Injection-Molded Isotactic Polypropylene Colored with Green Transparent and Opaque Pigments
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DKRVO (RP/CPS/2022/007)
Ministry of Education Youth and Sports
PubMed
37373072
PubMed Central
PMC10298002
DOI
10.3390/ijms24129924
PII: ijms24129924
Knihovny.cz E-zdroje
- Klíčová slova
- injection molding, mechanical testing, pigments, polypropylene,
- MeSH
- houby MeSH
- modul pružnosti MeSH
- plastické hmoty * MeSH
- polypropyleny * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- plastické hmoty * MeSH
- polypropyleny * MeSH
Polypropylene (PP) belongs among the most important commodity plastics due to its widespread application. The color of the PP products can be achieved by the addition of pigments, which can dramatically affect its material characteristics. To maintain product consistency (dimensional, mechanical, and optical), knowledge of these implications is of great importance. This study investigates the effect of transparent/opaque green masterbatches (MBs) and their concentration on the physico-mechanical and optical properties of PP produced by injection molding. The results showed that selected pigments had different nucleating abilities, affecting the dimensional stability and crystallinity of the product. The rheological properties of pigmented PP melts were affected as well. Mechanical testing showed that the presence of both pigments increased the tensile strength and Young's modulus, while the elongation at break was significantly increased only for the opaque MB. The impact toughness of colored PP with both MBs remained similar to that of neat PP. The optical properties were well controlled by the dosing of MBs, and were further related to the RAL color standards, as demonstrated by CIE color space analysis. Finally, the selection of appropriate pigments for PP should be considered, especially in areas where dimensional and color stability, as well as product safety, are highly important.
Zobrazit více v PubMed
Suzuki S., Mizuguchi J. Pigment-Induced Crystallization in Colored Plastics Based on Partially Crystalline Polymers. Dye. Pigm. 2004;61:69–77. doi: 10.1016/j.dyepig.2003.09.003. DOI
De Santis F., Pantani R., Speranza V., Titomanlio G. Analysis of Shrinkage Development of a Semicrystalline Polymer during Injection Molding. Ind. Eng. Chem. Res. 2010;49:2469–2476. doi: 10.1021/ie901316p. DOI
Broda J. Polymorphic Composition of Colored Polypropylene Fibers. Cryst. Growth Des. 2004;4:1277–1282. doi: 10.1021/cg0497703. DOI
Broda J. Nucleating Activity of the Quinacridone and Phthalocyanine Pigments in Polypropylene Crystallization. J. Appl. Polym. Sci. 2003;90:3957–3964. doi: 10.1002/app.13083. DOI
Haastrup S., Yu D., Broch T., Larsen K.L. Comparison of the Performance of Masterbatch and Liquid Color Concentrates for Mass Coloration of Polypropylene. Color. Res. Appl. 2016;41:484–492. doi: 10.1002/col.21987. DOI
Kc B., Faruk O., Agnelli J.A.M., Leao A.L., Tjong J., Sain M. Sisal-Glass Fiber Hybrid Biocomposite: Optimization of Injection Molding Parameters Using Taguchi Method for Reducing Shrinkage. Compos. Part A Appl. Sci. Manuf. 2016;83:152–159. doi: 10.1016/j.compositesa.2015.10.034. DOI
Zeppenfeld M., Müller B., Heyl S. Influence of Insert Component Position and Geometry on Shrinkage in Thermoplastic Insert Molding. AIP Conf. Proc. 2019;2139:030005.
