Biodegradable Films of PLA/PPC and Curcumin as Packaging Materials and Smart Indicators of Food Spoilage

. 2022 Mar 30 ; 14 (12) : 14654-14667. [epub] 20220318

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35302368

Bio-based and biodegradable packaging combined with chemical sensors and indicators has attracted great attention as they can provide protection combined with information on the actual freshness of foodstuffs. In this study, we present an effective, biodegradable, mostly bio-sourced material ideal for sustainable packaging that can also be used as a smart indicator of ammonia (NH3) vapor and food spoilage. The developed material comprises a blend of poly(lactic acid) (PLA) and poly(propylene carbonate) (PPC) loaded with curcumin (CCM), which is fabricated via the scalable techniques of melt extrusion and compression molding. Due to the structural similarity of PLA and PPC, they exhibited good compatibility and formed hydrogen bonds within their blends, as proven by Fourier transform infrared (FTIR) and X-ray diffraction (XRD). Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis confirmed that the blends were thermally stable at the used processing temperature (180 °C) with minimal crystallinity. The rheological and mechanical properties of the PLA/PPC blends were easily tuned by changing the ratio of the biopolymers. Supplementing the PLA/PCC samples with CCM resulted in efficient absorption of UV radiation, yet the transparency of the films was preserved (T700 ∼ 68-84%). The investigation of CCM extract in ethanol with the DPPH• assay demonstrated that the samples could also provide effective antioxidant action, due to the tunable release of the CCM. Analyses for water vapor and oxygen permeability showed that the PPC improved the barrier properties of the PLA/PPC blends, while the presence of CCM did not hinder barrier performance. The capacity for real-time detection of NH3 vapor was quantified using the CIELab color space analysis. A change in color of the sample from a yellowish shade to red was observed by the naked eye. Finally, a film of PLA/PPC/CCM was successfully applied as a sticker indicator to monitor the spoilage of shrimps over time, demonstrating an evident color change from yellow to light orange, particularly for the PPC-containing blend. The developed system, therefore, has the potential to serve as a cost-effective, easy-to-use, nondestructive, smart indicator for food packaging, as well as a means for NH3 gas monitoring in industrial and environmental applications.

Zobrazit více v PubMed

Dainelli D.; Gontard N.; Spyropoulos D.; Zondervan-van den Beuken E.; Tobback P. Active and Intelligent Food Packaging: Legal Aspects and Safety Concerns. Trends Food Sci. Technol. 2008, 19, S103–S112. 10.1016/j.tifs.2008.09.011. DOI

Yildirim S.; Rocker B.; Pettersen M. K.; Nilsen-Nygaard J.; Ayhan Z.; Rutkaite R.; Radusin T.; Suminska P.; Marcos B.; Coma V. Active Packaging Applications for Food. Compr. Rev. Food Sci. Food Saf. 2018, 17, 165–199. 10.1111/1541-4337.12322. PubMed DOI

Ezati P.; Tajik H.; Moradi M.; Molaei R. Intelligent pH-Sensitive Indicator Based on Starch-Cellulose and Alizarin Dye to Track Freshness of Rainbow Trout Fillet. Int. J. Biol. Macromol. 2019, 132, 157–165. 10.1016/j.ijbiomac.2019.03.173. PubMed DOI

Fazial F. F.; Tan L. L.; Zubairi S. I. Bienzymatic Creatine Biosensor Based on Reflectance Measurement for Real-Time Monitoring of Fish Freshness. Sens. Actuators, B 2018, 269, 36–45. 10.1016/j.snb.2018.04.141. DOI

Lee H.; Kim M. S.; Lee W. H.; Cho B. K. Determination of the Total Volatile Basic Nitrogen (TVB-N) Content in Pork Meat Using Hyperspectral Fluorescence Imaging. Sens. Actuators, B 2018, 259, 532–539. 10.1016/j.snb.2017.12.102. DOI

Zhang Z.; Tong J.; Chen D. H.; Lan Y. B. Electronic Nose with an Air Sensor Matrix for Detecting Beef Freshness. J. Bionic Eng. 2008, 5, 67–73. 10.1016/S1672-6529(08)60008-6. DOI

