Review: Genes Involved in Mitochondrial Physiology Within 22q11.2 Deleted Region and Their Relevance to Schizophrenia
Language English Country United States Media print
Document type Journal Article
Grant support
22-15096S
Czech Grant Agency
NU22J-04-00061
Agency for Health Research, Czech Republic
CZ.02.1.01/0.0/0.0/16_025/0007444
NIMH-CZ
PubMed
37379469
PubMed Central
PMC10686339
DOI
10.1093/schbul/sbad066
PII: 7209627
Knihovny.cz E-resources
- Keywords
- 22q11.2DS, energy metabolism, mitochondria, schizophrenia,
- MeSH
- DiGeorge Syndrome * genetics MeSH
- Humans MeSH
- MicroRNAs * metabolism MeSH
- Mitochondria genetics metabolism MeSH
- RNA-Binding Proteins metabolism MeSH
- Ribonucleoproteins metabolism MeSH
- Ribosomal Proteins metabolism MeSH
- Schizophrenia * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- MicroRNAs * MeSH
- MRPL40 protein, human MeSH Browser
- RNA-Binding Proteins MeSH
- Ribonucleoproteins MeSH
- Ribosomal Proteins MeSH
BACKGROUND AND HYPOTHESIS: Schizophrenia is associated with altered energy metabolism, but the cause and potential impact of these metabolic changes remain unknown. 22q11.2 deletion syndrome (22q11.2DS) represents a genetic risk factor for schizophrenia, which is associated with the loss of several genes involved in mitochondrial physiology. Here we examine how the haploinsufficiency of these genes could contribute to the emergence of schizophrenia in 22q11.2DS. STUDY DESIGN: We characterize changes in neuronal mitochondrial function caused by haploinsufficiency of mitochondria-associated genes within the 22q11.2 region (PRODH, MRPL40, TANGO2, ZDHHC8, SLC25A1, TXNRD2, UFD1, and DGCR8). For that purpose, we combine data from 22q11.2DS carriers and schizophrenia patients, in vivo (animal models) and in vitro (induced pluripotent stem cells, IPSCs) studies. We also review the current knowledge about seven non-coding microRNA molecules located in the 22q11.2 region that may be indirectly involved in energy metabolism by acting as regulatory factors. STUDY RESULTS: We found that the haploinsufficiency of genes of interest is mainly associated with increased oxidative stress, altered energy metabolism, and calcium homeostasis in animal models. Studies on IPSCs from 22q11.2DS carriers corroborate findings of deficits in the brain energy metabolism, implying a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS. CONCLUSIONS: The haploinsufficiency of genes within the 22q11.2 region leads to multifaceted mitochondrial dysfunction with consequences to neuronal function, viability, and wiring. Overlap between in vitro and in vivo studies implies a causal role between impaired mitochondrial function and the development of schizophrenia in 22q11.2DS.