Kościuszko A., Marciniak D., Sykutera D. Post-Processing Time Dependence of Shrinkage and Mechanical Properties of Injection-Molded Polypropylene. Materials. 2020;14:22. doi: 10.3390/ma14010022. PubMed DOI PMC
Wang J., Mao Q. A Novel Process Control Methodology Based on the PVT Behavior of Polymer for Injection Molding. Adv. Polym. Technol. 2013;32:E474–E485. doi: 10.1002/adv.21294. DOI
Rojo E., Fernández M., Muñoz M.E., Santamaría A. Relation between PVT Measurements and Linear Viscosity in Isotactic and Syndiotactic Polypropylenes. Polymer. 2006;47:7853–7858. doi: 10.1016/j.polymer.2006.09.019. DOI
Mohan M., Ansari M.N.M., Shanks R.A. Review on the Effects of Process Parameters on Strength, Shrinkage, and Warpage of Injection Molding Plastic Component. Polym. Plast. Technol. Eng. 2017;56:1–12. doi: 10.1080/03602559.2015.1132466. DOI
Bensingh R.J., Boopathy S.R., Jebaraj C. Minimization of Variation in Volumetric Shrinkage and Deflection on Injection Molding of Bi-Aspheric Lens Using Numerical Simulation. J. Mech. Sci. Technol. 2016;30:5143–5152. doi: 10.1007/s12206-016-1032-6. DOI
Ryu Y., Sohn J., Kweon B., Cha S. Shrinkage Optimization in Talc- and Glass-Fiber-Reinforced Polypropylene Composites. Materials. 2019;12:764. doi: 10.3390/ma12050764. PubMed DOI PMC
Mulle M., Wafai H., Yudhanto A., Lubineau G., Yaldiz R., Schijve W., Verghese N. Influence of Process-Induced Shrinkage and Annealing on the Thermomechanical Behavior of Glass Fiber-Reinforced Polypropylene. Compos. Sci. Technol. 2019;170:183–189. doi: 10.1016/j.compscitech.2018.12.005. DOI
Chen W.C., Nguyen M.H., Chiu W.H., Chen T.N., Tai P.H. Optimization of the Plastic Injection Molding Process Using the Taguchi Method, RSM, and Hybrid GA-PSO. Int. J. Adv. Manuf. Technol. 2016;83:1873–1886. doi: 10.1007/s00170-015-7683-0. DOI
Dimla D.E., Camilotto M., Miani F. Design and Optimisation of Conformal Cooling Channels in Injection Moulding Tools. J. Mater. Process. Technol. 2005;164–165:1294–1300. doi: 10.1016/j.jmatprotec.2005.02.162. DOI
Guo W., Hua L., Mao H., Meng Z. Prediction of Warpage in Plastic Injection Molding Based on Design of Experiments. J. Mech. Sci. Technol. 2012;26:1133–1139. doi: 10.1007/s12206-012-0214-0. DOI
Chang T.C., Faison E. Shrinkage Behavior and Optimization of Injection Molded Parts Studied by the Taguchi Method. Polym. Eng. Sci. 2001;41:703–710. doi: 10.1002/pen.10766. DOI
Abasalizadeh M., Hasanzadeh R., Mohamadian Z., Azdast T., Rostami M. Experimental Study to Optimize Shrinkage Behavior of Semi-Crystalline and Amorphous Thermoplastics. Iran. J. Mater. Sci. Eng. 2018;15:41–51. doi: 10.22068/ijmse.15.4.41. DOI
Nicolazo C., Vachot P., Sarda A., Deterre R. Shrinkage Kinetics and Thermal Behaviour of Injection Moulded Polymers. Int. J. Mater. Form. 2008;1:1035–1038. doi: 10.1007/s12289-008-0195-9. DOI
Wu Y., Gong Y., Cha K.J., Park J.M. Effect of Microstructures on the Shrinkage of Injection Molding Product. J. Mech. Sci. Technol. 2019;33:1357–1363. doi: 10.1007/s12206-019-0236-y. DOI
Janostik V., Stanek M., Senkerik V., Fluxa P., Hylova L. Effect of the Pigment Concentration on the Dimensional Stability and the Melt Flow Index of Polycarbonate. Manuf. Technol. 2019;19:404–408. doi: 10.21062/ujep/304.2019/a/1213-2489/MT/19/3/404. DOI
