Study of Chitosan-Stabilized Ti3C2Tx MXene for Ultrasensitive and Interference-Free Detection of Gaseous H2O2
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37350261
PubMed Central
PMC10326801
DOI
10.1021/acsami.3c05314
Knihovny.cz E-zdroje
- Klíčová slova
- Ti3C2Tx MXene, chitosan, cyclic voltammetry, gas sensor, hydrogen peroxide,
- Publikační typ
- časopisecké články MeSH
The development of sensitive, selective, and reliable gaseous hydrogen peroxide (H2O2) sensors operating at room temperature still represents a remaining challenge. In this work, we have investigated and combined the advantageous properties of a two-dimensional Ti3C2Tx MXene material that exhibits a large specific surface area and high surface activity, with favorable conducting and stabilizing properties of chitosan. The MXene-chitosan membrane was deposited on the ferrocyanide-modified screen-printed working carbon electrode, followed by applying poly(acrylic acid) as an electrolyte and accumulation medium for gaseous H2O2. The sensor showed highly sensitive and selective electroanalytical performance for detecting trace concentrations of gaseous H2O2 with a very low detection limit of 4 μg m-3 (4 ppbv), linear response in the studied concentration range of 0.5-30.0 mg m-3, and good reproducibility with an RSD of 1.3%. The applicability of the sensor was demonstrated by point-of-interest detection of gaseous H2O2 during the real hair bleaching process with a 9 and 12% H2O2 solution.
Zobrazit více v PubMed
Ho D. H.; Choi Y. Y.; Jo S. B.; Myoung J.-M.; Cho J. H. Sensing with MXenes: Progress and Prospects. Adv. Mater. 2021, 33, 200584610.1002/adma.202005846. PubMed DOI
Sinha A.; Dhanjai; Zhao H.; Huang Y.; Lu X.; Chen J.; Jain R. MXene: An Emerging Material for Sensing and Biosensing. TrAC, Trends Anal. Chem. 2018, 105, 424–435. 10.1016/j.trac.2018.05.021. DOI
Verger L.; Natu V.; Carey M.; Barsoum M. W. MXenes: An Introduction of Their Synthesis, Select Properties, and Applications. Trends Chem. 2019, 1, 656–669. 10.1016/j.trechm.2019.04.006. DOI
Oliveira F. M.; Gusmão R. Recent Advances in the Electromagnetic Interference Shielding of 2D Materials Beyond Graphene. ACS Appl. Electron. Mater. 2020, 2, 3048–3071. 10.1021/acsaelm.0c00545. DOI
Naguib M.; Kurtoglu M.; Presser V.; Lu J.; Niu J.; Heon M.; Hultman L.; Gogotsi Y.; Barsoum M. W. Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253. 10.1002/adma.201102306. PubMed DOI
Gogotsi Y.; Anasori B. The Rise of MXenes. ACS Nano 2019, 13, 8491–8494. 10.1021/acsnano.9b06394. PubMed DOI
Haemers J.; Gusmão R.; Sofer Z. Synthesis Protocols of the Most Common Layered Carbide and Nitride MAX Phases. Small Methods 2020, 4, 190078010.1002/smtd.201900780. DOI
Ding L.; Wei Y.; Li L.; Zhang T.; Wang H.; Xue J.; Ding L.-X.; Wang S.; Caro J.; Gogotsi Y. MXene Molecular Sieving Membranes for Highly Efficient Gas Separation. Nat. Commun. 2018, 9, 200210.1038/s41467-017-02529-6. PubMed DOI PMC
Lee E.; Kim D.-J. Review—Recent Exploration of Two-Dimensional MXenes for Gas Sensing: From a Theoretical to an Experimental View. J. Electrochem. Soc. 2020, 167, 03751510.1149/2.0152003JES. DOI
Dixit F.; Zimmermann K.; Alamoudi M.; Abkar L.; Barbeau B.; Mohseni M.; Kandasubramanian B.; Smith K. Application of MXenes for Air Purification, Gas Separation and Storage: A review. Renewable Sustainable Energy Rev. 2022, 164, 11252710.1016/j.rser.2022.112527. DOI
Iqbal A.; Hong J.; Ko T. Y.; Koo C. M. Improving Oxidation Stability of 2D MXenes: Synthesis, Storage Media, and Conditions. Nano Convergence 2021, 8, 9.10.1186/s40580-021-00259-6. PubMed DOI PMC
Habib T.; Zhao X.; Shah S. A.; Chen Y.; Sun W.; An H.; Lutkenhaus J. L.; Radovic M.; Green M. J. Oxidation Stability of Ti3C2Tx MXene Nanosheets in Solvents and Composite Films. npj 2D Mater. Appl. 2019, 3, 8.10.1038/s41699-019-0089-3. DOI
Nayak P.; Yang M.; Wang Z.; Li X.; Miao R.; Compton R. G. Single-Entity Ti3C2Tx MXene Electro-Oxidation. Appl. Mater. Today 2022, 26, 10133510.1016/j.apmt.2021.101335. DOI
Eul W.; Moeller A.; Steiner N.. Hydrogen Peroxide Wiley, Kirk-Othmer Encyclopedia of Chemical Technology 2000; Vol. 13, p 1.
