-
Je něco špatně v tomto záznamu ?
Protein nanocoatings on synthetic polymeric nanofibrous membranes designed as carriers for skin cells
M. Bacakova, J. Pajorova, D. Stranska, D. Hadraba, F. Lopot, T. Riedel, E. Brynda, M. Zaloudkova, L. Bacakova,
Jazyk angličtina Země Nový Zéland
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 2006
Free Medical Journals
od 2006
PubMed Central
od 2006
Europe PubMed Central
od 2006
ProQuest Central
od 2012-01-01
Open Access Digital Library
od 2006-01-01
Open Access Digital Library
od 2009-01-01
Taylor & Francis Open Access
od 2006-09-01
Medline Complete (EBSCOhost)
od 2012-01-01
Health & Medicine (ProQuest)
od 2012-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2006
PubMed
28223803
DOI
10.2147/ijn.s121299
Knihovny.cz E-zdroje
- MeSH
- buněčná adheze MeSH
- extracelulární matrix metabolismus MeSH
- fibrin metabolismus MeSH
- fibroblasty cytologie metabolismus MeSH
- fibronektiny metabolismus MeSH
- keratinocyty cytologie metabolismus MeSH
- kolagen metabolismus MeSH
- kultivované buňky MeSH
- lidé MeSH
- nanovlákna chemie MeSH
- pevnost v tahu MeSH
- polymery chemie MeSH
- proliferace buněk MeSH
- tkáňové inženýrství MeSH
- tkáňové podpůrné struktury chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Protein-coated resorbable synthetic polymeric nanofibrous membranes are promising for the fabrication of advanced skin substitutes. We fabricated electrospun polylactic acid and poly(lactide-co-glycolic acid) nanofibrous membranes and coated them with fibrin or collagen I. Fibronectin was attached to a fibrin or collagen nanocoating, in order further to enhance the cell adhesion and spreading. Fibrin regularly formed a coating around individual nanofibers in the membranes, and also formed a thin noncontinuous nanofibrous mesh on top of the membranes. Collagen also coated most of the fibers of the membrane and randomly created a soft gel on the membrane surface. Fibronectin predominantly adsorbed onto a thin fibrin mesh or a collagen gel, and formed a thin nanofibrous structure. Fibrin nanocoating greatly improved the attachment, spreading, and proliferation of human dermal fibroblasts, whereas collagen nanocoating had a positive influence on the behavior of human HaCaT keratinocytes. In addition, fibrin stimulated the fibroblasts to synthesize fibronectin and to deposit it as an extracellular matrix. Fibrin coating also showed a tendency to improve the ultimate tensile strength of the nanofibrous membranes. Fibronectin attached to fibrin or to a collagen coating further enhanced the adhesion, spreading, and proliferation of both cell types.
2nd Faculty of Medicine Charles University Prague
Department of Anatomy and Biomechanics Faculty of Physical Education and Sport Charles University
Department of Biomaterials and Tissue Engineering Institute of Physiology Czech Academy of Sciences
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc17023274
- 003
- CZ-PrNML
- 005
- 20170831120528.0
- 007
- ta
- 008
- 170720s2017 nz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.2147/IJN.S121299 $2 doi
- 035 __
- $a (PubMed)28223803
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a nz
- 100 1_
- $a Bacakova, Marketa $u Department of Biomaterials and Tissue Engineering, Institute of Physiology, Czech Academy of Sciences; Second Faculty of Medicine, Charles University, Prague.
