Degradation of Polylactic Acid/Polypropylene Carbonate Films in Soil and Phosphate Buffer and Their Potential Usefulness in Agriculture and Agrochemistry

. 2024 Jan 04 ; 25 (1) : . [epub] 20240104

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38203826

Blends of poly(lactic acid) (PLA) with poly(propylene carbonate) (PPC) are currently in the phase of intensive study due to their promising properties and environmentally friendly features. Intensive study and further commercialization of PPC-based polymers or their blends, as usual, will soon face the problem of their waste occurring in the environment, including soil. For this reason, it is worth comprehensively studying the degradation rate of these polymers over a long period of time in soil and, for comparison, in phosphate buffer to understand the difference in this process and evaluate the potential application of such materials toward agrochemical and agricultural purposes. The degradation rate of the samples was generally accompanied by weight loss and a decrease in molecular weight, which was facilitated by the presence of PPC. The incubation of the samples in the aqueous media yielded greater surface erosions compared to the degradation in soil, which was attributed to the leaching of the low molecular degradation species out of the foils. The phytotoxicity study confirmed the no toxic impact of the PPC on tested plants, indicating it as a "green" material, which is crucial information for further, more comprehensive study of this polymer toward any type of sustainable application.

Zobrazit více v PubMed

Hatti-Kaul R., Nilsson L.J., Zhang B., Rehnberg N., Lundmark S. Designing Biobased Recyclable Polymers for Plastics. Trends Biotechnol. 2020;38:50–67. doi: 10.1016/j.tibtech.2019.04.011. PubMed DOI

Karan H., Funk C., Grabert M., Oey M., Hankamer B. Green Bioplastics as Part of a Circular Bioeconomy. Trends Plant Sci. 2019;24:237–249. doi: 10.1016/j.tplants.2018.11.010. PubMed DOI

Zhang Q., Song M., Xu Y., Wang W., Wang Z., Zhang L. Bio-based polyesters: Recent progress and future prospects. Prog. Polym. Sci. 2021;120:101430. doi: 10.1016/j.progpolymsci.2021.101430. DOI

Siwek P., Libik A., Twardowska-Shmidt K., Ciechańska D., Gryza I. Biopolymers and their applications in agriculture. [(accessed on 30 December 2010)];Polimery. 2010 55:806–811. doi: 10.14314/polimery.2010.806. Available online: http://ichp.vot.pl/index.php/p/article/view/1067. DOI

Szymański Ł., Grabowska B., Kaczmarska K., Kurleto Ż. Celuloza i jej pochodne–zastosowanie w przemyśle. Arch. Foundry Eng. 2015;15:129–132.

Kozłowski J., Kochański A., Perzyk M., Tryznowski M. Zastosowanie PLA jako spoiwa w masach formierskich i rdzeniowych. Arch. Foundry Eng. 2014;14:51–54.

Zhong Y., Godwin P., Jin Y., Xiao H. Biodegradable polymers and green-based antimicrobial packaging materials: A mini-review. Adv. Ind. Eng. Polym. Res. 2020;3:27–35. doi: 10.1016/j.aiepr.2019.11.002. DOI

Wu F., Misra M., Mohanty A.K. Challenges and new opportunities on barrier performance of biodegradable polymers for sustainable packaging. Prog. Polym. Sci. 2021;117:101395. doi: 10.1016/j.progpolymsci.2021.101395. DOI

Galiano F., Briceño K., Marino T., Molino A., Christensen K.V., Figoli A. Advances in biopolymer-based membrane preparation and applications. J. Memb. Sci. 2018;564:562–586. doi: 10.1016/j.memsci.2018.07.059. DOI

Doppalapudi S., Jain A., Khan W., Domb A.J. Biodegradable polymers-an overview. Polym. Adv. Technol. 2014;25:427–435. doi: 10.1002/pat.3305. DOI

Andrzejewska A., Topoliński T. Polimery biodegradowalne do zastosowań biomedycznych. Postępy W Inżynierii Mech. 2015;6:5–12.

Qiu H., Feng K., Gapeeva A., Meurisch K., Kaps S., Li X., Yu L., Mishra Y.K., Adelung R., Baum M. Functional polymer materials for modern marine biofouling control. Prog. Polym. Sci. 2022;127:101516. doi: 10.1016/j.progpolymsci.2022.101516. DOI

Ugbolue S.C., editor. Polyolefin Fibres: Structure, Properties and Industrial Applications. Woodhead Publishing; Sawston, UK: 2017.