3rd Faculty of Medicine Charles University Prague Czech Republic
Institute of Physiology Czech Academy of Sciences Prague Czech Republic
See more in PubMed
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. USA: American Psychiatric Association; 2013. doi: 10.1176/appi.books.9780890425596 DOI
Kantrowitz JT, Javitt DC.. N-methyl-d-aspartate (NMDA) receptor dysfunction or dysregulation: the final common pathway on the road to schizophrenia? Brain Res Bull. 2010;83(3–4):108–121. doi: 10.1016/j.brainresbull.2010.04.006 PubMed DOI PMC
Howes OD, Kapur S.. The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr Bull. 2009;35(3):549–562. doi: 10.1093/schbul/sbp006 PubMed DOI PMC
Cuenod M, Steullet P, Cabungcal JH, et al. . Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry. 2022;27(4):1886–1897. doi: 10.1038/s41380-021-01374-w PubMed DOI PMC
Nakazawa K, Zsiros V, Jiang Z, et al. . GABAergic interneuron origin of schizophrenia pathophysiology. Neuropharmacology. 2012;62(3):1574–1583. doi: 10.1016/j.neuropharm.2011.01.022 PubMed DOI PMC
Tamminga CA, Ivleva EI, Keshavan MS, et al. . Clinical phenotypes of psychosis in the bipolar-schizophrenia network on intermediate phenotypes (B-SNIP). Am J Psychiatry. 2013;170(11):1263–1274. doi: 10.1176/appi.ajp.2013.12101339 PubMed DOI
Zachar P, Kendler KS.. The philosophy of nosology. Annu Rev Clin Psychol. 2017;13(1):49–71. doi: 10.1146/annurev-clinpsy-032816-045020 PubMed DOI
Clark LA, Cuthbert B, Lewis-Fernández R, Narrow WE, Reed GM.. Three approaches to understanding and classifying mental disorder: ICD-11, DSM-5 , and the National Institute of Mental Health’s Research Domain Criteria (RDoC). Psychol Sci Public Interest. 2017;18(2):72–145. doi: 10.1177/1529100617727266 PubMed DOI
Pearlson GD, Clementz BA, Sweeney JA, Keshavan MS, Tamminga CA.. Does biology transcend the symptom-based boundaries of psychosis? Psychiatr Clin North Am. 2016;39(2):165–174. doi: 10.1016/j.psc.2016.01.001 PubMed DOI PMC
Provenzani U, Damiani S, Bersano I, et al. . Prevalence and incidence of psychotic disorders in 22q11.2 deletion syndrome: a meta-analysis. Int Rev Psychiatry. 2022;34(7–8):676–688. doi: 10.1080/09540261.2022.2123273 PubMed DOI
Qin X, Chen J, Zhou T.. 22q11.2 deletion syndrome and schizophrenia. Acta Biochim Biophys Sin. 2020;52(11):1181–1190. doi: 10.1093/abbs/gmaa113 PubMed DOI
McDonald-McGinn DM, Sullivan KE, Marino B, et al. . 22q11.2 deletion syndrome. Nat Rev Dis Primers. 2015;1(1):15071. doi: 10.1038/nrdp.2015.71 PubMed DOI PMC
Karayiorgou M, Morris MA, Morrow B, et al. . Schizophrenia susceptibility associated with interstitial deletions of chromosome 22q11. Proc Natl Acad Sci USA. 1995;92(17):7612–7616. doi: 10.1073/pnas.92.17.7612 PubMed DOI PMC
The International Schizophrenia Consortium. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature. 2008;455(7210):237–241. doi: 10.1038/nature07239 PubMed DOI PMC
Trigo D, Avelar C, Fernandes M, Sá J, Cruz e Silva O.. Mitochondria, energy, and metabolism in neuronal health and disease. FEBS Lett. 2022;596(9):1095–1110. doi: 10.1002/1873-3468.14298 PubMed DOI
Juan CA, Pérez de la Lastra JM, Plou FJ, Pérez-Lebeña E.. The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci. 2021;22(9):4642. doi: 10.3390/ijms22094642 PubMed DOI PMC
