Direct 16S/18S rRNA Gene PCR Followed by Sanger Sequencing as a Clinical Diagnostic Tool for Detection of Bacterial and Fungal Infections: a Systematic Review and Meta-Analysis

. 2023 Sep 21 ; 61 (9) : e0033823. [epub] 20230627

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, metaanalýza, práce podpořená grantem, systematický přehled

Perzistentní odkaz   https://www.medvik.cz/link/pmid37367430

rRNA gene Sanger sequencing is being used for the identification of cultured pathogens. A new diagnostic approach is sequencing of uncultured samples by using the commercial DNA extraction and sequencing platform SepsiTest (ST). The goal was to analyze the clinical performance of ST with a focus on nongrowing pathogens and the impact on antibiotic therapy. A literature search used PubMed/Medline, Cochrane, Science Direct, and Google Scholar. Eligibility followed PRISMA-P criteria. Quality and risk of bias were assessed drawing on QUADAS-2 (quality assessment of diagnostic accuracy studies, revised) criteria. Meta-analyses were performed regarding accuracy metrics compared to standard references and the added value of ST in terms of extra found pathogens. We identified 25 studies on sepsis, infectious endocarditis, bacterial meningitis, joint infections, pyomyositis, and various diseases from routine diagnosis. Patients with suspected infections of purportedly sterile body sites originated from various hospital wards. The overall sensitivity (79%; 95% confidence interval [CI], 73 to 84%) and specificity (83%; 95% CI, 72 to 90%) were accompanied by large effect sizes. ST-related positivity was 32% (95% CI, 30 to 34%), which was significantly higher than the culture positivity (20%; 95% CI, 18 to 22%). The overall added value of ST was 14% (95% CI, 10 to 20%) for all samples. With 130 relevant taxa, ST uncovered high microbial richness. Four studies demonstrated changes of antibiotic treatment at 12% (95% CI, 9 to 15%) of all patients upon availability of ST results. ST appears to be an approach for the diagnosis of nongrowing pathogens. The potential clinical role of this agnostic molecular diagnostic tool is discussed regarding changes of antibiotic treatment in cases where culture stays negative.

Zobrazit více v PubMed

Fairfax MR, Bluth MH, Salimnia H. 2018. Diagnostic molecular microbiology: a 2018 snapshot. Clin Lab Med 38:253–276. doi:10.1016/j.cll.2018.02.004. PubMed DOI PMC

Lam SW, Bass SN. 2019. Advancing infectious diseases diagnostic testing and applications to antimicrobial therapy in the ICU. J Pharm Pract 32:327–338. doi:10.1177/0897190019831162. PubMed DOI

Rentschler S, Kaiser L, Deigner H-P. 2021. Emerging options for the diagnosis of bacterial infections and the characterization of antimicrobial resistance. Int J Mol Sci 22:456. doi:10.3390/ijms22010456. PubMed DOI PMC

Peri AM, Harris PN, Paterson DL. 2022. Culture-independent detection systems for bloodstream infection. Clin Microbiol Infect 28:195–201. doi:10.1016/j.cmi.2021.09.039. PubMed DOI

Vaca DJ, Dobler G, Fischer SF, Keller C, Konrad M, von Loewenich FD, Orenga S, Sapre SU, van Belkum A, Kempf VAJ. 2022. Contemporary diagnostics for medically relevant fastidious microorganisms belonging to the genera Anaplasma, Bartonella, Coxiella, Orientia, and Rickettsia. FEMS Microbiol Rev 46:fuac013. doi:10.1093/femsre/fuac013. PubMed DOI PMC

Hernandez DR, Wolk DM. 2018. Molecular strategies for the laboratory diagnosis of sepsis. Adv Tech Diagn Microbiol doi:10.1007/978-3-319-95111-9. DOI

Bard JD, McElvania E. 2020. Panels and syndromic testing in clinical microbiology. Clin Lab Med 40:393–420. doi:10.1016/j.cll.2020.08.001. PubMed DOI PMC

Besser J, Carleton HA, Gerner-Smidt P, Lindsey RL, Trees E. 2018. Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clin Microbiol Infect 24:335–341. doi:10.1016/j.cmi.2017.10.013. PubMed DOI PMC

Govender KN, Street TL, Sanderson ND, Eyre DW. 2020. Metagenomic sequencing as a clinical diagnostic tool for infectious diseases: a systematic review and meta-analysis. medRxiv. doi:10.1101/2020.03.30.20043901. PubMed DOI PMC

World Health Organization. 2019. Landscape of diagnostics against antibacterial resistance, gaps and priorities. World Health Organization, Geneva, Switzerland.