Bauer K.N., Tee H.T., Velencoso M.M., Wurm F.R. Main-chain poly(phosphoester)s: History, syntheses, degradation, bio-and flame-retardant applications. Prog. Polym. Sci. 2017;73:61–122. doi: 10.1016/j.progpolymsci.2017.05.004. DOI

Moraczewski K., Pawłowska A., Stepczyńska M., Malinowski R., Kaczor D., Budner B., Gocman K., Rytlewski P. Plant extracts as natural additives for environmentally friendly polylactide films. Food Packag. Shelf Life. 2020;26:100593. doi: 10.1016/j.fpsl.2020.100593. DOI

Hamad K., Kaseem M., Ayyoob M., Joo J., Deri F. Polylactic acid blends: The future of green, light and tough. Prog. Polym. Sci. 2018;85:83–127. doi: 10.1016/j.progpolymsci.2018.07.001. DOI

Bora D., Dutta H., Saha B., Reddy Y.A.K., Patel R., Verma S.K., Sellamuthu P.S., Sadiku R., Jayaramudu J. A Review on Modification of Polypropylene Carbonate (PPC) Using Different types of Blends/Composites and Its Advanced Uses. Mater. Today Commun. 2023;10:107304. doi: 10.1016/j.mtcomm.2023.107304. DOI

Luinstra G., Borchardt E. Synthetic Biodegradable Polymers. Springer; Berlin/Heidelberg, Germany: 2011. Material properties of poly(propylene carbonates) pp. 29–48. DOI

Manavitehrani I., Fathi A., Wang Y., Maitz P.K., Dehghani F. Reinforced poly (propylene carbonate) composite with enhanced and tunable characteristics, an alternative for poly (lactic acid) ACS Appl. Mater. Interfaces. 2015;7:22421–22430. doi: 10.1021/acsami.5b06407. PubMed DOI

Liu Z., Hu J., Gao F., Cao H., Zhou Q., Wang X. Biodegradable and resilient poly (propylene carbonate) based foam from high pressure CO2 foaming. Polym. Degrad. Stab. 2019;165:12–19. doi: 10.1016/j.polymdegradstab.2019.04.019. DOI

Wang D., Yu J., Zhang J., He J., Zhang J. Transparent bionanocomposites with improved properties from poly (propylene carbonate)(PPC) and cellulose nanowhiskers (CNWs) Compos. Sci. Technol. 2013;85:83–89. doi: 10.1016/j.compscitech.2013.06.004. DOI

Choo J.E., Park T.H., Jeon S.M., Hwang S.W. The Effect of Epoxidized Soybean Oil on the Physical and Mechanical Properties of PLA/PBAT/PPC Blends by the Reactive Compatibilization. J. Polym. Environ. 2023;31:4007–4021. doi: 10.1007/s10924-023-02862-6. PubMed DOI PMC

Ma X., Yu J., Wang N. Compatibility characterization of poly (lactic acid)/poly (propylene carbonate) blends. J. Polym. Sci. Part B Polym. Phys. 2006;44:94–101. doi: 10.1002/polb.20669. DOI

Haneef I.N.H.M., Buys Y.F., Shaffiar N.M., Shaharuddin S.I.S., Khairusshima M.N. Miscibility, mechanical, and thermal properties of polylactic acid/polypropylene carbonate (PLA/PPC) blends prepared by melt-mixing method. Mater. Today Proc. 2019;17:534–542. doi: 10.1016/j.matpr.2019.06.332. DOI

Cvek M., Paul U.C., Zia J., Mancini G., Sedlarik V., Athanassiou A. Biodegradable films of PLA/PPC and curcumin as packaging materials and smart indicators of food spoilage. ACS Appl. Mater. Interfaces. 2022;14:14654–14667. doi: 10.1021/acsami.2c02181. PubMed DOI PMC

Rychter P., Biczak R., Herman B., Smyłła A., Kurcok P., Adamus G., Kowalczuk M. Environmental degradation of polyester blends containing atactic poly (3-hydroxybutyrate). Biodegradation in soil and ecotoxicological impact. Biomacromolecules. 2006;7:3125–3131. doi: 10.1021/bm060708r. PubMed DOI

