Initial study on an expert system for spine diseases screening using inertial measurement unit
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
PubMed
37369726
PubMed Central
PMC10300108
DOI
10.1038/s41598-023-36798-7
PII: 10.1038/s41598-023-36798-7
Knihovny.cz E-zdroje
- MeSH
- expertní systémy * MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- páteř diagnostické zobrazování MeSH
- radiografie MeSH
- rentgenové záření MeSH
- skolióza * diagnostické zobrazování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In recent times, widely understood spine diseases have advanced to one of the most urgetn problems where quick diagnosis and treatment are needed. To diagnose its specifics (e.g. to decide whether this is a scoliosis or sagittal imbalance) and assess its extend, various kind of imaging diagnostic methods (such as X-Ray, CT, MRI scan or ST) are used. However, despite their common use, some may be regarded as (to a level) invasive methods and there are cases where there are contraindications to using them. Besides, which is even more of a problem, these are very expensive methods and whilst their use for pure diagnostic purposes is absolutely valid, then due to their cost, they cannot rather be considered as tools which would be equally valid for bad posture screening programs purposes. This paper provides an initial evaluation of the alternative approach to the spine diseases diagnostic/screening using inertial measurement unit and we propose policy-based computing as the core for the inference systems. Although the methodology presented herein is potentially applicable to a variety of spine diseases, in the nearest future we will focus specifically on sagittal imbalance detection.
Department of Mechanical Engineering Graphic Era University Dehradun India
Department of Neurosurgery 4th Military Hospital in Wrocław Wrocław Poland
Department of Neurosurgery University Hospital Bonn Bonn Germany
Department of Neurosurgery Vital Medic Hospital Kluczbork Poland
Faculty of Computer Science Kazimierz Wielki University 85 064 Bydgoszcz Poland
Faculty of Health Sciences Wroclaw Medical University Wrocław Poland
Faculty of Mechanical Engineering Opole University of Technology 45 271 Opole Poland
Faculty of Philosophy Kazimierz Wielki University Bydgoszcz 85 092 Poland
Faculty of Physical Education and Physiotherapy Opole University of Technology 45 758 Opole Poland
Psychiatric Department of Children and Adolescents Psychiatric Center in Warta 98 290 Warta Poland
School of Computing and Mathematical Sciences University of Greenwich London SE10 9LS UK
Zobrazit více v PubMed
Lamarre M-C, Pratt M. Physical activity and health promotion. Glob. Health Promot. 2006;13:88. PubMed
Bouchard C, Blair SN, Katzmarzyk PT. Less sitting, more physical activity, or higher fitness? Mayo Clin. Proc. 2015;90:1533–1540. doi: 10.1016/j.mayocp.2015.08.005. PubMed DOI
Ewing R, Schmid T, Killingsworth R, Zlot A, Raudenbush S. Relationship between urban sprawl and physical activity, obesity, and morbidity. Am. J. Health Promot. 2003;18:47–57. doi: 10.4278/0890-1171-18.1.47. PubMed DOI
Shultz S, Anner J, Hills A. Paediatric obesity, physical activity and the musculoskeletal system. Obes. Rev. 2009;10:576–582. doi: 10.1111/j.1467-789X.2009.00587.x. PubMed DOI
Perez-Lasierra JL, Casajus JA, Gonzalez-Aguero A, Moreno-Franco B. Association of physical activity levels and prevalence of major degenerative diseases: Evidence from the national health and nutrition examination survey (NHANES) 1999–2018. Exp. Gerontol. 2022;158:111656. doi: 10.1016/j.exger.2021.111656. PubMed DOI
Raciborski F, Gasik R, Klak A. Disorders of the spine. A major health and social problem. Reumatologia/Rheumatology. 2016;54:196–200. doi: 10.5114/reum.2016.62474. PubMed DOI PMC
Dempster WT, Gaughran GR. Properties of body segments based on size and weight. Am. J. Anat. 1967;120:33–54. doi: 10.1002/aja.1001200104. DOI