Pourjavaher S.; Almasi H.; Meshkini S.; Pirsa S.; Parandi E. Development of a Colorimetric pH Indicator Based on Bacterial Cellulose Nanofibers and Red Cabbage (Brassica Oleraceae) Extract. Carbohydr. Polym. 2017, 156, 193–201. 10.1016/j.carbpol.2016.09.027. PubMed DOI

Balbinot-Alfaro E.; Craveiro D. V.; Lima K. O.; Costa H. L. G.; Lopes D. R.; Prentice C. Intelligent Packaging with pH Indicator Potential. Food Eng. Rev. 2019, 11, 235–244. 10.1007/s12393-019-09198-9. DOI

Choi I.; Lee J. Y.; Lacroix M.; Han J. Intelligent pH Indicator Film Composed of Agar/Potato Starch and Anthocyanin Extracts from Purple Sweet Potato. Food Chem. 2017, 218, 122–128. 10.1016/j.foodchem.2016.09.050. PubMed DOI

Silva-Pereira M. C.; Teixeira J. A.; Pereira-Junior V. A.; Stefani R. Chitosan/Corn Starch Blend Films with Extract from Brassica Oleraceae (Red Cabbage) as a Visual Indicator of Fish Deterioration. LWT - Food Sci. Technol. 2015, 61, 258–262. 10.1016/j.lwt.2014.11.041. DOI

Zhang J.; Zou X.; Zhai X.; Huang X.; Jiang C.; Holmes M. Preparation of an Intelligent pH Film Based on Biodegradable Polymers and Roselle Anthocyanins for Monitoring Pork Freshness. Food Chem. 2019, 272, 306–312. 10.1016/j.foodchem.2018.08.041. PubMed DOI

Merz B.; Capello C.; Leandro G. C.; Moritz D. E.; Monteiro A. R.; Valencia G. A. A Novel Colorimetric Indicator Film Based on Chitosan, Polyvinyl Alcohol and Anthocyanins from Jambolan (Syzygium Cumini) Fruit for Monitoring Shrimp Freshness. Int. J. Biol. Macromol. 2020, 153, 625–632. 10.1016/j.ijbiomac.2020.03.048. PubMed DOI

Loypimai P.; Moongngarm A.; Chottanom P. Thermal and pH Degradation Kinetics of Anthocyanins in Natural Food Colorant Prepared from Black Rice Bran. J. Food Sci. Technol. 2016, 53, 461–470. 10.1007/s13197-015-2002-1. PubMed DOI PMC

Liu J. R.; Wang H. L.; Wang P. F.; Guo M.; Jiang S. W.; Li X. J.; Jiang S. T. Films Based on Kappa-Carrageenan Incorporated with Curcumin for Freshness Monitoring. Food Hydrocolloids 2018, 83, 134–142. 10.1016/j.foodhyd.2018.05.012. DOI

Musso Y. S.; Salgado P. R.; Mauri A. N. Smart Edible Films Based on Gelatin and Curcumin. Food Hydrocolloids 2017, 66, 8–15. 10.1016/j.foodhyd.2016.11.007. DOI

Sharifi S.; Fathi N.; Memar M. Y.; Hosseiniyan Khatibi S. M.; Khalilov R.; Negahdari R.; Zununi Vahed S.; Maleki Dizaj S. Anti-Microbial Activity of Curcumin Nanoformulations: New Trends and Future Perspectives. Phytother. Res. 2020, 34, 1926–1946. 10.1002/ptr.6658. PubMed DOI

Ma Q. Y.; Du L.; Wang L. J. Tara Gum/Polyvinyl Alcohol-Based Colorimetric NH3 Indicator Films Incorporating Curcumin for Intelligent Packaging. Sens. Actuators, B 2017, 244, 759–766. 10.1016/j.snb.2017.01.035. DOI

Luo N.; Varaprasad K.; Reddy G. V. S.; Rajulu A. V.; Zhang J. Preparation and Characterization of Cellulose/Curcumin Composite Films. RSC Adv. 2012, 2, 8483–8488. 10.1039/c2ra21465b. DOI