Broda J. Structure of Polypropylene Fibres Coloured with a Mixture of Pigments with Different Nucleating Ability. Polymer. 2003;44:6943–6949. doi: 10.1016/j.polymer.2003.08.014. DOI
Ariyoshi S., Hashimoto S., Ohnishi S., Negishi S., Mikami H., Hayashi K., Tanaka S., Hiroshiba N. Broadband Terahertz Spectroscopy of Cellulose Nanofiber-Reinforced Polypropylenes. Mater. Sci. Eng. B. 2021;265:115000. doi: 10.1016/j.mseb.2020.115000. DOI
Broda J., Baczek M., Fabia J., Binias D., Fryczkowski R. Nucleating Agents Based on Graphene and Graphene Oxide for Crystallization of the β-Form of Isotactic Polypropylene. J. Mater. Sci. 2020;55:1436–1450. doi: 10.1007/s10853-019-04045-y. DOI
Gregory P. Industrial Applications of Phthalocyanines. J. Porphyr. Phthalocyanines. 2000;04:432–437. doi: 10.1002/(SICI)1099-1409(200006/07)4:4<432::AID-JPP254>3.0.CO;2-N. DOI
Vahur S., Teearu A., Leito I. ATR-FT-IR Spectroscopy in the Region of 550–230 cm−1 for Identification of Inorganic Pigments. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010;75:1061–1072. doi: 10.1016/j.saa.2009.12.056. PubMed DOI
Müller A. Coloring of Plastics. Carl Hanser Verlag GmbH & Co. KG; Munich, Germany: 2003. Introduction; pp. 1–2.
Kharchenko S.B., Douglas J.F., Obrzut J., Grulke E.A., Migler K.B. Flow-Induced Properties of Nanotube-Filled Polymer Materials. Nat. Mater. 2004;3:564–568. doi: 10.1038/nmat1183. PubMed DOI
Marks A.F., Orr P., Mcnally G.M., Murphy W.R. Effect of Pigment Type and Concentration on the Rheological Properties of Polypropylene. Dev. Chem. Eng. Miner. Process. 2008;11:127–136. doi: 10.1002/apj.5500110213. DOI
Cvek M., Paul U.C., Zia J., Mancini G., Sedlarik V., Athanassiou A. Biodegradable Films of PLA/PPC and Curcumin as Packaging Materials and Smart Indicators of Food Spoilage. ACS Appl. Mater. Interfaces. 2022;14:14654–14667. doi: 10.1021/acsami.2c02181. PubMed DOI PMC
Swilem A.E., Stloukal P., Abd El-Rehim H.A., Hrabalikova M., Sedlarik V. Influence of Gamma Rays on the Physico-Chemical, Release and Antibacterial Characteristics of Low-Density Polyethylene Composite Films Incorporating an Essential Oil for Application in Food-Packaging. Food Packag. Shelf Life. 2019;19:131–139. doi: 10.1016/j.fpsl.2018.11.014. DOI
Jain S., Goossens J.G.P., Peters G.W.M., Van Duin M., Lemstra P.J. Strong Decrease in Viscosity of Nanoparticle-Filled Polymer Melts through Selective Adsorption. Soft Matter. 2008;4:1848–1854. doi: 10.1039/b802905a. DOI
Verney V., Michel A. Representation of the Rheological Properties of Polymer Melts in Terms of Complex Fluidity. Rheol. Acta. 1989;28:54–60. doi: 10.1007/BF01354769. DOI
Sinha Ray S., Okamoto M. Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing. Prog. Polym. Sci. 2003;28:1539–1641. doi: 10.1016/j.progpolymsci.2003.08.002. DOI
Alexandre M., Dubois P. Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials. Mater. Sci. Eng. R Rep. 2000;28:1–63. doi: 10.1016/S0927-796X(00)00012-7. DOI
Kim M.H., Park C.I., Choi W.M., Lee J.W., Lim J.G., Park O.O., Kim J.M. Synthesis and Material Properties of Syndiotactic Polystyrene/Organophilic Clay Nanocomposites. J. Appl. Polym. Sci. 2004;92:2144–2150. doi: 10.1002/app.20186. DOI