Soin A, Hirschbeck M, Verdon M, Manchikanti L. A pilot study implementing a machine learning algorithm to use artificial intelligence to diagnose spinal conditions. Pain Physician. 2022;25:171. PubMed
Sciubba DM, et al. Diagnosis and management of metastatic spine disease: A review. J. Neurosurg. Spine. 2010;13:94–108. doi: 10.3171/2010.3.SPINE09202. PubMed DOI
Biermann JS, Holt GE, Lewis VO, Schwartz HS, Yaszemski MJ. Metastatic bone disease: Diagnosis, evaluation, and treatment. JBJS. 2009;91:1518–1530. PubMed
Kim KC, Cho HC, Jang TJ, Choi JM, Seo JK. Automatic detection and segmentation of lumbar vertebrae from x-ray images for compression fracture evaluation. Comput. Methods Programs Biomed. 2021;200:105833. doi: 10.1016/j.cmpb.2020.105833. PubMed DOI
Dipaola CP, et al. Survey of spine surgeons on attitudes regarding osteoporosis and osteomalacia screening and treatment for fractures, fusion surgery, and pseudoarthrosis. Spine J. 2009;9:537–544. doi: 10.1016/j.spinee.2009.02.005. PubMed DOI
Turner, D. A. & Richardson, W. J. 14new directions and therapeutics in surgical spine treatment. Mod. Neurosurg. Clin. Transl. Neurosci. Adv. ( 2005).
Zamagni E, et al. A prospective comparison of 18f-fluorodeoxyglucose positron emission tomography-computed tomography, magnetic resonance imaging and whole-body planar radiographs in the assessment of bone disease in newly diagnosed multiple myeloma. Haematologica. 2007;92:50–55. doi: 10.3324/haematol.10554. PubMed DOI
Hannink E, Dawes H, Shannon TM, Barker KL. Validity of sagittal thoracolumbar curvature measurement using a non-radiographic surface topography method. Spine Deformity. 2022;10:1299–1306. doi: 10.1007/s43390-022-00538-0. PubMed DOI PMC
Gerasimov, A. The mechanisms of back pain formation and pathogenetic treatment. Int. Med. Sci. J.31 ( 2015).
Haimerl M, et al. Comprehensive visualization of spinal motion in gait sequences based on surface topography. Hum. Mov. Sci. 2022;81:102919. doi: 10.1016/j.humov.2021.102919. PubMed DOI
Aulisa AG, et al. Is surface topography useful in the diagnosis of scoliosis? Validation of the biometrical holistic of human body (BHOHB) Children. 2023;10:320. doi: 10.3390/children10020320. PubMed DOI PMC
Su X, Dong R, Wen Z, Liu Y. Reliability and validity of scoliosis measurements obtained with surface topography techniques: A systematic review. J. Clin. Med. 2022;11:6998. doi: 10.3390/jcm11236998. PubMed DOI PMC
Dreischarf B, et al. Comparison of three validated systems to analyse spinal shape and motion. Sci. Rep. 2022;12:10222. doi: 10.1038/s41598-022-13891-x. PubMed DOI PMC
Elmose SF, Andersen GO, Carreon LY, Sigmundsson FG, Andersen MO. Radiological definitions of sagittal plane segmental instability in the degenerative lumbar spine-a systematic review. Glob. Spine J. 2023;13:523–533. doi: 10.1177/21925682221099854. PubMed DOI PMC
Grafe D, et al. Pectus excavatum in motion: Dynamic evaluation using real-time MRI. Eur. Radiol. 2023;33:2128–2135. doi: 10.1007/s00330-022-09197-1. PubMed DOI PMC
Dindorf C, et al. Classification and automated interpretation of spinal posture data using a pathology-independent classifier and explainable artificial intelligence (XAI) Sensors. 2021;21:6323. doi: 10.3390/s21186323. PubMed DOI PMC
Dindorf C, et al. Machine learning techniques demonstrating individual movement patterns of the vertebral column: The fingerprint of spinal motion. Comput. Methods Biomech. Biomed. Eng. 2022;25:821–831. doi: 10.1080/10255842.2021.1981884. PubMed DOI
Mody GM, Brooks PM. Improving musculoskeletal health: Global issues. Best Pract. Res. Clin. Rheumatol. 2012;26:237–249. doi: 10.1016/j.berh.2012.03.002. PubMed DOI
Alijani B, Rasoulian J. The sagittal balance of the cervical spine: Radiographic analysis of interdependence between the occipitocervical and spinopelvic alignment. Asian Spine J. 2020;14:287. doi: 10.31616/asj.2019.0165. PubMed DOI PMC