Ruszkiewicz J, Albrecht J.. Changes in the mitochondrial antioxidant systems in neurodegenerative diseases and acute brain disorders. Neurochem Int. 2015;88:66–72. doi: 10.1016/j.neuint.2014.12.012 PubMed DOI
Jung H, Kim SY, Canbakis Cecen FS, Cho Y, Kwon SK.. Dysfunction of mitochondrial Ca2+ regulatory machineries in brain aging and neurodegenerative diseases. Front Cell Dev Biol. 2020;8:1–11. doi:10.3389/fcell.2020.599792 PubMed DOI PMC
Desai R, East DA, Hardy L, et al. . Mitochondria form contact sites with the nucleus to couple prosurvival retrograde response. Sci Adv. 2020;6(51):1–15. doi: 10.1126/sciadv.abc9955 PubMed DOI PMC
Shteinfer‐Kuzmine A, Verma A, Arif T, Aizenberg O, Paul A, Shoshan‐Barmaz V.. Mitochondria and nucleus cross‐talk: signaling in metabolism, apoptosis, and differentiation, and function in cancer. IUBMB Life. 2021;73(3):492–510. doi: 10.1002/iub.2407 PubMed DOI
Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 2010;11(12):872–884. doi: 10.1038/nrm3013 PubMed DOI
Scaini G, Fries GR, Valvassori SS, et al. . Perturbations in the apoptotic pathway and mitochondrial network dynamics in peripheral blood mononuclear cells from bipolar disorder patients. Transl Psychiatry. 2017;7(5):e1111–e1111. doi: 10.1038/tp.2017.83 PubMed DOI PMC
Bock FJ, Tait SWG.. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21(2):85–100. doi: 10.1038/s41580-019-0173-8 PubMed DOI
Guo C, Sun L, Chen X, Zhang D.. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. 2013;8(21):2003–2014. doi: 10.3969/j.issn.1673-5374.2013.21.009 PubMed DOI PMC
Kausar S, Wang F, Cui H.. The role of mitochondria in reactive oxygen species generation and its implications for neurodegenerative diseases. Cells. 2018;7(12):274274. doi: 10.3390/cells7120274 PubMed DOI PMC
Görlach A, Bertram K, Hudecova S, Krizanova O.. Calcium and ROS: a mutual interplay. Redox Biol. 2015;6:260–271. doi: 10.1016/j.redox.2015.08.010 PubMed DOI PMC
Baev AY, Vinokurov AY, Novikova IN, Dremin Vv, Potapova Ev, Abramov AY.. Interaction of mitochondrial calcium and ROS in neurodegeneration. Cells. 2022;11(4):706. doi: 10.3390/cells11040706 PubMed DOI PMC
Bernstein HG, Keilhoff G, Dobrowolny H, Steiner J.. Enhanced mitochondrial autophagy (mitophagy) in oligodendrocytes might play a role in white matter pathology in schizophrenia. Med Hypotheses. 2020;134:109443. doi: 10.1016/j.mehy.2019.109443 PubMed DOI
Roberts RC. Postmortem studies on mitochondria in schizophrenia. Schizophr Res. 2017;187:17–25. doi: 10.1016/j.schres.2017.01.056 PubMed DOI PMC
Altar CA, Jurata LW, Charles V, et al. . Deficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohorts. Biol Psychiatry. 2005;58(2):85–96. doi: 10.1016/j.biopsych.2005.03.031 PubMed DOI
Nishioka N, Arnold SE.. Evidence for oxidative DNA damage in the hippocampus of elderly patients with chronic schizophrenia. Am J Geriatr Psychiatry. 2004;12(2):167–175. PubMed
Maurer I, Zierz S, Möller HJ.. Evidence for a mitochondrial oxidative phosphorylation defect in brains from patients with schizophrenia. Schizophr Res. 2001;48(1):125–136. doi: 10.1016/S0920-9964(00)00075-X PubMed DOI
Li J, Ryan SK, Deboer E, et al. . Mitochondrial deficits in human iPSC-derived neurons from patients with 22q11.2 deletion syndrome and schizophrenia. Transl Psychiatry. 2019;9(1):302. doi: 10.1038/s41398-019-0643-y PubMed DOI PMC
