PubMed DOI PMC
Cohen SJ, Stackman RW. Assessing rodent hippocampal involvement in the novel object recognition task. A review. Behavioural Brain Research. 2015. May 5;285:105–17. PubMed PMC
McEchron MD, Cheng AY, Gilmartin MR. Trace fear conditioning is reduced in the aging rat. Neurobiol Learn Mem. 2004. Sep;82(2):71–6. doi: 10.1016/j.nlm.2004.06.002 PubMed DOI
Sharma V, Cohen N, Sood R, Ounallah-Saad H, Gal Ben-Ari S, Rosenblum K. Trace fear conditioning: procedure for assessing complex hippocampal function in mice. Bio Protoc. 2018. Aug 20;8(16):e2475. doi: 10.21769/BioProtoc.2475 PubMed DOI PMC
Blanchard DC, Griebel G, Pobbe R, Blanchard RJ. Risk assessment as an evolved threat detection and analysis process. Neurosci Biobehav Rev. 2011. Mar;35(4):991–8. doi: 10.1016/j.neubiorev.2010.10.016 PubMed DOI
Cain CK, Kline NS. Avoidance problems reconsidered. Vol. 26, Current Opinion in Behavioral Sciences. Elsevier Ltd; 2019. p. 9–17. PubMed PMC
Sato N. Episodic-like memory of rats as retrospective retrieval of incidentally encoded locations and involvement of the retrosplenial cortex. Sci Rep. 2021. Dec 26;11(1):2217. doi: 10.1038/s41598-021-81943-9 PubMed DOI PMC
Kim K, Vöröslakos M, Seymour JP, Wise KD, Buzsáki G, Yoon E. Artifact-free and high-temporal-resolution in vivo opto-electrophysiology with microLED optoelectrodes. Nat Commun. 2020. Dec 28;11(1):2063. doi: 10.1038/s41467-020-15769-w PubMed DOI PMC
Scott BB, Thiberge SY, Guo C, Tervo DGR, Brody CD, Karpova AY, et al.. Imaging cortical dynamics in GCaMP transgenic rats with a head-mounted widefield macroscope. Neuron. 2018. Dec;100(5):1045–1058.e5. doi: 10.1016/j.neuron.2018.09.050 PubMed DOI PMC
Morris RG. Episodic–like memory in animals: psychological criteria, neural mechanisms and the value of episodic–like tasks to investigate animal models of neurodegenerative disease. Philos Trans R Soc Lond B Biol Sci. 2001. Sep 29;356(1413):1453–65. doi: 10.1098/rstb.2001.0945 PubMed DOI PMC
Binder S, Dere E, Zlomuzica A. A critical appraisal of the what-where-when episodic-like memory test in rodents: Achievements, caveats and future directions. Prog Neurobiol. 2015. Jul;130:71–85. doi: 10.1016/j.pneurobio.2015.04.002 PubMed DOI
Clayton NS, Bussey TJ, Dickinson A. Can animals recall the past and plan for the future? Nat Rev Neurosci. 2003. Aug;4(8):685–91. doi: 10.1038/nrn1180 PubMed DOI
Clayton NS, Bussey TJ, Emery NJ, Dickinson A. Prometheus to Proust: the case for behavioural criteria for ‘mental time travel.’ Trends Cogn Sci. 2003. Oct;7(10):436–7. PubMed
Chiou SC. Attention modulates incidental memory encoding of human movements. Cogn Process. 2022. May 1;23(2):155–68. doi: 10.1007/s10339-022-01078-1 PubMed DOI PMC
Kontaxopoulou D, Beratis IN, Fragkiadaki S, Pavlou D, Yannis G, Economou A, et al.. Incidental and Intentional Memory: Their Relation with Attention and Executive Functions. Archives of Clinical Neuropsychology. 2017. Aug 1;32(5):519–32. doi: 10.1093/arclin/acx027 PubMed DOI
Naveh-Benjamin M, Shing YL, Kilb A, Werkle-Bergner M, Lindenberger U, Li SC. Adult age differences in memory for name-face associations: The effects of intentional and incidental learning. Memory. 2009;17(2):220–32. doi: 10.1080/09658210802222183 PubMed DOI