Tyan H.L., Liu Y.C., Wei K.H. Thermally and Mechanically Enhanced Clay/Polyimide Nanocomposite via Reactive Organoclay. Chem. Mater. 1999;11:1942–1947. doi: 10.1021/cm990187x. DOI
Cho J.W., Paul D.R. Nylon 6 Nanocomposites by Melt Compounding. Polymer. 2001;42:1083–1094. doi: 10.1016/S0032-3861(00)00380-3. DOI
Fu S.-Y., Lauke B. Characterization of Tensile Behaviour of Hybrid Short Glass Fibre/Calcite Particle/ABS Composites. Compos. Part A Appl. Sci. Manuf. 1998;29:575–583. doi: 10.1016/S1359-835X(97)00117-6. DOI
Carli L.N., Crespo J.S., Mauler R.S. PHBV Nanocomposites Based on Organomodified Montmorillonite and Halloysite: The Effect of Clay Type on the Morphology and Thermal and Mechanical Properties. Compos. Part A Appl. Sci. Manuf. 2011;42:1601–1608. doi: 10.1016/j.compositesa.2011.07.007. DOI
Zare Y., Rhee K.Y. Multistep Modeling of Young’s Modulus in Polymer/Clay Nanocomposites Assuming the Intercalation/Exfoliation of Clay Layers and the Interphase between Polymer Matrix and Nanoparticles. Compos. Part A Appl. Sci. Manuf. 2017;102:137–144. doi: 10.1016/j.compositesa.2017.08.004. DOI
Lau K.-T., Gu C., Hui D. A Critical Review on Nanotube and Nanotube/Nanoclay Related Polymer Composite Materials. Compos. B Eng. 2006;37:425–436. doi: 10.1016/j.compositesb.2006.02.020. DOI
Liu X., Qin Y., Zhao S., Dong J.-Y. Nanocomposites-Turned-Nanoalloys Polypropylene/Multiwalled Carbon Nanotubes-Graft-Polystyrene: Synthesis and Polymer Nanoreinforcement. Ind. Eng. Chem. Res. 2021;60:10167–10179. doi: 10.1021/acs.iecr.1c01362. DOI
Zhang W., Zhang G., Lu X., Wang J., Wu D. Cellulosic Nanofibers Filled Poly(β-Hydroxybutyrate): Relations between Viscoelasticity of Composites and Aspect Ratios of Nanofibers. Carbohydr. Polym. 2021;265:118093. doi: 10.1016/j.carbpol.2021.118093. PubMed DOI
Kaur S., Gallei M., Ionescu E. Organic-Inorganic Hybrid Nanomaterials. Springer; Cham, Switzerland: 2014. Polymer–Ceramic Nanohybrid Materials; pp. 143–185.
Xie X.L., Mai Y.W., Zhou X.P. Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review. Mater. Sci. Eng. R Rep. 2005;49:89–112. doi: 10.1016/j.mser.2005.04.002. DOI
Fu S.Y., Feng X.Q., Lauke B., Mai Y.W. Effects of Particle Size, Particle/Matrix Interface Adhesion and Particle Loading on Mechanical Properties of Particulate-Polymer Composites. Compos. B Eng. 2008;39:933–961. doi: 10.1016/j.compositesb.2008.01.002. DOI
Nemati Giv A., Ayatollahi M.R., Ghaffari S.H., da Silva L.F.M. Effect of Reinforcements at Different Scales on Mechanical Properties of Epoxy Adhesives and Adhesive Joints: A Review. J. Adhes. 2018;94:1082–1121. doi: 10.1080/00218464.2018.1452736. DOI
Zambrano O.A. A Review on the Effect of Impact Toughness and Fracture Toughness on Impact-Abrasion Wear. J. Mater. Eng. Perform. 2021;30:7101–7116. doi: 10.1007/s11665-021-05960-5. DOI
Christie R., Abel A. Phthalocyanine Green Pigments. Phys. Sci. Rev. 2021;6:665–669. doi: 10.1515/psr-2020-0193. DOI
Plastics—Injection Moulding of Test Specimens of Thermoplastic Materials, Part 4: Determination of Moulding Shrinkage. European Committee for Standardization; Bruxelles, Belgium: 2003.