Kathuria A, Lopez-Lengowski K, Jagtap SS, et al. . Transcriptomic landscape and functional characterization of induced pluripotent stem cell–derived cerebral organoids in schizophrenia. JAMA Psychiatry. 2020;77(7):745745. doi: 10.1001/jamapsychiatry.2020.0196 PubMed DOI PMC
Ni P, Noh H, Park GH, et al. . iPSC-derived homogeneous populations of developing schizophrenia cortical interneurons have compromised mitochondrial function. Mol Psychiatry. 2020;25(11):2873–2888. doi: 10.1038/s41380-019-0423-3 PubMed DOI PMC
Glausier JR, Enwright JF, Lewis DA.. Diagnosis- and cell type-specific mitochondrial functional pathway signatures in schizophrenia and bipolar disorder. Am J Psychiatry. 2020;177(12):1140–1150. doi: 10.1176/appi.ajp.2020.19111210 PubMed DOI PMC
Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ.. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem. 2003;278(38):36027–36031. doi: 10.1074/jbc.M304854200 PubMed DOI
Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1–13. doi: 10.1042/BJ20081386 PubMed DOI PMC
Brennand K, Savas JN, Kim Y, et al. . Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Mol Psychiatry. 2015;20(3):361–368. doi: 10.1038/mp.2014.22 PubMed DOI PMC
Yao JK, Reddy R.. Oxidative stress in schizophrenia: pathogenetic and therapeutic implications. Antioxid Redox Signal. 2011;15(7):1999–2002. doi: 10.1089/ars.2010.3646 PubMed DOI PMC
Bitanihirwe BKY, Woo TUW.. Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev. 2011;35(3):878–893. doi: 10.1016/j.neubiorev.2010.10.008 PubMed DOI PMC
Flatow J, Buckley P, Miller BJ.. Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry. 2013;74(6):400–409. doi: 10.1016/j.biopsych.2013.03.018 PubMed DOI PMC
Zuccoli GS, Saia-Cereda VM, Nascimento JM, Martins-de-Souza D.. The energy metabolism dysfunction in psychiatric disorders postmortem brains: focus on proteomic evidence. Front Neurosci. 2017;11:1–14. doi: 10.3389/fnins.2017.00493 PubMed DOI PMC
Martins-de-Souza D, Harris LW, Guest PC, Bahn S.. The role of energy metabolism dysfunction and oxidative stress in schizophrenia revealed by proteomics. Antioxid Redox Signal. 2011;15(7):2067–2079. doi: 10.1089/ars.2010.3459 PubMed DOI
Sommer IE, van Westrhenen R, Begemann MJH, de Witte LD, Leucht S, Kahn RS.. Efficacy of anti-inflammatory agents to improve symptoms in patients with schizophrenia: an update. Schizophr Bull. 2014;40(1):181–191. doi: 10.1093/schbul/sbt139 PubMed DOI PMC
Dwir D, Cabungcal JH, Xin L, et al. . Timely N-acetyl-cysteine and environmental enrichment rescue oxidative stress-induced parvalbumin interneuron impairments via MMP9/RAGE pathway: a translational approach for early intervention in psychosis. Schizophr Bull. 2021;47(6):1782–1794. doi: 10.1093/schbul/sbab066 PubMed DOI PMC
Lopes-Rocha A, Bezerra TO, Zanotto R, Lages Nascimento I, Rodrigues A, Salum C.. The antioxidant N-acetyl-L-cysteine restores the behavioral deficits in a neurodevelopmental model of schizophrenia through a mechanism that involves nitric oxide. Front Pharmacol. 2022;13:1-15. doi: 10.3389/fphar.2022.924955 PubMed DOI PMC
Balu DT. The NMDA receptor and schizophrenia. 2016;76:351–382. doi: 10.1016/bs.apha.2016.01.006 PubMed DOI PMC
Coyle JT. NMDA receptor and schizophrenia: a brief history. Schizophr Bull. 2012;38(5):920–926. doi: 10.1093/schbul/sbs076 PubMed DOI PMC
Hardingham GE, Do KQ.. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat Rev Neurosci. 2016;17(2):125–134. doi: 10.1038/nrn.2015.19 PubMed DOI