Luzi F., Fortunati E., Puglia D., Petrucci R., Kenny J.M., Torre L. Study of disintegrability in compost and enzymatic degradation of PLA and PLA nanocomposites reinforced with cellulose nanocrystals extracted from Posidonia Oceanica. Polym. Degrad. Stab. 2015;121:105–115. doi: 10.1016/j.polymdegradstab.2015.08.016. DOI

Rychter P., Kawalec M., Sobota M., Kurcok P., Kowalczuk M. Study of aliphatic-aromatic copolyester degradation in sandy soil and its ecotoxicological impact. Biomacromolecules. 2010;11:839–847. doi: 10.1021/bm901331t. PubMed DOI

Madras G., Sathiskumar P.S. Synthesis, characterization, degradation of biodegradable castor oil based polyesters. Polym. Degrad. Stab. 2011;96:1695–1704. doi: 10.1016/j.polymdegradstab.2011.07.002. DOI

Khoryani Z., Seyfi J., Nekoei M. Investigating the effects of polymer molecular weight and non-solvent content on the phase separation, surface morphology and hydrophobicity of polyvinyl chloride films. Appl. Surf. Sci. 2018;428:933–940. doi: 10.1016/j.apsusc.2017.09.235. DOI

Da Silva D., Kaduri M., Poley M., Adir O., Krinsky N., Shainsky-Roitman J., Schroeder A. Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chem. Eng. J. 2018;340:9–14. doi: 10.1016/j.cej.2018.01.010. PubMed DOI PMC

Trofimchuk E.S., Moskvina M.A., Nikonorova N.I., Efimov A.V., Garina E.S., Grokhovskaya T.E., Ivanova O.A., Bakirov A.V., Sedush N.G., Chvalun S.N. Hydrolytic degradation of polylactide films deformed by the environmental crazing mechanism. Eur. Polym. J. 2020;139:110000. doi: 10.1016/j.eurpolymj.2020.110000. DOI

Limsukon W., Auras R., Selke S. Hydrolytic degradation and lifetime prediction of poly (lactic acid) modified with a multifunctional epoxy-based chain extender. Polym. Test. 2019;80:106108. doi: 10.1016/j.polymertesting.2019.106108. DOI

Duda A., Penczek S. Polilaktyd [poli(kwas mlekowy)]: Synteza, właściwości i zastosowania. [(accessed on 17 September 2022)];Polimery. 2003 48:16–27. doi: 10.14314/polimery.2003.016. Available online: http://ichp.vot.pl/index.php/p/article/view/1832. DOI

Álvarez-Méndez S.J., Ramos-Suárez J.L., Ritter A., González J.M., Pérez Á.C. Anaerobic digestion of commercial PLA and PBAT biodegradable plastic bags: Potential biogas production and 1H NMR and ATR-FTIR assessed biodegradation. Heliyon. 2023;9:e16691. doi: 10.1016/j.heliyon.2023.e16691. PubMed DOI PMC

Saxena P., Shukla P., Gaur M. Thermal analysis of polymer blends and double layer by DSC. Polym. Polym. Compos. 2021;29:11–18. doi: 10.1177/0967391120984606. DOI

Capitain C., Ross-Jones J., Möhring S., Tippkötter N. Differential scanning calorimetry for quantification of polymer biodegradability in compost. Int. Biodeterior. Biodegrad. 2020;149:104914. doi: 10.1016/j.ibiod.2020.104914. DOI

Slezak R., Krzystek L., Puchalski M., Krucińska I., Sitarski A. Degradation of bio-based film plastics in soil under natural conditions. Sci. Total Environ. 2023;866:161401. doi: 10.1016/j.scitotenv.2023.161401. PubMed DOI

Lucas N., Bienaime C., Belloy C., Queneudec M., Silvestre F., Nava-Saucedo J.E. Polymer biodegradation: Mechanisms and estimation techniques—A review. Chemosphere. 2008;73:429–442. doi: 10.1016/j.chemosphere.2008.06.064. PubMed DOI

Carter G.A., Knapp A.K. Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration. Am. J. Bot. 2001;88:677–684. doi: 10.2307/2657068. PubMed DOI

Chenard C.H., Kopsell D.A., Kopsell D.E. Nitrogen concentration affects nutrient and carotenoid accumulation in parsley. J. Plant Nutr. 2005;28:285–297. doi: 10.1081/PLN-200047616. DOI