Pilecky M, Schildberger A, Orth-Höller D, Weber V. 2019. Pathogen enrichment from human whole blood for the diagnosis of bloodstream infection: prospects and limitations. Diagn Microbiol Infect Dis 94:7–14. doi:10.1016/j.diagmicrobio.2018.11.015. PubMed DOI

Schenz J, Weigand MA, Uhle F. 2019. Molecular and biomarker-based diagnostics in early sepsis: current challenges and future perspectives. Expert Rev Mol Diagn 19:1069–1078. doi:10.1080/14737159.2020.1680285. PubMed DOI

Handschur M, Karlic H, Hertel C, Pfeilstöcker M, Haslberger AG. 2009. Preanalytic removal of human DNA eliminates false signals in general 16S rRNA gene PCR monitoring of bacterial pathogens in blood. Comp Immunol Microbiol Infect Dis 32:207–219. doi:10.1016/j.cimid.2007.10.005. PubMed DOI

Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group . 2009. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Phys Therapy 89:873–880. doi:10.1093/ptj/89.9.873. PubMed DOI PMC

Tkadlec J, Peckova M, Sramkova L, Rohn V, Jahoda D, Raszka D, Berousek J, Mosna F, Vymazal T, Kvapil M, Drevinek P. 2019. The use of broad-range bacterial PCR in the diagnosis of infectious diseases: a prospective cohort study. Clin Microbiol Infect 25:747–752. doi:10.1016/j.cmi.2018.10.001. PubMed DOI

Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, Leeflang MMG, Sterne JAC, Bossuyt PMM, QUADAS-2 Group . 2011. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155:529–536. doi:10.7326/0003-4819-155-8-201110180-00009. PubMed DOI

Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. 2013. Meta-analysis of prevalence. J Epidemiol Community Health 67:974–978. doi:10.1136/jech-2013-203104. PubMed DOI

Clopper CJ, Pearson ES. 1934. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26:404–413. doi:10.1093/biomet/26.4.404. DOI

Lijmer JG, Bossuyt PM, Heisterkamp SH. 2002. Exploring sources of heterogeneity in systematic reviews of diagnostic tests. Stat Med 21:1525–1537. doi:10.1002/sim.1185. PubMed DOI

R Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/.

Wellinghausen N, Kochem A-J, Disqué C, Mühl H, Gebert S, Winter J, Matten J, Sakka SG. 2009. Diagnosis of bacteremia in whole-blood samples by use of a commercial universal 16S rRNA gene-based PCR and sequence analysis. J Clin Microbiol 47:2759–2765. doi:10.1128/JCM.00567-09. PubMed DOI PMC

Kuehn C, Orszag P, Burgwitz K, Marsch G, Stumpp N, Stiesch M, Haverich A. 2013. Microbial adhesion on membrane oxygenators in patients requiring extracorporeal life support detected by a universal rDNA PCR test. ASAIO J 59:368–373. doi:10.1097/MAT.0b013e318299fd07. PubMed DOI

Leitner E, Kessler HH, Spindelboeck W, Hoenigl M, Putz-Bankuti C, Stadlbauer-Köllner V, Krause R, Grisold AJ, Feierl G, Stauber RE. 2013. Comparison of two molecular assays with conventional blood culture for diagnosis of sepsis. J Microbiol Methods 92:253–255. doi:10.1016/j.mimet.2012.12.012. PubMed DOI

Schreiber J, Nierhaus A, Braune S, de Heer G, Kluge S. 2013. Comparison of three different commercial PCR assays for the detection of pathogens in critically ill sepsis patients. Med Klin Intensivmed Notfmed 108:311–318. doi:10.1007/s00063-013-0227-1. PubMed DOI