Hiyama A, et al. Correlation analysis of sagittal alignment and skeletal muscle mass in patients with spinal degenerative disease. Sci. Rep. 2018;8:1–8. doi: 10.1038/s41598-018-33867-0. PubMed DOI PMC
Shao Z-X, et al. Factors associated with cervical spine alignment in an asymptomatic population: A preliminary analysis. World Neurosurg. 2019;122:e48–e58. doi: 10.1016/j.wneu.2018.09.036. PubMed DOI
Pai Y-C, Patton J. Center of mass velocity-position predictions for balance control. J. Biomech. 1997;30:347–354. doi: 10.1016/S0021-9290(96)00165-0. PubMed DOI
Clauser CE, McConville JT, Young JW. Weight, Volume, and Center of Mass of Segments of the Human Body. Yellow Springs: Tech. Rep, Antioch Coll; 1996.
Haddas R, Lieberman IH. A method to quantify the cone of economy. Eur. Spine J. 2018;27:1178–1187. doi: 10.1007/s00586-017-5321-2. PubMed DOI
Vereeck L, Wuyts F, Truijen S, Van de Heyning P. Clinical assessment of balance: Normative data, and gender and age effects. Int. J. Audiol. 2008;47:67–75. doi: 10.1080/14992020701689688. PubMed DOI
Dabrowska A, Olszewska-Karaban MA, Permoda-Bialozorczyk AK, Szalewska DA. The postural control indexes during unipodal support in patients with idiopathic scoliosis. BioMed Res. Int. 2020 doi: 10.1155/2020/7936095. PubMed DOI PMC
Haddas R, Kosztowski T, Mar D, Boah A, Lieberman IH. Balance effort, cone of economy, and dynamic compensatory mechanisms in common degenerative spinal pathologies. Gait Posture. 2021;89:67–73. doi: 10.1016/j.gaitpost.2021.04.038. PubMed DOI
Liang Y, Xu S, Guo C, Mao K, Liu H. Correlation between different sagittal parameters in patients with degenerative kyphosis. Front. Mol. Neurosci. 2022;15:847857. doi: 10.3389/fnmol.2022.847857. PubMed DOI PMC
Berthonnaud E, Dimnet J, Roussouly P, Labelle H. Analysis of the sagittal balance of the spine and pelvis using shape and orientation parameters. Clin. Spine Surg. 2005;18:40–47. PubMed
Lafage R, et al. Validation of a new computer-assisted tool to measure spino-pelvic parameters. Spine J. 2015;15:2493–2502. doi: 10.1016/j.spinee.2015.08.067. PubMed DOI
Hey HWD, et al. Cervical alignment variations in different postures and predictors of normal cervical kyphosis. Spine. 2017;42:1614–1621. doi: 10.1097/BRS.0000000000002160. PubMed DOI
Kim D, Davis DD, Menger RP. Spine Sagittal Balance. Treasure Island: StatPearls Publishing; 2018. PubMed
Morvan G, et al. Standardized way for imaging of the sagittal spinal balance. Eur. Spine J. 2011;20:602–608. doi: 10.1007/s00586-011-1927-y. PubMed DOI PMC
Abelin-Genevois K. Sagittal balance of the spine. Orthop. Traumatol. Surg. Res. 2021;107:102769. doi: 10.1016/j.otsr.2020.102769. PubMed DOI
Takemoto M, et al. Are sagittal spinopelvic radiographic parameters significantly associated with quality of life of adult spinal deformity patients? Multivariate linear regression analyses for pre-operative and short-term post-operative health-related quality of life. Eur. Spine J. 2017;26:2176–2186. doi: 10.1007/s00586-016-4872-y. PubMed DOI
Smith MW, Annis P, Lawrence BD, Daubs MD, Brodke DS. Acute proximal junctional failure in patients with preoperative sagittal imbalance. Spine J. 2015;15:2142–2148. doi: 10.1016/j.spinee.2015.05.028. PubMed DOI
Ailon T, et al. Degenerative spinal deformity. Neurosurgery. 2015;77:S75–S91. doi: 10.1227/NEU.0000000000000938. PubMed DOI
Blondel B, et al. Impact of magnitude and percentage of global sagittal plane correction on health-related quality of life at 2-years follow-up. Neurosurgery. 2012;71:341–348. doi: 10.1227/NEU.0b013e31825d20c0. PubMed DOI
Cohen, L. I. Sagittal balance: Population and physiotherapist knowledge, non-radiographic measurement and non-surgical intervention. Ph.D. thesis, The University of Sydney ( 2021).