Roy S.; Rhim J. W. Preparation of Carbohydrate-Based Functional Composite Films Incorporated with Curcumin. Food Hydrocolloids 2020, 98, 10530210.1016/j.foodhyd.2019.105302. DOI

Roy S.; Rhim J. W. Carboxymethyl Cellulose-Based Antioxidant and Antimicrobial Active Packaging Film Incorporated with Curcumin and Zinc Oxide. Int. J. Biol. Macromol. 2020, 148, 666–676. 10.1016/j.ijbiomac.2020.01.204. PubMed DOI

Marković Z.; Kovacova M.; Micusik M.; Danko M.; Svajdlenkova H.; Kleinova A.; Humpolicek P.; Lehocky M.; Markovic B. T.; Spitalsky Z. Structural, Mechanical, and Antibacterial Features of Curcumin/Polyurethane Nanocomposites. J. Appl. Polym. Sci. 2019, 136, 47283.10.1002/app.47283. DOI

Zia J.; Paul U. C.; Heredia-Guerrero J. A.; Athanassiou A.; Fragouli D. Low-Density Polyethylene/Curcumin Melt Extruded Composites with Enhanced Water Vapor Barrier and Antioxidant Properties for Active Food Packaging. Polymer 2019, 175, 137–145. 10.1016/j.polymer.2019.05.012. DOI

Moustafa H.; Youssef A. M.; Darwish N. A.; Abou-Kandil A. I. Eco-Friendly Polymer Composites for Green Packaging: Future Vision and Challenges. Composites, Part B 2019, 172, 16–25. 10.1016/j.compositesb.2019.05.048. DOI

Mahmud S.; Long Y.; Abu Taher M.; Xiong Z.; Zhang R. Y.; Zhu J. Toughening Polylactide by Direct Blending of Cellulose Nanocrystals and Epoxidized Soybean Oil. J. Appl. Polym. Sci. 2019, 136, 48221.10.1002/app.48221. DOI

Xiong Z.; Yang Y.; Feng J. X.; Zhang X. M.; Zhang C. Z.; Tang Z. B.; Zhu J. Preparation and Characterization of Poly(Lactic Acid)/Starch Composites Toughened with Epoxidized Soybean Oil. Carbohydr. Polym. 2013, 92, 810–816. 10.1016/j.carbpol.2012.09.007. PubMed DOI

Farah S.; Anderson D. G.; Langer R. Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications - A Comprehensive Review. Adv. Drug Delivery Rev. 2016, 107, 367–392. 10.1016/j.addr.2016.06.012. PubMed DOI

Paul U.; Fragouli D.; Bayer I. S.; Zych A.; Athanassiou A. Effect of Green Plasticizer on the Performance of Microcrystalline Cellulose/Polylactic Acid Biocomposites. ACS Appl. Polym. Mater. 2021, 3, 3071–3081. 10.1021/acsapm.1c00281. DOI

Yao M.; Deng H.; Mai F.; Wang K.; Zhang Q.; Chen F.; Fu Q. Modification of Poly(Lactic Acid)/Poly(Propylene Carbonate) Blends Through Melt Compounding with Maleic Anhydride. Express Polym. Lett. 2011, 5, 937–949. 10.3144/expresspolymlett.2011.92. DOI

Haneef I.; Buys Y. F.; Shaffiar N. M.; Haris N. A.; Hamid A. M. A.; Shaharuddin S. I. S. Mechanical, Morphological, Thermal Properties and Hydrolytic Degradation Behavior of Polylactic Acid/Polypropylene Carbonate Blends Prepared by Solvent Casting. Polym. Eng. Sci. 2020, 60, 2876–2886. 10.1002/pen.25519. DOI

Syed Shaharuddin S. I.; Mukhtar A. R.; Akhir N. A. M.; Shaffiar N.; Othman M. Experimental and Finite Element Analysis of Solvent Cast Poly(Lactic Acid) Thin Film Blends. IIUM Eng. J. 2019, 20, 197–210. 10.31436/iiumej.v20i2.1119. DOI

Sun Q. R.; Mekonnen T.; Misra M.; Mohanty A. K. Novel Biodegradable Cast Film from Carbon Dioxide Based Copolymer and Poly(Lactic Acid). J. Polym. Environ. 2016, 24, 23–36. 10.1007/s10924-015-0743-6. DOI

Mathew A. P.; Oksman K.. Processing of Bionanocomposites: Solution Casting. In Handbook of Green Materials; World Scientific: 2014; pp 35–52.