Orszag P, Disqué C, Keim S, Lorenz MG, Wiesner O, Hadem J, Stiesch M, Haverich A, Kühn C. 2014. Monitoring of patients supported by extracorporeal membrane oxygenation for systemic infections by broad-range rRNA gene PCR amplification and sequence analysis. J Clin Microbiol 52:307–311. doi:10.1128/JCM.02493-13. PubMed DOI PMC

Rogina P, Skvarc M, Stubljar D, Kofol R, Kaasch A. 2014. Diagnostic utility of broad range bacterial 16S rRNA gene PCR with degradation of human and free bacterial DNA in bloodstream infection is more sensitive than an in-house developed PCR without degradation of human and free bacterial DNA. Mediators Inflamm 2014:108592. doi:10.1155/2014/108592. PubMed DOI PMC

Nieman AE, Savelkoul PHM, Beishuizen A, Henrich B, Lamik B, MacKenzie CR, Kindgen-Milles D, Helmers A, Diaz C, Sakka SG, Schade RP. 2016. A prospective multicenter evaluation of direct molecular detection of blood stream infection from a clinical perspective. BMC Inf Dis 16:314. doi:10.1186/s12879-016-1646-4. PubMed DOI PMC

Singh SP. 2016. Nucleic acid-based methods for the early detection of sepsis in heart transplant recipients. J Pract Cardiovasc Sci 2:146–150. doi:10.4103/jpcs.jpcs_63_16. DOI

Tkadlec J, Bebrova E, Berousek J, Vymazal T, Adamkova J, Martinkova V, Moser C, Florea D, Drevinek P. 2020. Limited diagnostic possibilities for bloodstream infections with broad-range methods: a promising PCR/electrospray ionization-mass spectrometry platform is no longer available. Microbiologyopen 9:e1007. doi:10.1002/mbo3.1007. PubMed DOI PMC

Kühn C, Disqué C, Mühl H, Orszag P, Stiesch M, Haverich A. 2011. Evaluation of commercial universal rRNA gene PCR plus sequencing tests for identification of bacteria and fungi associated with infectious endocarditis. J Clin Microbiol 49:2919–2923. doi:10.1128/JCM.00830-11. PubMed DOI PMC

Marsch G, Orszag P, Mashaqi B, Kuehn C, Haverich A. 2015. Antibiotic therapy following polymerase chain reaction diagnosis of infective endocarditis: a single centre experience. Interact Cardiovasc Thorac Surg 20:589–593. doi:10.1093/icvts/ivv006. PubMed DOI

Peeters B, Herijgers P, Beuselinck K, Peetermans WE, Herregods M-C, Desmet S, Lagrou K. 2016. Comparison of PCR-electrospray ionization mass spectrometry with 16S rRNA PCR and amplicon sequencing for detection of bacteria in excised heart valves. J Clin Microbiol 54:2825–2831. doi:10.1128/JCM.01240-16. PubMed DOI PMC

Peeters B, Herijgers P, Beuselinck K, Verhaegen J, Peetermans WE, Herregods M-C, Desmet S, Lagrou K. 2017. Added diagnostic value and impact on antimicrobial therapy of 16S rRNA PCR and amplicon sequencing on resected heart valves in infective endocarditis: a prospective cohort study. Clin Microbiol Infect 23:888.e1–888.e5. doi:10.1016/j.cmi.2017.06.008. PubMed DOI

Ribeyrolles S, Ternacle J, San S, Lepeule R, Moussafeur A, Faivre L, Nahory L, Huguet R, Gallien S, Decousser J-W, Fihman V, Fiore A, Mongardon N, Lim P, Oliver L. 2019. Infective endocarditis without biological inflammatory syndrome: description of a particular entity. Arch Cardiovasc Dis 112:381–389. doi:10.1016/j.acvd.2019.02.005. PubMed DOI

Borde JP, Häcker GA, Guschl S, Serr A, Danner T, Hübner J, Burrack-Lange S, Lüdke G, Helwig P, Hauschild O, Kern WV. 2015. Diagnosis of prosthetic joint infections using UMD-universal kit and the automated multiplex-PCR Unyvero i60 ITI cartridge system: a pilot study. Infection 43:551–560. doi:10.1007/s15010-015-0796-4. PubMed DOI