Narancic T., Verstichel S., Chaganti S.R., Morales-Gamez L., Kenny S.T., De Wilde B., Padamati R.B., O’connor K.E. Biodegradable Plastic Blends Create New Possibilities for End-of-Life Management of Plastics but They Are Not a Panacea for Plastic Pollution. Environ. Sci. Technol. 2018;52:10441. doi: 10.1021/acs.est.8b02963. PubMed DOI

Han L., Han C., Zhang H., Chen S., Dong L. Morphology and properties of biodegradable and biosourced polylactide blends with poly (3-hydroxybutyrate-co-4-hydroxybutyrate) Polym. Compos. 2012;33:850–859. doi: 10.1002/pc.22213. DOI

Rychter P., Lewicka K., Pastusiak M., Domański M., Dobrzyński P. PLGA–PEG terpolymers as a carriers of bioactive agents, influence of PEG blocks content on degradation and release of herbicides into soil. Polym. Degrad. Stab. 2019;161:95–107. doi: 10.1016/j.polymdegradstab.2019.01.002. DOI

Pan H., Hao Y., Zhao Y., Lang X., Zhang Y., Wang Z., Zhang H., Dong L. Improved mechanical properties, barrier properties and degradation behavior of poly (butylenes adipate-co-terephthalate)/poly (propylene carbonate) films. Korean J. Chem. Eng. 2017;34:1294–1304. doi: 10.1007/s11814-017-0066-5. DOI

Yang J., Zhang X., Li T., Wang Y., Xia B., Jiang J., Chen M., Dong W. A novel biodegradable poly (propylene carbonate) with enhanced thermal and mechanical properties by incorporating tannic acid. Polym. Adv. Technol. 2022;33:1341–1347. doi: 10.1002/pat.5579. DOI

Phillips O., Schwartz J.M., Kohl P.A. Thermal decomposition of poly (propylene carbonate): End-capping, additives, and solvent effects. Polym. Degrad. Stab. 2016;125:129–139. doi: 10.1016/j.polymdegradstab.2016.01.004. DOI

Varghese J.K., Na S.J., Park J.H., Woo D., Yang I., Lee B.Y. Thermal and weathering degradation of poly (propylene carbonate) Polym. Degrad. Stab. 2010;95:1039–1044. doi: 10.1016/j.polymdegradstab.2010.03.006. DOI

Di Lorenzo M.L., Ovyn R., Malinconico M., Rubino P., Grohens Y. Peculiar crystallization kinetics of biodegradable poly (lactic acid)/poly (propylene carbonate) blends. Polym. Eng. Sci. 2015;55:2698–2705. doi: 10.1002/pen.24058. DOI

Wang Z., Zhang M., Liu Z., Zhang S., Cao Z., Yang W., Yang M. Compatibilization of the poly (lactic acid)/poly (propylene carbonate) blends through in situ formation of poly (lactic acid)-b-poly (propylene carbonate) copolymer. J. Appl. Polym. Sci. 2018;135:46009. doi: 10.1002/app.46009. DOI

Araújo A., Oliveira M., Oliveira R., Botelho G., Machado A.V. Biodegradation assessment of PLA and its nanocomposites. Environ. Sci. Pollut. Res. 2014;21:9477–9486. doi: 10.1007/s11356-013-2256-y. PubMed DOI

Backes E.H., Pires L.D.N., Costa L.C., Passador F.R., Pessan L.A. Analysis of the degradation during melt processing of PLA/Biosilicate® composites. J. Compos. Sci. 2019;3:52. doi: 10.3390/jcs3020052. DOI

Du L.C., Meng Y.Z., Wang S.J., Tjong S.C. Synthesis and degradation behavior of poly (propylene carbonate) derived from carbon dioxide and propylene oxide. J. Appl. Polym. Sci. 2004;92:1840–1846. doi: 10.1002/app.20165. DOI

Flores I., Etxeberria A., Irusta L., Calafel I., Vega J.F., Martínez-Salazar J., Sardon H., Müller A.J. PET-ran-PLA partially degradable random copolymers prepared by organocatalysis: Effect of poly (l-lactic acid) incorporation on crystallization and morphology. ACS Sustain. Chem. Eng. 2019;7:8647–8659. doi: 10.1021/acssuschemeng.9b00443. DOI

Jalali A., Huneault M.A., Elkoun S.J. Effect of Thermal History on Nucleation and Crystallization of Poly(lactic acid) Mater. Sci. 2016;51:7768–7779. doi: 10.1007/s10853-016-0059-5. DOI