Sakai K, et al. Cervical sagittal imbalance is a predictor of kyphotic deformity after laminoplasty in cervical spondylotic myelopathy patients without preoperative kyphotic alignment. Spine. 2016;41:299–305. doi: 10.1097/BRS.0000000000001206. PubMed DOI
Lawrence BD, et al. Anterior versus posterior approach for treatment of cervical spondylotic myelopathy: A systematic review. Spine. 2013;38:S173–S182. doi: 10.1097/BRS.0b013e3182a7eaaf. PubMed DOI
Glassman SD, Coseo MP, Carreon LY. Sagittal balance is more than just alignment: Why PJK remains an unresolved problem. Scoliosis Spinal Disord. 2016;11:1–7. doi: 10.1186/s13013-016-0064-0. PubMed DOI PMC
Zhu Z, et al. Sagittal alignment of spine and pelvis in asymptomatic adults: Norms in Chinese populations. Spine. 2014;39:E1–E6. doi: 10.1097/BRS.0000000000000022. PubMed DOI
Boulay C, et al. Sagittal alignment of spine and pelvis regulated by pelvic incidence: Standard values and prediction of lordosis. Spine. 2006;15:415. PubMed PMC
Savage JW, Patel AA. Fixed sagittal plane imbalance. Glob. Spine J. 2014;4:287–295. doi: 10.1055/s-0034-1394126. PubMed DOI PMC
Lee S-H, Son E-S, Seo E-M, Suk K-S, Kim K-T. Factors determining cervical spine sagittal balance in asymptomatic adults: Correlation with spinopelvic balance and thoracic inlet alignment. Spine J. 2015;15:705–712. doi: 10.1016/j.spinee.2013.06.059. PubMed DOI
Le Huec J, Thompson W, Mohsinaly Y, Barrey C, Faundez A. Sagittal balance of the spine. Eur. Spine J. 2019;28:1889–1905. doi: 10.1007/s00586-019-06083-1. PubMed DOI
Roussouly P, Pinheiro-Franco JL. Sagittal parameters of the spine: Biomechanical approach. Eur. Spine J. 2011;20:578–585. doi: 10.1007/s00586-011-1924-1. PubMed DOI PMC
Knott PT, Mardjetko SM, Techy F. The use of the t1 sagittal angle in predicting overall sagittal balance of the spine. Spine J. 2010;10:994–998. doi: 10.1016/j.spinee.2010.08.031. PubMed DOI
Petropoulos, A., Sikeridis, D. & Antonakopoulos, T. SPoMo: IMU-based real-time sitting posture monitoring. In 2017 IEEE 7th International Conference on Consumer Electronics-Berlin (ICCE-Berlin) 5–9 ( IEEE, 2017).