Othmer K.Encyclopedia of Chemical Technology, 5th ed.; John Wiley & Sons, Inc., 2004; p 27.

Battegazzore D.; Bocchini S.; Frache A. Crystallization Kinetics of Poly(Lactic Acid)-Talc Composites. eXPRESS Polym. Lett. 2011, 5, 849–858. 10.3144/expresspolymlett.2011.84. DOI

Flodberg G.; Helland I.; Thomsson L.; Fredriksen S. B. Barrier Properties of Polypropylene Carbonate and Poly(Lactic Acid) Cast Films. Eur. Polym. J. 2015, 63, 217–226. 10.1016/j.eurpolymj.2014.12.020. DOI

Verney V.; Michel A. Representation of the Rheological Properties of Polymer Melts in Terms of Complex Fluidity. Rheol. Acta 1989, 28, 54–60. 10.1007/BF01354769. DOI

Ho T. T. T.; Zimmermann T.; Ohr S.; Caseri W. R. Composites of Cationic Nanofibrillated Cellulose and Layered Silicates: Water Vapor Barrier and Mechanical Properties. ACS Appl. Mater. Interfaces 2012, 4, 4832–4840. 10.1021/am3011737. PubMed DOI

Tran T. N.; Paul U.; Heredia-Guerrero J. A.; Liakos I.; Marras S.; Scarpellini A.; Ayadi F.; Athanassiou A.; Bayer I. S. Transparent and Flexible Amorphous Cellulose-Acrylic Hybrids. Chem. Eng. J. 2016, 287, 196–204. 10.1016/j.cej.2015.10.114. DOI

Tedeschi G.; Guzman-Puyol S.; Paul U. C.; Barthel M. J.; Goldoni L.; Caputo G.; Ceseracciu L.; Athanassiou A.; Heredia-Guerrero J. A. Thermoplastic Cellulose Acetate Oleate Films with High Barrier Properties and Ductile Behaviour. Chem. Eng. J. 2018, 348, 840–849. 10.1016/j.cej.2018.05.031. DOI

Murmu S. B.; Mishra H. N. Engineering Evaluation of Thickness and Type of Packaging Materials Based on the Modified Atmosphere Packaging Requirements of Guava (Cv. Baruipur). LWT - Food Sci. Technol. 2017, 78, 273–280. 10.1016/j.lwt.2016.12.043. DOI

Papadopoulou E. L.; Paul U. C.; Tran T. N.; Suarato G.; Ceseracciu L.; Marras S.; d’Arcy R.; Athanassiou A. Sustainable Active Food Packaging from Poly(Lactic Acid) and Cocoa Bean Shells. ACS Appl. Mater. Interfaces 2019, 11, 31317–31327. 10.1021/acsami.9b09755. PubMed DOI

Paul U. C.; Fragouli D.; Bayer I. S.; Mele E.; Conchione C.; Cingolani R.; Moret S.; Athanassiou A. Mineral Oil Barrier Sequential Polymer Treatment for Recycled Paper Products in Food Packaging. Mater. Res. Express 2017, 4, 01550110.1088/2053-1591/4/1/015501. DOI

Perotto G.; Ceseracciu L.; Simonutti R.; Paul U. C.; Guzman-Puyol S.; Tran T. N.; Bayer I. S.; Athanassiou A. Bioplastics from Vegetable Waste via an Eco-Friendly Water-Based Process. Green Chem. 2018, 20, 894–902. 10.1039/C7GC03368K. DOI

Hawkeye M. M.; Brett M. J. Optimized Colorimetric Photonic-Crystal Humidity Sensor Fabricated Using Glancing Angle Deposition. Adv. Funct. Mater. 2011, 21, 3652–3658. 10.1002/adfm.201100893. DOI

Zia J.; Mancini G.; Bustreo M.; Zych A.; Donno R.; Athanassiou A.; Fragouli D. Porous pH Natural Indicators for Acidic and Basic Vapor Sensing. Chem. Eng. J. 2021, 403, 12637310.1016/j.cej.2020.126373. DOI

Mokrzycki W. S.; Tatol M. Colour difference ΔE - A survey. Mach. Graphics Vision 2011, 20, 383–411.

