Injection-Molded Isotactic Polypropylene Colored with Green Transparent and Opaque Pigments

. 2023 Jun 08 ; 24 (12) : . [epub] 20230608

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37373072

Grantová podpora
DKRVO (RP/CPS/2022/007) Ministry of Education Youth and Sports

Polypropylene (PP) belongs among the most important commodity plastics due to its widespread application. The color of the PP products can be achieved by the addition of pigments, which can dramatically affect its material characteristics. To maintain product consistency (dimensional, mechanical, and optical), knowledge of these implications is of great importance. This study investigates the effect of transparent/opaque green masterbatches (MBs) and their concentration on the physico-mechanical and optical properties of PP produced by injection molding. The results showed that selected pigments had different nucleating abilities, affecting the dimensional stability and crystallinity of the product. The rheological properties of pigmented PP melts were affected as well. Mechanical testing showed that the presence of both pigments increased the tensile strength and Young's modulus, while the elongation at break was significantly increased only for the opaque MB. The impact toughness of colored PP with both MBs remained similar to that of neat PP. The optical properties were well controlled by the dosing of MBs, and were further related to the RAL color standards, as demonstrated by CIE color space analysis. Finally, the selection of appropriate pigments for PP should be considered, especially in areas where dimensional and color stability, as well as product safety, are highly important.

Zobrazit více v PubMed

Suzuki S., Mizuguchi J. Pigment-Induced Crystallization in Colored Plastics Based on Partially Crystalline Polymers. Dye. Pigm. 2004;61:69–77. doi: 10.1016/j.dyepig.2003.09.003. DOI

De Santis F., Pantani R., Speranza V., Titomanlio G. Analysis of Shrinkage Development of a Semicrystalline Polymer during Injection Molding. Ind. Eng. Chem. Res. 2010;49:2469–2476. doi: 10.1021/ie901316p. DOI

Broda J. Polymorphic Composition of Colored Polypropylene Fibers. Cryst. Growth Des. 2004;4:1277–1282. doi: 10.1021/cg0497703. DOI

Broda J. Nucleating Activity of the Quinacridone and Phthalocyanine Pigments in Polypropylene Crystallization. J. Appl. Polym. Sci. 2003;90:3957–3964. doi: 10.1002/app.13083. DOI

Haastrup S., Yu D., Broch T., Larsen K.L. Comparison of the Performance of Masterbatch and Liquid Color Concentrates for Mass Coloration of Polypropylene. Color. Res. Appl. 2016;41:484–492. doi: 10.1002/col.21987. DOI

Kc B., Faruk O., Agnelli J.A.M., Leao A.L., Tjong J., Sain M. Sisal-Glass Fiber Hybrid Biocomposite: Optimization of Injection Molding Parameters Using Taguchi Method for Reducing Shrinkage. Compos. Part A Appl. Sci. Manuf. 2016;83:152–159. doi: 10.1016/j.compositesa.2015.10.034. DOI

Zeppenfeld M., Müller B., Heyl S. Influence of Insert Component Position and Geometry on Shrinkage in Thermoplastic Insert Molding. AIP Conf. Proc. 2019;2139:030005.

Kościuszko A., Marciniak D., Sykutera D. Post-Processing Time Dependence of Shrinkage and Mechanical Properties of Injection-Molded Polypropylene. Materials. 2020;14:22. doi: 10.3390/ma14010022. PubMed DOI PMC

Wang J., Mao Q. A Novel Process Control Methodology Based on the PVT Behavior of Polymer for Injection Molding. Adv. Polym. Technol. 2013;32:E474–E485. doi: 10.1002/adv.21294. DOI

Rojo E., Fernández M., Muñoz M.E., Santamaría A. Relation between PVT Measurements and Linear Viscosity in Isotactic and Syndiotactic Polypropylenes. Polymer. 2006;47:7853–7858. doi: 10.1016/j.polymer.2006.09.019. DOI