Beange KH, Chan AD, Beaudette SM, Graham RB. Concurrent validity of a wearable IMU for objective assessments of functional movement quality and control of the lumbar spine. J. Biomech. 2019;97:109356. doi: 10.1016/j.jbiomech.2019.109356. PubMed DOI
Franco L, Sengupta R, Wade L, Cazzola D. A novel IMU-based clinical assessment protocol for axial spondyloarthritis: A protocol validation study. PeerJ. 2021;9:e10623. doi: 10.7717/peerj.10623. PubMed DOI PMC
Graham R, Dupeyron A, Van Dieen J. Between-day reliability of IMU-derived spine control metrics in patients with low back pain. J. Biomech. 2020;113:110080. doi: 10.1016/j.jbiomech.2020.110080. PubMed DOI
Oakley PA, Ehsani NN, Harrison DE. The scoliosis quandary: Are radiation exposures from repeated x-rays harmful? Dose Response. 2019;17:1559325819852810. doi: 10.1177/1559325819852810. PubMed DOI PMC
Law M, et al. Cumulative radiation exposure and associated cancer risk estimates for scoliosis patients: Impact of repetitive full spine radiography. Eur. J. Radiol. 2016;85:625–628. doi: 10.1016/j.ejrad.2015.12.032. PubMed DOI
Doody MM, et al. Breast cancer mortality after diagnostic radiography: Findings from the us scoliosis cohort study. Spine. 2000;25:2052–2063. doi: 10.1097/00007632-200008150-00009. PubMed DOI
Kandasamy, G., Bettany-Saltikov, J. & van Schaik, P. Posture and back shape measurement tools: A narrative. Spinal Deform. Adolesc. Adults Older Adults21 (2021).
Yong XZE, Sutherland T. Making sense of MRI of the lumbar spine. Aust. J. Gen. Pract. 2012;41:887–890. PubMed
Ahn T-K, et al. Full length spine CT and MRI. Int. J. Clin. Med. 2020;11:270–281. doi: 10.4236/ijcm.2020.115028. DOI
Merali Z, Wang JZ, Badhiwala JH, Witiw CD, Wilson JR, Fehlings MG. Deep learning algorithm to evaluate cervical spondylotic myelopathy using lateral cervical spine radiograph. Sci. Rep. 2021;11:10473. doi: 10.1038/s41598-021-89848-3. PubMed DOI PMC
Lee GW, Shin H, Chang MC. Deep learning algorithm to evaluate cervical spondylotic myelopathy using lateral cervical spine radiograph. BMC Neurol. 2022;22:5. doi: 10.1186/s12883-022-02670-w. PubMed DOI PMC
Soin A, Megan H, Michael V, Laxmaiah M. A pilot study implementing a machine learning algorithm to use artificial intelligence to diagnose spinal conditions. Pain Physician. 2022;25:171–178. PubMed
Nicole TXH, Nisar H, Wei SK. Classification of lumber spine disc herniation using machine learning methods. Orient. J. Comput. Sci. Technol. 2021;14:01–10.
Dutt R, et al. Automatic localization and brand detection of cervical spine hardware on radiographs using weakly supervised machine learning. Radiol. Artif. Intell. 2022;4:e210099. doi: 10.1148/ryai.210099. PubMed DOI PMC
Berjano P, Damilano M, Ismael M, Cecchinato R, Lamartina C. Classification of degenerative segment disease in adults with deformity of the lumbar or thoracolumbar. Spine. 2014;23:1815. doi: 10.1007/s00586-014-3219-9. PubMed DOI
Thalgott J, et al. A new classification system for degenerative disc disease of the lumbar spine based on magnetic resonance imaging, provocative discography, plain radiographs and anatomic considerations. Spine J. 2004;4:167S–172S. doi: 10.1016/j.spinee.2004.07.001. PubMed DOI
Zheng HD, Sun YL, Kong DW, et al. Deep learning-based high-accuracy quantitation for lumbar intervertebral disc degeneration from MRI. Nat. Commun. 2022;13:841. doi: 10.1038/s41467-022-28387-5. PubMed DOI PMC
Aranda-Valera IC, et al. Measuring spinal mobility using an inertial measurement unit system: A validation study in axial spondyloarthritis. Diagnostics. 2020;10:426. doi: 10.3390/diagnostics10060426. PubMed DOI PMC
Franco L, Sengupta R, Wade L, Cazzola D. Deep learning-based high-accuracy quantitation for lumbar intervertebral disc degeneration from MRI. Natl. Libr. Med. 2021;26:265–276. doi: 10.7717/peerj.10623. DOI
Martínez-Hernández A, Perez-Lomelí JS, Burgos-Vargas R, Padilla-Castañeda MA. A wearable system based on multiple magnetic and inertial measurement units for spine mobility assessment: A reliability study for the evaluation of ankylosing spondylitis. Sensors. 2022 doi: 10.3390/s22041332. PubMed DOI PMC
Baijot M, Puers R, Kraft M. Monitoring lower back activity in daily life using small unintrusive sensors and wearable electronics in the context of rheumatic and musculoskeletal diseases. Sensors. 2021 doi: 10.3390/s21196362. PubMed DOI PMC
OpenBCI. Emotibit home page (2022). Accessed 22-25-2022. https://www.emotibit.com.