Meyer T, Franke G, Polywka S, Lütgehetmann M, Gbadamosi J, Magnus T, Aepfelbacher M. 2014. Improved detection of bacterial central nervous system infections by use of a broad-range PCR assay. J Clin Microbiol 52:1751–1753. doi:10.1128/JCM.00469-14. PubMed DOI PMC

Stubljar D, Kopitar AN, Groselj-Grenc M, Suhadolc K, Fabjan T, Skvarc M. 2015. Diagnostic accuracy of presepsin (sCD14-ST) for prediction of bacterial infection in cerebrospinal fluid samples from children with suspected bacterial meningitis or ventriculitis. J Clin Microbiol 53:1239–1244. doi:10.1128/JCM.03052-14. PubMed DOI PMC

Gabas T, Podglajen I, Cheminet G, Gagnard J-C, Wyplosz B. 2019. Diagnostic accuracy of 16S rDNA PCR in bacterial pyomyositis: a prospective study. J Infect 79:462–470. doi:10.1016/j.jinf.2019.08.008. PubMed DOI

Grif K, Heller I, Prodinger W, Lechleitner K, Lass-Flörl C, Orth D. 2012. Improvement of detection of bacterial pathogens in normally sterile body sites with a focus on orthopedic samples by use of a commercial 16S rRNA broad-range PCR and sequence analysis. J Clin Microbiol 50:2250–2254. doi:10.1128/JCM.00362-12. PubMed DOI PMC

Haag H, Locher F, Nolte O. 2013. Molecular diagnosis of microbial aetiologies using SepsiTest™ in the daily routine of a diagnostic laboratory. Diagn Microbiol Infect Dis 76:413–418. doi:10.1016/j.diagmicrobio.2013.04.027. PubMed DOI

Stavnsbjerg C, Frimodt-Møller N, Moser C, Bjarnsholt T. 2017. Comparison of two commercial broad-range PCR and sequencing assays for identification of bacteria in culture-negative clinical samples. BMC Inf Dis 17:233. doi:10.1186/s12879-017-2333-9. PubMed DOI PMC

Marbjerg LH, Holzknecht BJ, Dargis R, Dessau RB, Nielsen XC, Christensen JJ. 2020. Commercial bacterial and fungal broad-range PCR (Micro-Dx™) used on culture-negative specimens from normally sterile sites: diagnostic value and implications for antimicrobial treatment. Diagn Microbiol Infect Dis 97:115028. doi:10.1016/j.diagmicrobio.2020.115028. PubMed DOI

Egli K, Risch M, Risch L, Bodmer T. 2022. Comparison of an automated DNA extraction and 16S rDNA real time PCR/sequencing diagnostic method using optimized reagents with culture during a 15-month study using specimens from sterile body sites. BMC Microbiol 22:119. doi:10.1186/s12866-022-02542-w. PubMed DOI PMC

Lamoureux C, Surgers L, Fihman V, Gricourt G, Demontant V, Trawinski E, N’Debi M, Gomart C, Royer G, Launay N, Le Glaunec J-M, Wemmert C, La Martire G, Rossi G, Lepeule R, Pawlotsky J-M, Rodriguez C, Woerther P-L. 2022. Prospective comparison between shotgun metagenomics and Sanger sequencing of the 16S rRNA gene for the etiological diagnosis of infections. Front Microbiol 13:761873. doi:10.3389/fmicb.2022.761873. PubMed DOI PMC

Huber S, Weinberger J, Pilecky M, Lorenz I, Schildberger A, Weber V, Fuchs S, Posch W, Knabl L, Würzner R, Posch AE, Orth-Höller D. 2021. A high leukocyte count and administration of hydrocortisone hamper PCR-based diagnostics for bloodstream infections. Eur J Clin Microbiol Infect Dis 40:1441–1449. doi:10.1007/s10096-020-04126-w. PubMed DOI

Schaub N, Boldanova T, Noveanu M, Arenja N, Hermann H, Twerenbold R, Frei R, Bingisser R, Trampuz A, Mueller C. 2014. Incremental value of multiplex real-time PCR for the early diagnosis of sepsis in the emergency department. Swiss Med Wkly 144:w13911. doi:10.4414/smw.2014.13911. PubMed DOI