Mohan M., Ansari M.N.M., Shanks R.A. Review on the Effects of Process Parameters on Strength, Shrinkage, and Warpage of Injection Molding Plastic Component. Polym. Plast. Technol. Eng. 2017;56:1–12. doi: 10.1080/03602559.2015.1132466. DOI

Bensingh R.J., Boopathy S.R., Jebaraj C. Minimization of Variation in Volumetric Shrinkage and Deflection on Injection Molding of Bi-Aspheric Lens Using Numerical Simulation. J. Mech. Sci. Technol. 2016;30:5143–5152. doi: 10.1007/s12206-016-1032-6. DOI

Ryu Y., Sohn J., Kweon B., Cha S. Shrinkage Optimization in Talc- and Glass-Fiber-Reinforced Polypropylene Composites. Materials. 2019;12:764. doi: 10.3390/ma12050764. PubMed DOI PMC

Mulle M., Wafai H., Yudhanto A., Lubineau G., Yaldiz R., Schijve W., Verghese N. Influence of Process-Induced Shrinkage and Annealing on the Thermomechanical Behavior of Glass Fiber-Reinforced Polypropylene. Compos. Sci. Technol. 2019;170:183–189. doi: 10.1016/j.compscitech.2018.12.005. DOI

Chen W.C., Nguyen M.H., Chiu W.H., Chen T.N., Tai P.H. Optimization of the Plastic Injection Molding Process Using the Taguchi Method, RSM, and Hybrid GA-PSO. Int. J. Adv. Manuf. Technol. 2016;83:1873–1886. doi: 10.1007/s00170-015-7683-0. DOI

Dimla D.E., Camilotto M., Miani F. Design and Optimisation of Conformal Cooling Channels in Injection Moulding Tools. J. Mater. Process. Technol. 2005;164–165:1294–1300. doi: 10.1016/j.jmatprotec.2005.02.162. DOI

Guo W., Hua L., Mao H., Meng Z. Prediction of Warpage in Plastic Injection Molding Based on Design of Experiments. J. Mech. Sci. Technol. 2012;26:1133–1139. doi: 10.1007/s12206-012-0214-0. DOI

Chang T.C., Faison E. Shrinkage Behavior and Optimization of Injection Molded Parts Studied by the Taguchi Method. Polym. Eng. Sci. 2001;41:703–710. doi: 10.1002/pen.10766. DOI

Abasalizadeh M., Hasanzadeh R., Mohamadian Z., Azdast T., Rostami M. Experimental Study to Optimize Shrinkage Behavior of Semi-Crystalline and Amorphous Thermoplastics. Iran. J. Mater. Sci. Eng. 2018;15:41–51. doi: 10.22068/ijmse.15.4.41. DOI

Nicolazo C., Vachot P., Sarda A., Deterre R. Shrinkage Kinetics and Thermal Behaviour of Injection Moulded Polymers. Int. J. Mater. Form. 2008;1:1035–1038. doi: 10.1007/s12289-008-0195-9. DOI

Wu Y., Gong Y., Cha K.J., Park J.M. Effect of Microstructures on the Shrinkage of Injection Molding Product. J. Mech. Sci. Technol. 2019;33:1357–1363. doi: 10.1007/s12206-019-0236-y. DOI

Janostik V., Stanek M., Senkerik V., Fluxa P., Hylova L. Effect of the Pigment Concentration on the Dimensional Stability and the Melt Flow Index of Polycarbonate. Manuf. Technol. 2019;19:404–408. doi: 10.21062/ujep/304.2019/a/1213-2489/MT/19/3/404. DOI

Broda J. Structure of Polypropylene Fibres Coloured with a Mixture of Pigments with Different Nucleating Ability. Polymer. 2003;44:6943–6949. doi: 10.1016/j.polymer.2003.08.014. DOI

Ariyoshi S., Hashimoto S., Ohnishi S., Negishi S., Mikami H., Hayashi K., Tanaka S., Hiroshiba N. Broadband Terahertz Spectroscopy of Cellulose Nanofiber-Reinforced Polypropylenes. Mater. Sci. Eng. B. 2021;265:115000. doi: 10.1016/j.mseb.2020.115000. DOI