Ma X. F.; Yu J. G.; Wang N. Compatibility Characterization of Poly(Lactic Acid)/Poly(Propylene Carbonate) Blends. J. Polym. Sci., Part B: Polym. Phys. 2006, 44, 94–101. 10.1002/polb.20669. DOI

Qin S. X.; Yu C. X.; Chen X. Y.; Zhou H. P.; Zhao L. F. Fully Biodegradable Poly(Lactic Acid)/Poly(Propylene Carbonate) Shape Memory Materials with Low Recovery Temperature Based on in Situ Compatibilization by Dicumyl Peroxide. Chin. J. Polym. Sci. 2018, 36, 783–790. 10.1007/s10118-018-2065-3. DOI

Rachmawati H.; Yanda Y. L.; Rahma A.; Mase N. Curcumin-Loaded PLA Nanoparticles: Formulation and Physical Evaluation. Sci. Pharm. 2016, 84, 191–202. 10.3797/scipharm.ISP.2015.10. PubMed DOI PMC

Chieng B. W.; Ibrahim N. A.; Yunus W.; Hussein M. Z.; Then Y. Y.; Loo Y. Y. Effects of Graphene Nanoplatelets and Reduced Graphene Oxide on Poly(Lactic Acid) and Plasticized Poly(Lactic Acid): A Comparative Study. Polymers 2014, 6, 2232–2246. 10.3390/polym6082232. DOI

Mngomezulu M. E.; Luyt A. S.; Chapple S. A.; John M. J. Poly(Lactic Acid)-Starch/Expandable Graphite (PLA-Starch/EG) Flame Retardant Composites. J. Renewable Mater. 2018, 6, 26–37. 10.7569/JRM.2017.634140. DOI

Chen Z. P.; Xia Y.; Liao S.; Huang Y. H.; Li Y.; He Y.; Tong Z. F.; Li B. Thermal Degradation Kinetics Study of Curcumin with Nonlinear Methods. Food Chem. 2014, 155, 81–86. 10.1016/j.foodchem.2014.01.034. PubMed DOI

Swilem A. E.; Stloukal P.; Abd El-Rehim H. A.; Hrabalikova M.; Sedlarik V. Influence of Gamma Rays on the Physico-Chemical, Release and Antibacterial Characteristics of Low-Density Polyethylene Composite Films Incorporating an Essential Oil for Application in Food-Packaging. Food Packag. Shelf Life 2019, 19, 131–139. 10.1016/j.fpsl.2018.11.014. DOI

Ye C. C.; Yu Q. L.; He T. T.; Shen J. Q.; Li Y. J.; Li J. Y. Physical and Rheological Properties of Maleic Anhydride-Incorporated PVDF: Does MAH Act as a Physical Crosslinking Point for PVDF Molecular Chains?. ACS Omega 2019, 4, 21540–21547. 10.1021/acsomega.9b03256. PubMed DOI PMC

Borah J. S.; Chaki T. K. Effect of Organo-Montmorillonite Addition on the Dynamic and Capillary Rheology of LLDPE/EMA Blends. Appl. Clay Sci. 2012, 59–60, 42–49. 10.1016/j.clay.2012.02.007. DOI

Ghasemi I.; Azizi H.; Naeimian N. Rheological Behaviour of Polypropylene/Kenaf Fibre/Wood Flour Hybrid Composite. Iran. Polym. J. 2008, 17, 191–198.