Nakazawa K, Sapkota K.. The origin of NMDA receptor hypofunction in schizophrenia. Pharmacol Ther. 2020;205:107426. doi: 10.1016/j.pharmthera.2019.107426 PubMed DOI PMC
Lewis DA, Curley AA, Glausier JR, Volk DW.. Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia. Trends Neurosci. 2012;35(1):57–67. doi: 10.1016/j.tins.2011.10.004 PubMed DOI PMC
Krajcovic B, Fajnerova I, Horacek J, et al. . Neural and neuronal discoordination in schizophrenia: from ensembles through networks to symptoms. Acta Physiol. 2019;226(4):1-29. doi: 10.1111/apha.13282 PubMed DOI
Steullet P, Neijt HC, Cuénod M, Do KQ.. Synaptic plasticity impairment and hypofunction of NMDA receptors induced by glutathione deficit: relevance to schizophrenia. Neuroscience. 2006;137(3):807–819. doi: 10.1016/j.neuroscience.2005.10.014 PubMed DOI
Baxter PS, Bell KFS, Hasel P, et al. . Synaptic NMDA receptor activity is coupled to the transcriptional control of the glutathione system. Nat Commun. 2015;6(1):6761. doi: 10.1038/ncomms7761 PubMed DOI PMC
Gonzalez-Burgos G, Cho RY, Lewis DA.. Alterations in cortical network oscillations and parvalbumin neurons in schizophrenia. Biol Psychiatry. 2015;77(12):1031–1040. doi: 10.1016/j.biopsych.2015.03.010 PubMed DOI PMC
Dienel SJ, Lewis DA.. Alterations in cortical interneurons and cognitive function in schizophrenia. Neurobiol Dis. 2019;131:104208. doi: 10.1016/j.nbd.2018.06.020 PubMed DOI PMC
Sohal VS, Zhang F, Yizhar O, Deisseroth K.. Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature. 2009;459(7247):698–702. doi: 10.1038/nature07991 PubMed DOI PMC
Kriener B, Hu H, Vervaeke K.. Parvalbumin interneuron dendrites enhance gamma oscillations. Cell Rep. 2022;39(11):110948. doi: 10.1016/j.celrep.2022.110948 PubMed DOI
Maas DA, Vallès A, Martens GJM.. Oxidative stress, prefrontal cortex hypomyelination and cognitive symptoms in schizophrenia. Transl Psychiatry. 2017;7(7):e1171–e1171. doi: 10.1038/tp.2017.138 PubMed DOI PMC
Stedehouder J, Kushner SA.. Myelination of parvalbumin interneurons: a parsimonious locus of pathophysiological convergence in schizophrenia. Mol Psychiatry. 2017;22(1):4–12. doi: 10.1038/mp.2016.147 PubMed DOI PMC
Berretta S, Pantazopoulos H, Markota M, Brown C, Batzianouli ET.. Losing the sugar coating: potential impact of perineuronal net abnormalities on interneurons in schizophrenia. Schizophr Res. 2015;167(1–3):18–27. doi: 10.1016/j.schres.2014.12.040 PubMed DOI PMC
Cabungcal JH, Steullet P, Morishita H, et al. . Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc Natl Acad Sci USA. 2013;110(22):9130–9135. doi: 10.1073/pnas.1300454110 PubMed DOI PMC
Scambler PJ. The 22q11 deletion syndromes. Hum Mol Genet. 2000;9(16):2421–2426. doi: 10.1093/hmg/9.16.2421 PubMed DOI
Napoli E, Tassone F, Wong S, et al. . Mitochondrial citrate transporter-dependent metabolic signature in the 22q11.2 deletion syndrome. J Biol Chem. 2015;290(38):23240–23253. doi: 10.1074/jbc.M115.672360 PubMed DOI PMC
Li J, Tran OT, Crowley TB, et al. . Association of mitochondrial biogenesis with variable penetrance of schizophrenia. JAMA Psychiatry. 2021;78(8):911911. doi: 10.1001/jamapsychiatry.2021.0762 PubMed DOI PMC
Stelzer G, Rosen N, Plaschkes I, et al. . The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016;54(1):1.30.1-1.30.33. doi: 10.1002/cpbi.5 PubMed DOI