Tafelski S, Nachtigall I, Adam T, Bereswill S, Faust J, Tamarkin A, Trefzer T, Deja M, Idelevich EA, Wernecke KD, Becker K, Spies C, Molecular diagnostics of sepsis study group . 2015. Randomized controlled clinical trial evaluating multiplex polymerase chain reaction for pathogen identification and therapy adaptation in critical care patients with pulmonary or abdominal sepsis. J Int Med Res 43:364–377. doi:10.1177/0300060514561135. PubMed DOI

Warhurst G, Maddi S, Dunn G, Ghrew M, Chadwick P, Alexander P, Bentley A, Moore J, Sharman M, Carlson GL, Young D, Dark P. 2015. Diagnostic accuracy of SeptiFast multi-pathogen real-time PCR in the setting of suspected healthcare-associated bloodstream infection. Intensive Care Med 41:86–93. doi:10.1007/s00134-014-3551-x. PubMed DOI

De Angelis G, Posteraro B, De Carolis E, Menchinelli G, Franceschi F, Tumbarello M, De Pascale G, Spanu T, Sanguinetti M. 2018. T2Bacteria magnetic resonance assay for the rapid detection of ESKAPEc pathogens directly in whole blood. J Antimicrob Chemother 73:iv20–iv26. doi:10.1093/jac/dky049. PubMed DOI

Makristathis A, Harrison N, Ratzinger F, Kussmann M, Selitsch B, Forstner C, Hirschl AM, Burgmann H. 2018. Substantial diagnostic impact of blood culture independent molecular methods in bloodstream infections: superior performance of PCR/ESI-MS. Sci Rep 8:16024. doi:10.1038/s41598-018-34298-7. PubMed DOI PMC

Kellogg JA, Manzella JP, Bankert DA. 2000. Frequency of low-level bacteremia in children from birth to fifteen years of age. J Clin Microbiol 38:2181–2185. doi:10.1128/JCM.38.6.2181-2185.2000. PubMed DOI PMC

Yagupsky P, Nolte FS. 1990. Quantitative aspects of septicemia. Clin Microbiol Rev 3:269–279. doi:10.1128/CMR.3.3.269. PubMed DOI PMC

Dark P, Blackwood B, Gates S, McAuley D, Perkins GD, McMullan R, Wilson C, Graham D, Timms K, Warhurst G. 2015. Accuracy of LightCycler SeptiFast for the detection and identification of pathogens in the blood of patients with suspected sepsis: a systematic review and meta-analysis. Intensive Care Med 41:21–33. doi:10.1007/s00134-014-3553-8. PubMed DOI

Huang L, Lu B, Qin R, Sun L. 2018. PCR-ESI/MS for molecular diagnosis of bloodstream infections directly from blood samples: a systematic review and meta-analysis. Clin Lab 64:1153–1161. doi:10.7754/Clin.Lab.2018.180112. PubMed DOI

Stevenson M, Pandor A, Martyn-St James M, Rafia R, Uttley L, Stevens J, Sanderson J, Wong R, Perkins GD, McMullan R, Dark P. 2016. Sepsis: the LightCycler SeptiFast test MGRADE, SepsiTest™ and IRIDICA BAC BSI assay for rapidly identifying bloodstream bacteria and fungi: a systematic review and economic evaluation. Health Technol Assess 20:1–246. doi:10.3310/hta20460. PubMed DOI PMC

Jensen KH, Dargis R, Christensen JJ, Kemp M. 2014. Ribosomal PCR and DNA sequencing for detection and identification of bacteria: experience from 6 years of routine analyses of patient samples. APMIS 122:248–255. doi:10.1111/apm.12139. PubMed DOI

Sakka SG, Kochem A-J, Disqué C, Wellinghausen N. 2009. Blood infection diagnosis by 16S rDNA broad-spectrum polymerase chain reaction: the relationship between antibiotic treatment and bacterial DNA load. Anesth Analg 109:1707–1708. doi:10.1213/ANE.0b013e3181b79904. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...