Romberg, M. H. A Manual of the Nervous Diseases of Man Vol. 2 (Sydenham Society, 1853).
Panjabi MM. Clinical spinal instability and low back pain. J. Electromyogr. Kinesiol. 2003;13:371–379. doi: 10.1016/S1050-6411(03)00044-0. PubMed DOI
Jacobson BH, Gemmell HA, Hayes BM, Altena TS. Effectiveness of a selected bedding system on quality of sleep, low back pain, shoulder pain, and spine stiffness. J. Manip. Physiol. Ther. 2002;25:88–92. doi: 10.1067/mmt.2002.121410. PubMed DOI
Hammell KW. Self-care, productivity, and leisure, or dimensions of occupational experience? Rethinking occupational categories. Can. J. Occup. Ther. 2009;76:107–114. doi: 10.1177/000841740907600208. PubMed DOI
Alexander MS, et al. Outcome measures in spinal cord injury: Recent assessments and recommendations for future directions. Spinal cord. 2009;47:582–591. doi: 10.1038/sc.2009.18. PubMed DOI PMC
Scivoletto G, Galli G, Torre M, Molinari M, Pazzaglia M. The overlooked outcome measure for spinal cord injury: Use of assistive devices. Front. Neurol. 2019;10:272. doi: 10.3389/fneur.2019.00272. PubMed DOI PMC
Masood RF, Taj IA, Khan MB, Qureshi MA, Hassan T. Deep learning based vertebral body segmentation with extraction of spinal measurements and disorder disease classification. Biomed. Signal Process. Control. 2022;71:103230. doi: 10.1016/j.bspc.2021.103230. DOI
Khamnon N, et al. Reliability and concurrent validity of the spinal cord independence measure III among rehabilitation professionals. Spinal Cord. 2022;60:875–881. doi: 10.1038/s41393-022-00807-9. PubMed DOI PMC
Pearcy M. Measurement of back and spinal mobility. Clin. Biomech. 1986;1:44–51. doi: 10.1016/0268-0033(86)90037-9. PubMed DOI
Anthony, R. A policy-definition language and prototype implementation library for policy-based autonomic systems. In 2006 IEEE International Conference on Autonomic Computing 265–276. 10.1109/ICAC.2006.1662407 (2006).
Mariusz, P. Policy-based Reconfiguration of the Computer Control Systems. Opole University of Technology Science Notes (Monograph) (Opole, 2014).
Pelc M. Context-aware fuzzy control systems. Int. J. Softw. Eng. Knowl. Eng. 2014;24:825–85. doi: 10.1142/S0218194014500326. DOI
Krysmann, M. Takagi-sugeno-kanga fuzzy fusion in dynamic multi-classifier system. In Proceedings of the 2nd World Congress on Electrical Engineering and Computer Systems and Science, EECSS Vol. 16 (2016).
Li YX, Jiao SB, Gao X. A novel signal feature extraction technology based on empirical wavelet transform and reverse dispersion entropy. Def. Technol. 2021;17:1625–1635. doi: 10.1016/j.dt.2020.09.001. DOI
Tannemaat M, et al. Distinguishing normal, neuropathic and myopathic EMG with an automated machine learning approach. Clin. Neurophysiol. 2023;146:49–54. doi: 10.1016/j.clinph.2022.11.019. PubMed DOI
Boro, N. J., Shankar, K. & Hazarika, J. A comparative analysis of EMG signals of the healthy, myopathy, and low back pain patients. In 2022 2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET) 1–4 ( IEEE, 2022).