Safran M, Rosen N, Twik M, et al. . The GeneCards suite. In: Abugessaisa I, Kasukawa T (eds.) Practical Guide to Life Science Databases. Singapore: Springer Nature Singapore; 2021:27–56. doi: 10.1007/978-981-16-5812-9_2 DOI
Blake JA, Baldarelli R, Kadin JA, et al. . Mouse Genome Database (MGD): knowledgebase for mouse–human comparative biology. Nucleic Acids Res. 2021;49(D1):D981–D987. doi: 10.1093/nar/gkaa1083 PubMed DOI PMC
Meechan DW, Maynard TM, Tucker ES, et al. . Modeling a model: mouse genetics, 22q11.2 deletion syndrome, and disorders of cortical circuit development. Prog Neurobiol. 2015;130:1–28. doi: 10.1016/j.pneurobio.2015.03.004 PubMed DOI PMC
Sumitomo A, Horike K, Hirai K, et al. . A mouse model of 22q11.2 deletions: molecular and behavioral signatures of Parkinson’s disease and schizophrenia. Sci Adv. 2018;4(8):1-9. doi: 10.1126/sciadv.aar6637 PubMed DOI PMC
Saito R, Koebis M, Nagai T, et al. . Comprehensive analysis of a novel mouse model of the 22q11.2 deletion syndrome: a model with the most common 3.0-Mb deletion at the human 22q11.2 locus. Transl Psychiatry. 2020;10(1):35. doi: 10.1038/s41398-020-0723-z PubMed DOI PMC
Giudetti A, Stanca E, Siculella L, Gnoni G, Damiano F.. Nutritional and hormonal regulation of citrate and carnitine/acylcarnitine transporters: two mitochondrial carriers involved in fatty acid metabolism. Int J Mol Sci. 2016;17(6):817. doi: 10.3390/ijms17060817 PubMed DOI PMC
Junqueira D, Brusque AM, Porciúncula LO, et al. . Effects of L-2-hydroxyglutaric acid on various parameters of the glutamatergic system in cerebral cortex of rats. Metab Brain Dis. 2003;18(3):233–243. doi: 10.1023/A:1025559200816 PubMed DOI
Olivera-Bravo S, Ribeiro CAJ, Isasi E, et al. . Striatal neuronal death mediated by astrocytes from the Gcdh−/− mouse model of glutaric acidemia type I. Hum Mol Genet. 2015;24(16):4504–4515. doi: 10.1093/hmg/ddv175 PubMed DOI
Chaouch A, Porcelli V, Cox D, et al. . Mutations in the mitochondrial citrate carrier SLC25A1 are associated with impaired neuromuscular transmission. J Neuromuscul Dis. 2014;1(1):75–90. doi: 10.3233/JND-140021 PubMed DOI PMC
Prasun P, Young S, Salomons G, et al. . Expanding the clinical spectrum of mitochondrial citrate carrier (SLC25A1) deficiency: facial dysmorphism in siblings with epileptic encephalopathy and combined D,L-2-hydroxyglutaric aciduria. In: Zschocke, J., Baumgarten, M., Morava, E., Patterson, M., Rahman, S., Peters V. (eds.) JIMD Reports 2014:111–115. doi: 10.1007/8904_2014_378 PubMed DOI PMC
Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399–408. doi: 10.1016/j.cell.2012.01.021 PubMed DOI PMC
Hoffman B, Liebermann DA.. Apoptotic signaling by c-MYC. Oncogene. 2008;27(50):6462–6472. doi: 10.1038/onc.2008.312 PubMed DOI
Gokhale A, Hartwig C, Freeman AAH, et al. . Systems analysis of the 22q11.2 microdeletion syndrome converges on a mitochondrial interactome necessary for synapse function and behavior. J Neurosci. 2019; 39(18):3561–3581. doi: 10.1523/JNEUROSCI.1983-18.2019 PubMed DOI PMC
Arioka Y, Shishido E, Kushima I, et al. . Chromosome 22q11.2 deletion causes PERK-dependent vulnerability in dopaminergic neurons. EBioMedicine. 2021;63:103138. doi: 10.1016/j.ebiom.2020.103138 PubMed DOI PMC