- 245 10
- $a Protein nanocoatings on synthetic polymeric nanofibrous membranes designed as carriers for skin cells / $c M. Bacakova, J. Pajorova, D. Stranska, D. Hadraba, F. Lopot, T. Riedel, E. Brynda, M. Zaloudkova, L. Bacakova,
- 520 9_
- $a Protein-coated resorbable synthetic polymeric nanofibrous membranes are promising for the fabrication of advanced skin substitutes. We fabricated electrospun polylactic acid and poly(lactide-co-glycolic acid) nanofibrous membranes and coated them with fibrin or collagen I. Fibronectin was attached to a fibrin or collagen nanocoating, in order further to enhance the cell adhesion and spreading. Fibrin regularly formed a coating around individual nanofibers in the membranes, and also formed a thin noncontinuous nanofibrous mesh on top of the membranes. Collagen also coated most of the fibers of the membrane and randomly created a soft gel on the membrane surface. Fibronectin predominantly adsorbed onto a thin fibrin mesh or a collagen gel, and formed a thin nanofibrous structure. Fibrin nanocoating greatly improved the attachment, spreading, and proliferation of human dermal fibroblasts, whereas collagen nanocoating had a positive influence on the behavior of human HaCaT keratinocytes. In addition, fibrin stimulated the fibroblasts to synthesize fibronectin and to deposit it as an extracellular matrix. Fibrin coating also showed a tendency to improve the ultimate tensile strength of the nanofibrous membranes. Fibronectin attached to fibrin or to a collagen coating further enhanced the adhesion, spreading, and proliferation of both cell types.
- 650 _2
- $a buněčná adheze $7 D002448
- 650 _2
- $a proliferace buněk $7 D049109
- 650 _2
- $a kultivované buňky $7 D002478
- 650 _2
- $a kolagen $x metabolismus $7 D003094
- 650 _2
- $a extracelulární matrix $x metabolismus $7 D005109
- 650 _2
- $a fibrin $x metabolismus $7 D005337
- 650 _2
- $a fibroblasty $x cytologie $x metabolismus $7 D005347
- 650 _2
- $a fibronektiny $x metabolismus $7 D005353
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a keratinocyty $x cytologie $x metabolismus $7 D015603
- 650 _2
- $a nanovlákna $x chemie $7 D057139
- 650 _2
- $a polymery $x chemie $7 D011108
- 650 _2
- $a pevnost v tahu $7 D013718
- 650 _2
- $a tkáňové inženýrství $7 D023822
- 650 _2
- $a tkáňové podpůrné struktury $x chemie $7 D054457
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Pajorova, Julia $u Department of Biomaterials and Tissue Engineering, Institute of Physiology, Czech Academy of Sciences; Second Faculty of Medicine, Charles University, Prague.
- 700 1_
- $a Stranska, Denisa $u InStar Technologies, Liberec.
- 700 1_
- $a Hadraba, Daniel $u Department of Biomaterials and Tissue Engineering, Institute of Physiology, Czech Academy of Sciences; Department of Anatomy and Biomechanics, Faculty of Physical Education and Sport, Charles University.
- 700 1_
- $a Lopot, Frantisek $u Department of Anatomy and Biomechanics, Faculty of Physical Education and Sport, Charles University.
- 700 1_
- $a Riedel, Tomas $u Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry.
- 700 1_
- $a Brynda, Eduard $u Department of Chemistry and Physics of Surfaces and Biointerfaces, Institute of Macromolecular Chemistry.
- 700 1_
- $a Zaloudkova, Margit $u Department of Composites and Carbon Materials, Institute of Rock Structure and Mechanics, Czech Academy of Sciences, Prague, Czech Republic.
- 700 1_
- $a Bacakova, Lucie $u Department of Biomaterials and Tissue Engineering, Institute of Physiology, Czech Academy of Sciences.
- 773 0_
- $w MED00176143 $t International journal of nanomedicine $x 1178-2013 $g Roč. 12, č. - (2017), s. 1143-1160
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/28223803 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20170720 $b ABA008
- 991 __
- $a 20170831121118 $b ABA008
- 999 __
- $a ok $b bmc $g 1238955 $s 984187
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2017 $b 12 $c - $d 1143-1160 $e 20170209 $i 1178-2013 $m International journal of nanomedicine $n Int J Nanomedicine $x MED00176143
- LZP __
- $a Pubmed-20170720