Wang C, Li X, Guo Y, Zhang R, Chen W. Classification of human movements with and without spinal orthosis based on surface electromyogram signals. Med. Novel Technol. Devices. 2022;16:100165. doi: 10.1016/j.medntd.2022.100165. DOI
Dorszewski, T., Jiang, W. & Sigg, S. Detection of an ataxia-type disease from EMG and IMU sensors. In 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and other Affiliated Events (PerCom Workshops) 712–717 ( IEEE, 2022).
Juhra C. Handbook Industry 4.0. Berlin: Springer; 2022. Clinic 4.0: The digital hospital; pp. 843–855.
Bretthauer M, Gerke S, Hassan C, Ahmad OF, Mori Y. The new European medical device regulation: Balancing innovation and patient safety. Ann. Intern. Med. 2023 doi: 10.7326/M23-0454. PubMed DOI
Brauneck A, et al. Federated machine learning, privacy-enhancing technologies, and data protection laws in medical research: Scoping review. J. Med. Internet Res. 2023;25:e41588. doi: 10.2196/41588. PubMed DOI PMC
Tewari A. mHealth systems need a privacy-by-design approach: Commentary on federated machine learning, privacy-enhancing technologies, and data protection laws in medical research: Scoping review. J. Med. Internet Res. 2023;25:e46700. doi: 10.2196/46700. PubMed DOI PMC
Zhang A, et al. Leveraging physiology and artificial intelligence to deliver advancements in healthcare. Physiol. Rev. 2023 doi: 10.1152/physrev.00033.2022. PubMed DOI PMC
Gao Y, Sharma T, Yan C. Addressing the challenge of biomedical data inequality: An artificial intelligence perspective. Annu. Rev. Biomed. Data Sci. 2023 doi: 10.1146/annurev-biodatasci-020722-020704. PubMed DOI PMC
Moor M, et al. Foundation models for generalist medical artificial intelligence. Nature. 2023;616:259–265. doi: 10.1038/s41586-023-05881-4. PubMed DOI
Xie Z, Zhou W, Liu D, Li M-H. Animal models of cerebral changes secondary to spinal cord injury. World Neurosurg. 2021;145:244–250. doi: 10.1016/j.wneu.2020.09.103. PubMed DOI
Wu J, et al. Isolated spinal cord contusion in rats induces chronic brain neuroinflammation, neurodegeneration, and cognitive impairment: Involvement of cell cycle activation. Cell Cycle. 2014;13:2446–2458. doi: 10.4161/cc.29420. PubMed DOI PMC
Lee K, Kim J. A study on the relationship between intraoperative neuromonitoring and hemoglobin changes. Int. J. Adv. Smart converg. 2020;9:8–15.
Benavides FD, et al. Cortical and subcortical effects of transcutaneous spinal cord stimulation in humans with tetraplegia. J. Neurosci. 2020;40:2633–2643. doi: 10.1523/JNEUROSCI.2374-19.2020. PubMed DOI PMC
Awosika OO, et al. Transcutaneous spinal direct current stimulation improves locomotor learning in healthy humans. Brain Stimul. 2019;12:628–634. doi: 10.1016/j.brs.2019.01.017. PubMed DOI PMC
Houk JC, et al. Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philos. Trans. R. Soc. B Biol. Sci. 2007;362:1573–1583. doi: 10.1098/rstb.2007.2063. PubMed DOI PMC
Martinez SA, et al. Multimodal cortical and subcortical exercise compared with treadmill training for spinal cord injury. PLoS ONE. 2018;13:e0202130. doi: 10.1371/journal.pone.0202130. PubMed DOI PMC
Sawada M, et al. Function of the nucleus accumbens in motor control during recovery after spinal cord injury. Science. 2015;350:98–101. doi: 10.1126/science.aab3825. PubMed DOI
Praszkier, R. & Nowak, A. In and out of sync: An example of gestalt therapy. Trends Psychol. 1–14 ( 2021).