Broda J., Baczek M., Fabia J., Binias D., Fryczkowski R. Nucleating Agents Based on Graphene and Graphene Oxide for Crystallization of the β-Form of Isotactic Polypropylene. J. Mater. Sci. 2020;55:1436–1450. doi: 10.1007/s10853-019-04045-y. DOI

Gregory P. Industrial Applications of Phthalocyanines. J. Porphyr. Phthalocyanines. 2000;04:432–437. doi: 10.1002/(SICI)1099-1409(200006/07)4:4<432::AID-JPP254>3.0.CO;2-N. DOI

Vahur S., Teearu A., Leito I. ATR-FT-IR Spectroscopy in the Region of 550–230 cm−1 for Identification of Inorganic Pigments. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2010;75:1061–1072. doi: 10.1016/j.saa.2009.12.056. PubMed DOI

Müller A. Coloring of Plastics. Carl Hanser Verlag GmbH & Co. KG; Munich, Germany: 2003. Introduction; pp. 1–2.

Kharchenko S.B., Douglas J.F., Obrzut J., Grulke E.A., Migler K.B. Flow-Induced Properties of Nanotube-Filled Polymer Materials. Nat. Mater. 2004;3:564–568. doi: 10.1038/nmat1183. PubMed DOI

Marks A.F., Orr P., Mcnally G.M., Murphy W.R. Effect of Pigment Type and Concentration on the Rheological Properties of Polypropylene. Dev. Chem. Eng. Miner. Process. 2008;11:127–136. doi: 10.1002/apj.5500110213. DOI

Cvek M., Paul U.C., Zia J., Mancini G., Sedlarik V., Athanassiou A. Biodegradable Films of PLA/PPC and Curcumin as Packaging Materials and Smart Indicators of Food Spoilage. ACS Appl. Mater. Interfaces. 2022;14:14654–14667. doi: 10.1021/acsami.2c02181. PubMed DOI PMC

Swilem A.E., Stloukal P., Abd El-Rehim H.A., Hrabalikova M., Sedlarik V. Influence of Gamma Rays on the Physico-Chemical, Release and Antibacterial Characteristics of Low-Density Polyethylene Composite Films Incorporating an Essential Oil for Application in Food-Packaging. Food Packag. Shelf Life. 2019;19:131–139. doi: 10.1016/j.fpsl.2018.11.014. DOI

Jain S., Goossens J.G.P., Peters G.W.M., Van Duin M., Lemstra P.J. Strong Decrease in Viscosity of Nanoparticle-Filled Polymer Melts through Selective Adsorption. Soft Matter. 2008;4:1848–1854. doi: 10.1039/b802905a. DOI

Verney V., Michel A. Representation of the Rheological Properties of Polymer Melts in Terms of Complex Fluidity. Rheol. Acta. 1989;28:54–60. doi: 10.1007/BF01354769. DOI

Sinha Ray S., Okamoto M. Polymer/Layered Silicate Nanocomposites: A Review from Preparation to Processing. Prog. Polym. Sci. 2003;28:1539–1641. doi: 10.1016/j.progpolymsci.2003.08.002. DOI

Alexandre M., Dubois P. Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Uses of a New Class of Materials. Mater. Sci. Eng. R Rep. 2000;28:1–63. doi: 10.1016/S0927-796X(00)00012-7. DOI

Kim M.H., Park C.I., Choi W.M., Lee J.W., Lim J.G., Park O.O., Kim J.M. Synthesis and Material Properties of Syndiotactic Polystyrene/Organophilic Clay Nanocomposites. J. Appl. Polym. Sci. 2004;92:2144–2150. doi: 10.1002/app.20186. DOI

Tyan H.L., Liu Y.C., Wei K.H. Thermally and Mechanically Enhanced Clay/Polyimide Nanocomposite via Reactive Organoclay. Chem. Mater. 1999;11:1942–1947. doi: 10.1021/cm990187x. DOI