Chen W.; Fan H.; Balakrishnan K.; Wang Y.; Sun H.; Fan Y.; Gandhi V.; Arnold L. A.; Peng X. Discovery and Optimization of Novel Hydrogen Peroxide Activated Aromatic Nitrogen Mustard Derivatives as Highly Potent Anticancer Agents. J. Med. Chem. 2018, 61, 9132–9145. 10.1021/acs.jmedchem.8b00559. PubMed DOI
Müller G.; Chylenski P.; Bissaro B.; Eijsink V.G.-H.; Horn S. J. The Impact of Hydrogen Peroxide Supply on LPMO Activity and Overall Saccharification Efficiency of a Commercial Cellulase Cocktail. Biotechnol. Biofuels 2018, 11, 209.10.1186/s13068-018-1199-4. PubMed DOI PMC
Holkar C. R.; Jadhav A. J.; Pinjari D. V.; Mahamuni N. M.; Pandit A. B. A Critical Review on Textile Wastewater Treatments: Possible Approaches. J. Environ. Manage. 2016, 182, 351–366. 10.1016/j.jenvman.2016.07.090. PubMed DOI
Giorgio M.; Trinei M.; Migliaccio E.; Pelicci P. G. Hydrogen Peroxide: A Metabolic By-Product or a Common Mediator of Ageing Signals?. Nat. Rev. Mol. Cell Bio. 2007, 8, 722–728. 10.1038/nrm2240. PubMed DOI
Wu J.; Shu S.; Li C.; Sun J.; Guo S. Spermidine-Mediated Hydrogen Peroxide Signaling Enhances the Antioxidant Capacity of Salt-Stressed Cucumber Roots. Plant Physiol. Biochem. 2018, 128, 152–162. 10.1016/j.plaphy.2018.05.002. PubMed DOI
Whittemore E. R.; Loo D. T.; Cotman C. W. Exposure to Hydrogen Peroxide Induces Cell Death via Apoptosis in Cultured Rat Cortical Neurons. Neuroreport 1994, 5, 1485–1488. 10.1097/00001756-199407000-00019. PubMed DOI
Veal E. A.; Day A. M.; Morgan B. A. Hydrogen Peroxide Sensing and Signaling. Mol. Cell 2007, 26, 1–14. 10.1016/j.molcel.2007.03.016. PubMed DOI
Sies H. Hydrogen Peroxide as a Central Redox Signaling Molecule in Physiological Oxidative Stress: Oxidative Eustress. Redox Biol. 2017, 11, 613–619. 10.1016/j.redox.2016.12.035. PubMed DOI PMC
Zhou M.; Liu Y.; Duan Y. Breath Biomarkers in Diagnosis of Pulmonary Diseases. Clin. Chim. Acta 2012, 413, 1770–1780. 10.1016/j.cca.2012.07.006. PubMed DOI
Zappacosta B.; Persichilli S.; Mormile F.; Minucci A.; Russo A.; Giardina B.; Sole P. D. A Fast Chemiluminescent Method for H2O2 Measurement in Exhaled Breath Condensate. Clin. Chim. Acta 2001, 310, 187–191. 10.1016/S0009-8981(01)00571-X. PubMed DOI
Stolarek R.; Bialasiewicz P.; Krol M.; Nowak D. Breath Analysis of Hydrogen Peroxide as a Diagnostic Tool. Clin. Chim. Acta 2010, 411, 1849–1861. 10.1016/j.cca.2010.08.031. PubMed DOI
Svensson S.; Olin A. C.; Lärstad M.; Ljungkvist G.; Torén K. Determination of Hydrogen Peroxide in Exhaled Breath Condensate by Flow Injection Analysis with Fluorescence Detection. J. Chromatogr. B 2004, 809, 199–203. 10.1016/S1570-0232(04)00513-6. PubMed DOI
Chan H. P.; Lewis C.; Thomas P. S. Exhaled Breath Analysis: Novel Approach for Early Detection of Lung Cancer. Lung Cancer 2009, 63, 164–168. 10.1016/j.lungcan.2008.05.020. PubMed DOI
Klapötke T. M.; Wloka T. Peroxide Explosives. PATAI’s Chem. Funct. Groups 2009, 1–28. 10.1002/9780470682531.pat0879. DOI
Meyer J.; Karst U. Workplace Monitoring of Gas Phase Hydrogen Peroxide by Means of Fluorescence Spectroscopy. Anal. Chim. Acta 1999, 401, 191–196. 10.1016/S0003-2670(99)00488-2. DOI
Voraberger H.; Ribitsch V.; Janotta M.; Mizaikoff B. Application of Mid-Infrared Spectroscopy: Measuring Hydrogen Peroxide Concentrations in Bleaching Baths. Appl. Spectrosc. 2003, 57, 574–579. 10.1366/000370203321666623. PubMed DOI