Cvek M.; Kracalik M.; Sedlacik M.; Mrlik M.; Sedlarik V. Reprocessing of Injection-Molded Magnetorheological Elastomers Based on TPE Matrix. Composites, Part B 2019, 172, 253–261. 10.1016/j.compositesb.2019.05.090. DOI

Siracusa V.; Rocculi P.; Romani S.; Dalla Rosa M. Biodegradable Polymers for Food Packaging: A Review. Trends Food Sci. Technol. 2008, 19, 634–643. 10.1016/j.tifs.2008.07.003. DOI

Quilez-Molina A. I.; Marini L.; Athanassiou A.; Bayer I. S. UV-Blocking, Transparent, and Antioxidant Polycyanoacrylate Films. Polymers 2020, 12, 2011.10.3390/polym12092011. PubMed DOI PMC

Wang Y.; Su J.; Li T.; Ma P. M.; Bai H. Y.; Xie Y.; Chen M. Q.; Dong W. F. A Novel UV-Shielding and Transparent Polymer Film: When Bioinspired Dopamine-Melanin Hollow Nanoparticles Join Polymers. ACS Appl. Mater. Interfaces 2017, 9, 36281–36289. 10.1021/acsami.7b08763. PubMed DOI

Jia S. K.; Yu D. M.; Zhu Y.; Wang Z.; Chen L. G.; Fu L. Morphology, Crystallization and Thermal Behaviors of PLA-Based Composites: Wonderful Effects of Hybrid GO/PEG via Dynamic Impregnating. Polymers 2017, 9, 528.10.3390/polym9100528. PubMed DOI PMC

Wang J. C.; Wu Y. K.; Cao Y. J.; Li G. S.; Liao Y. F. Influence of Surface Roughness on Contact Angle Hysteresis and Spreading Work. Colloid Polym. Sci. 2020, 298, 1107–1112. 10.1007/s00396-020-04680-x. DOI

Ritger P. L.; Peppas N. A. A Simple Equation for Description of Solute Release I. Fickian and Non-Fickian Release from Non-Swellable Devices in the Form of Slabs, Spheres, Cylinders or Discs. J. Controlled Release 1987, 5, 23–36. 10.1016/0168-3659(87)90034-4. PubMed DOI

Gemili S.; Yemenicioglu A.; Altinkaya S. A. Development of Antioxidant Food Packaging Materials with Controlled Release Properties. J. Food Eng. 2010, 96, 325–332. 10.1016/j.jfoodeng.2009.08.020. DOI

Li J. H.; Miao J.; Wu J. L.; Chen S. F.; Zhang Q. Q. Preparation and Characterization of Active Gelatin-Based Films Incorporated with Natural Antioxidants. Food Hydrocolloids 2014, 37, 166–173. 10.1016/j.foodhyd.2013.10.015. DOI

Wang L. Y.; Dong Y.; Men H. T.; Tong J.; Zhou J. Preparation and Characterization of Active Films Based on Chitosan Incorporated Tea Polyphenols. Food Hydrocolloids 2013, 32, 35–41. 10.1016/j.foodhyd.2012.11.034. DOI

Siripatrawan U.; Harte B. R. Physical Properties and Antioxidant Activity of an Active Film from Chitosan Incorporated with Green Tea Extract. Food Hydrocolloids 2010, 24, 770–775. 10.1016/j.foodhyd.2010.04.003. DOI

Xu Y. X.; Liu X. L.; Jiang Q. X.; Yu D. W.; Xu Y. S.; Wang B.; Xia W. S. Development and Properties of Bacterial Cellulose, Curcumin, and Chitosan Composite Biodegradable Films for Active Packaging Materials. Carbohydr. Polym. 2021, 260, 11777810.1016/j.carbpol.2021.117778. PubMed DOI

Pereira de Abreu D. A.; Losada P. P.; Maroto J.; Cruz J. M. Natural Antioxidant Active Packaging Film and its Effect on Lipid Damage in Frozen Blue Shark (Prionace Glauca). Innovative Food Sci. Emerging Technol. 2011, 12, 50–55. 10.1016/j.ifset.2010.12.006. DOI

Iulietto M. F.; Sechi P.; Borgogni E.; Cenci-Goga B. T. Meat Spoilage: A Critical Review of a Neglected Alteration due to Ropy Slime Producing Bacteria. Ital. J. Anim. Sci. 2015, 14, 4011.10.4081/ijas.2015.4011. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...