Cho J.W., Paul D.R. Nylon 6 Nanocomposites by Melt Compounding. Polymer. 2001;42:1083–1094. doi: 10.1016/S0032-3861(00)00380-3. DOI

Fu S.-Y., Lauke B. Characterization of Tensile Behaviour of Hybrid Short Glass Fibre/Calcite Particle/ABS Composites. Compos. Part A Appl. Sci. Manuf. 1998;29:575–583. doi: 10.1016/S1359-835X(97)00117-6. DOI

Carli L.N., Crespo J.S., Mauler R.S. PHBV Nanocomposites Based on Organomodified Montmorillonite and Halloysite: The Effect of Clay Type on the Morphology and Thermal and Mechanical Properties. Compos. Part A Appl. Sci. Manuf. 2011;42:1601–1608. doi: 10.1016/j.compositesa.2011.07.007. DOI

Zare Y., Rhee K.Y. Multistep Modeling of Young’s Modulus in Polymer/Clay Nanocomposites Assuming the Intercalation/Exfoliation of Clay Layers and the Interphase between Polymer Matrix and Nanoparticles. Compos. Part A Appl. Sci. Manuf. 2017;102:137–144. doi: 10.1016/j.compositesa.2017.08.004. DOI

Lau K.-T., Gu C., Hui D. A Critical Review on Nanotube and Nanotube/Nanoclay Related Polymer Composite Materials. Compos. B Eng. 2006;37:425–436. doi: 10.1016/j.compositesb.2006.02.020. DOI

Liu X., Qin Y., Zhao S., Dong J.-Y. Nanocomposites-Turned-Nanoalloys Polypropylene/Multiwalled Carbon Nanotubes-Graft-Polystyrene: Synthesis and Polymer Nanoreinforcement. Ind. Eng. Chem. Res. 2021;60:10167–10179. doi: 10.1021/acs.iecr.1c01362. DOI

Zhang W., Zhang G., Lu X., Wang J., Wu D. Cellulosic Nanofibers Filled Poly(β-Hydroxybutyrate): Relations between Viscoelasticity of Composites and Aspect Ratios of Nanofibers. Carbohydr. Polym. 2021;265:118093. doi: 10.1016/j.carbpol.2021.118093. PubMed DOI

Kaur S., Gallei M., Ionescu E. Organic-Inorganic Hybrid Nanomaterials. Springer; Cham, Switzerland: 2014. Polymer–Ceramic Nanohybrid Materials; pp. 143–185.

Xie X.L., Mai Y.W., Zhou X.P. Dispersion and Alignment of Carbon Nanotubes in Polymer Matrix: A Review. Mater. Sci. Eng. R Rep. 2005;49:89–112. doi: 10.1016/j.mser.2005.04.002. DOI

Fu S.Y., Feng X.Q., Lauke B., Mai Y.W. Effects of Particle Size, Particle/Matrix Interface Adhesion and Particle Loading on Mechanical Properties of Particulate-Polymer Composites. Compos. B Eng. 2008;39:933–961. doi: 10.1016/j.compositesb.2008.01.002. DOI

Nemati Giv A., Ayatollahi M.R., Ghaffari S.H., da Silva L.F.M. Effect of Reinforcements at Different Scales on Mechanical Properties of Epoxy Adhesives and Adhesive Joints: A Review. J. Adhes. 2018;94:1082–1121. doi: 10.1080/00218464.2018.1452736. DOI

Zambrano O.A. A Review on the Effect of Impact Toughness and Fracture Toughness on Impact-Abrasion Wear. J. Mater. Eng. Perform. 2021;30:7101–7116. doi: 10.1007/s11665-021-05960-5. DOI

Christie R., Abel A. Phthalocyanine Green Pigments. Phys. Sci. Rev. 2021;6:665–669. doi: 10.1515/psr-2020-0193. DOI

Plastics—Injection Moulding of Test Specimens of Thermoplastic Materials, Part 4: Determination of Moulding Shrinkage. European Committee for Standardization; Bruxelles, Belgium: 2003.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...