Stewart S. P.; Bell S.E.J.; McAuley D.; Baird I.; Speers S. J.; Kee G. Determination of Hydrogen Peroxide Concentration Using a Handheld Raman spectrometer: Detection of an Axplosives Precursor. Forensic Sci. Int. 2012, 216, e5–e8. 10.1016/j.forsciint.2011.08.002. PubMed DOI
Navas M. J.; Jiménez A. M.; Galán G. Air Analysis: Determination of Hydrogen Peroxide by Chemiluminescence. Atmos. Environ. 1999, 33, 2279–2283. 10.1016/S1352-2310(98)00117-4. DOI
Li J.; Dasgupta P. K. Measurement of Gaseous Hydrogen Peroxide with a Liquid Core Waveguide Chemiluminescence Detector. Anal. Chim. Acta 2001, 442, 63–70. 10.1016/S0003-2670(01)01102-3. DOI
Tahirović A.; Čopra A.; Omanović-Mikličanin E.; Kalcher K. A Chemiluminescence Sensor for the Determination of Hydrogen Peroxide. Talanta 2007, 72, 1378–1385. 10.1016/j.talanta.2007.01.072. PubMed DOI
Xu M.; Bunes B. R.; Zang L. Paper-Based Vapor Detection of Hydrogen Peroxide: Colorimetric Sensing with Tunable Interface. ACS Appl. Mater. Interfaces 2011, 3, 642–647. 10.1021/am1012535. PubMed DOI
Sanchez J. C.; Trogler W. C. Polymerization of a Boronate-Functionalized Fluorophore by Double Transesterification: Applications to Fluorescence Detection of Hydrogen Peroxide Vapor. J. Mater. Chem. 2008, 18, 5134–5141. 10.1039/b809674k. DOI
Chen L. C.; Hiroaki S.; Kunihiko M.; Osamu A.; Kenzo H. Mass Spectrometric Detection of Gaseous Hydrogen Peroxide in Ambient Air Using Dielectric Barrier Discharge as an Excitation Source. Chem. Lett. 2009, 38, 520–521. 10.1246/cl.2009.520. DOI
Kirchner P.; Oberländer J.; Suso H-P.; Rysstad G.; Keusgen M.; Schöning M. J. Monitoring the Microbicidal Effectiveness of Gaseous Hydrogen Peroxide in Sterilisation Processes by Means of a Calorimetric Gas Sensor. Food Control 2013, 31, 530–538. 10.1016/j.foodcont.2012.11.048. DOI
Steinberg S. M. High-Performance Liquid Chromatography Method for Determination of Hydrogen Peroxide in Aqueous Solution and Application to Simulated Martian Soil and Related Materials. Environ. Monit. Assess. 2013, 185, 3749–3757. 10.1007/s10661-012-2825-4. PubMed DOI
Kimmel D. W.; LeBlanc G.; Meschievitz M. E.; Cliffel D. E. Electrochemical Sensors and Biosensors. Anal. Chem. 2012, 84, 685–707. 10.1021/ac202878q. PubMed DOI PMC
Gulaboski R.; Mirčeski V.; Kappl R.; Hoth M.; Bozem M. Review—Quantification of Hydrogen Peroxide by Electrochemical Methods and Electron Spin Resonance Spectroscopy. J. Electrochem. Soc. 2019, 166, G82.10.1149/2.1061908jes. DOI
Yu Y.; Pan M.; Peng J.; Hu D.; Hao Y.; Qian Z. A Review on Recent Advances in Hydrogen Peroxide Electrochemical Sensors for Applications in Cell Detection. Chin. Chem. Lett. 2022, 33, 4133–4145. 10.1016/j.cclet.2022.02.045. DOI
Kuwata S.; Yoshihiko S. Detection of Gaseous Hydrogen Peroxide Using Planar-Type Amperometric Cell at Room Temperature. Sens. Actuators, B 2000, 65, 325–326. 10.1016/S0925-4005(99)00464-5. DOI
Toniolo R.; Geatti P.; Bontempelli G.; Schiavon G. Amperometric Monitoring of Hydrogen Peroxide in Workplace Atmospheres by Electrodes Supported on Ion-Exchange Membranes. J. Electroanal. Chem. 2001, 514, 123–128. 10.1016/S0022-0728(01)00612-X. DOI
Aroutiounian V.; Arakelyan V.; Aleksanyan M.; Sayunts A.; Shahnazaryan G.; Kacer P.; Picha P.; Kovarik J.; Pekarek J.; Joost B. Nanostructured Sensors for Detection of Hydrogen Peroxide Vapours. Sens. Transducers 2017, 213, 46.