Cuiffo M.A., Snyder J., Elliott A.M., Romero N., Kannan S., Halada G.P. Impact of the Fused Deposition (FDM) Printing Process on Polylactic Acid (PLA) Chemistry and Structure. Appl. Sci. 2017;7:579. doi: 10.3390/app7060579. DOI

Di Lorenzo M.L., Androsch R. Influence of α’-/α-crystal polymorphism on properties of poly(l-lactic acid) Polym. Int. 2019;68:320–334. doi: 10.1002/pi.5707. DOI

Wunderlich B. Thermal Analysis of Polymeric Materials. Springer; Berlin/Heidelberg, Germany: 2005. DOI

Pyda M., Czerniecka-Kubicka A. Synthesis, Structure and Properties of Poly(lactic acid) Volume 279. Advances in Polymer Science; Springer; Cham, Switzerland: 2017. Thermal Properties and Thermodynamics of Poly(L-lactic acid) pp. 153–193. DOI

Struik L.C.E. Physical Aging in Amorphous Polymers and Other Materials. Elsevier Science; Amsterdam, The Netherlands: 1980. Multiple Component Materials; pp. 705–776. DOI

Struik L.C.E. Failure of Plastics. Macmillan; New York, NY, USA: 1986. Physical aging: Influence on the deformation behavior of amorphous polymers; pp. 209–258.

Jin Y., Cai F., Song C., Liu G., Chen C. Degradation of biodegradable plastics by anaerobic digestion: Morphological, micro-structural changes and microbial community dynamics. Sci. Total Environ. 2022;834:155167. doi: 10.1016/j.scitotenv.2022.155167. PubMed DOI

Mistry A.N., Kachenchart B., Pinyakong O., Assavalapsakul W., Jitpraphai S.M., Somwangthanaroj A., Luepromchai E. Bioaugmentation with a defined bacterial consortium: A key to degrade high molecular weight polylactic acid during traditional composting. Bioresour. Technol. 2023;367:128237. doi: 10.1016/j.biortech.2022.128237. PubMed DOI

Liwarska-Bizukojc E. Phytotoxicity assessment of biodegradable and non-biodegradable plastics using seed germination and early growth tests. Chemosphere. 2022;289:133132. doi: 10.1016/j.chemosphere.2021.133132. PubMed DOI

Manzano V., García N.L., Ramírez C.R., D’Accorso N., Goyanes S. Polymers for Agri-Food Applications. Springer; Cham, Switzerland: 2019. Mulch plastic systems: Recent advances and applications; pp. 265–290. DOI

Rychter P., Lewicka K., Rogacz D. Environmental usefulness of PLA/PEG blends for controlled-release systems of soil-applied herbicides. J. Appl. Polym. Sci. 2019;136:47856. doi: 10.1002/app.47856. DOI

Rychter P., Christova D., Lewicka K., Rogacz D. Ecotoxicological impact of selected polyethylenimines toward their potential application as nitrogen fertilizers with prolonged activity. Chemosphere. 2019;226:800–808. doi: 10.1016/j.chemosphere.2019.03.128. PubMed DOI

Rychter P., Rogacz D., Lewicka K., Lacik I. Poly (methylene-co-cyanoguanidine) as an Eco-friendly Nitrogen Fertilizer with Prolonged Activity. J. Polym. Environ. 2019;27:1317–1332. doi: 10.1007/s10924-019-01431-0. DOI

OECD Guidelines for the Testing of Chemicals—Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test. Organization for Economic Co-Operation and Development; Paris, France: 2006. OECD/OCDE 208.

Battegazzore D., Bocchini S., Frache A. Crystallization kinetics of poly(lactic acid)-talc composites. Express Polym. Lett. 2011;5:849–858. doi: 10.3144/expresspolymlett.2011.84. DOI

Flodberg G., Helland I., Thomsson L., Fredriksen S.B. Barrier properties of polypropylene carbonate and poly(lactic acid) cast films. Eur. Polym. J. 2015;63:217–226. doi: 10.1016/j.eurpolymj.2014.12.020. DOI

Oren A., Kühl M., Karsten U. An endoevaporitic microbial mat within a gypsum crust: Zonation of phototrophs, photopigments, and light penetration. Mar. Ecol. Prog. Ser. 1995;128:151–159. doi: 10.3354/meps128151. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...