Isailović J.; Vidović K.; Hočevar S. B. Simple Electrochemical Sensors for Highly Sensitive Detection of Gaseous Hydrogen Peroxide Using Polyacrylic-Acid-Based Sensing Membrane. Sens. Actuators, B 2022, 352, 13105310.1016/j.snb.2021.131053. DOI
Maier D.; Laubender E.; Basavanna A.; Schumann S.; Güder F.; Urban G. A.; Dincer C. Toward Continuous Monitoring of Breath Biochemistry: A Paper-Based Wearable Sensor for Real-Time Hydrogen Peroxide Measurement in Simulated Breath. ACS Sens. 2019, 4, 2945–2951. 10.1021/acssensors.9b01403. PubMed DOI PMC
Giaretta J. E.; Oveissi F.; Dehghani F.; Naficy S. Paper-Based, Chemiresistive Sensor for Hydrogen Peroxide Detection. Adv. Mater. Technol. 2021, 6, 200114810.1002/admt.202001148. DOI
Bajić M.; Ročnik T.; Oberlintner A.; Scognamiglio F.; Novak U.; Likozar B. Natural Plant Extracts as Active Components in Chitosan-Based Films: A Comparative Study. Food Packag. Shelf Life 2019, 21, 10036510.1016/j.fpsl.2019.100365. DOI
Sander R. Compilation of Henry’s Law Constants (Version 4.0) for Water as Solvent. Atmos. Chem. Phys. 2015, 15, 4399–4981. 10.5194/acp-15-4399-2015. DOI
Alhabeb M.; Maleski K.; Anasori B.; Lelyukh P.; Clark L.; Sin S.; Gogotsi Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. 10.1021/acs.chemmater.7b02847. DOI
Hu T.; Wang J.; Zhang H.; Li Z.; Hu M.; Wang X. Vibrational Properties of Ti3C2 and Ti3C2T2 (T = O, F, OH) Monosheets by First-Principles Calculations: A Comparative Study. Phys. Chem. Chem. Phys. 2015, 17, 9997–10003. 10.1039/C4CP05666C. PubMed DOI
Sarycheva A.; Gogotsi Y. Raman Spectroscopy Analysis of the Structure and Surface Chemistry of Ti3C2Tx MXene. Chem. Mater. 2020, 32, 3480–3488. 10.1021/acs.chemmater.0c00359. DOI
Hashmi A.; Sodhi R. N. S.; Kishen A. Interfacial Characterization of Dentin Conditioned with Chitosan Hydroxyapatite Precursor Nanocomplexes Using Time-of-flight Secondary Ion Mass Spectrometry. J. Endod. 2019, 45, 1513–1521. 10.1016/j.joen.2019.08.011. PubMed DOI
D’Almeida M.; Attik N.; Amalric J.; Brunon C.; Renaud F.; Abouelleil H.; Toury B.; Grosgogeat B. Chitosan Coating as an Antibacterial Surface for Biomedical Applications. PLoS One 2017, 12, e018953710.1371/journal.pone.0189537. PubMed DOI PMC
Wu T.; Du Y.; Yan N.; Farnood R. Cellulose Fiber Networks Reinforced with Glutaraldehyde–Chitosan Complexes. J. Appl. Polym. Sci. 2015, 132, 42375.10.1002/app.42375. DOI
Finšgar M.; Ristić T.; Fardim P.; Zemljič L. F. Time-of-Flight Secondary Ion Mass Spectrometry Analysis of Chitosan-Treated Viscose Fibres. Anal. Biochem. 2018, 557, 131–141. 10.1016/j.ab.2018.07.021. PubMed DOI
Qin C. Q.; Du Y. M.; Xiao L. Effect of Hydrogen Peroxide Treatment on the Molecular Weight and Structure of Chitosan. Polym. Degrad. Stab. 2002, 76, 211–218. 10.1016/S0141-3910(02)00016-2. DOI
Szymańska E.; Winnicka K. Stability of Chitosan—A Challenge for Pharmaceutical and Biomedical Applications. Mar. Drugs 2015, 13, 1819–1846. 10.3390/md13041819. PubMed DOI PMC