Silva-Adaya D, Gonsebatt ME, Guevara J.. Thioredoxin system regulation in the central nervous system: experimental models and clinical evidence. Oxid Med Cell Longev. 2014;2014:1–13. doi: 10.1155/2014/590808 PubMed DOI PMC
Lee KH, Cha M, Lee BH.. Neuroprotective effect of antioxidants in the brain. Int J Mol Sci . 2020;21(19):7152. doi: 10.3390/ijms21197152 PubMed DOI PMC
Fernandez A, Meechan DW, Karpinski BA, et al. . Mitochondrial dysfunction leads to cortical under-connectivity and cognitive impairment. Neuron. 2019;102(6):1127–1142.e3. doi: 10.1016/j.neuron.2019.04.013 PubMed DOI PMC
Trubetskoy V, Pardiñas AF, Qi T, et al. ; Indonesia Schizophrenia Consortium. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604(7906):502–508. doi: 10.1038/s41586-022-04434-5 PubMed DOI PMC
Devaraju P, Yu J, Eddins D, et al. . Haploinsufficiency of the 22q11.2 microdeletion gene Mrpl40 disrupts short-term synaptic plasticity and working memory through dysregulation of mitochondrial calcium. Mol Psychiatry. 2017;22(9):1313–1326. doi: 10.1038/mp.2016.75 PubMed DOI PMC
Zheng JQ, Poo M.. Calcium signaling in neuronal motility. Annu Rev Cell Dev Biol. 2007;23(1):375–404. doi: 10.1146/annurev.cellbio.23.090506.123221 PubMed DOI
Gasperini RJ, Pavez M, Thompson AC, et al. . How does calcium interact with the cytoskeleton to regulate growth cone motility during axon pathfinding? Mol Cell Neurosci. 2017;84:29–35. doi: 10.1016/j.mcn.2017.07.006 PubMed DOI
Stephan KE, Friston KJ, Frith CD.. Dysconnection in schizophrenia: from abnormal synaptic plasticity to failures of self-monitoring. Schizophr Bull. 2009;35(3):509–527. doi: 10.1093/schbul/sbn176 PubMed DOI PMC
Friston K, Brown HR, Siemerkus J, Stephan KE.. The dysconnection hypothesis (2016). Schizophr Res. 2016;176(2–3):83–94. doi: 10.1016/j.schres.2016.07.014 PubMed DOI PMC
Jones B, Balasubramaniam M, Lebowitz JJ, et al. . Activation of proline biosynthesis is critical to maintain glutamate homeostasis during acute methamphetamine exposure. Sci Rep. 2021;11(1):1422. doi: 10.1038/s41598-020-80917-7 PubMed DOI PMC
Karam CS, Ballon JS, Bivens NM, et al. . Signaling pathways in schizophrenia: emerging targets and therapeutic strategies. Trends Pharmacol Sci. 2010;31(8):381–390. doi: 10.1016/j.tips.2010.05.004 PubMed DOI PMC
Wyse ATS, Netto CA.. Behavioral and neurochemical effects of proline. Metab Brain Dis. 2011;26(3):159–172. doi: 10.1007/s11011-011-9246-x PubMed DOI
Crabtree GW, Park AJ, Gordon JA, Gogos JA.. Cytosolic accumulation of L-proline disrupts GABA-ergic transmission through GAD blockade. Cell Rep. 2016;17(2):570–582. doi: 10.1016/j.celrep.2016.09.029 PubMed DOI PMC
Gogos J, Santha M, Takacs Z, et al. . The gene encoding proline dehydrogenase modulates sensorimotor gating in mice. Nat Genet. 1999;21(4):434–439. doi: 10.1038/7777 PubMed DOI
Swerdlow NR, Light GA.. Sensorimotor gating deficits in schizophrenia: advancing our understanding of the phenotype, its neural circuitry and genetic substrates. Schizophr Res. 2018;198:1–5. doi: 10.1016/j.schres.2018.02.042 PubMed DOI PMC
Clelland CL, Read LL, Baraldi AN, et al. . Evidence for association of hyperprolinemia with schizophrenia and a measure of clinical outcome. Schizophr Res. 2011;131(1–3):139–145. doi: 10.1016/j.schres.2011.05.006 PubMed DOI PMC
Raux G, Bumsel E, Hecketsweiler B, et al. . Involvement of hyperprolinemia in cognitive and psychiatric features of the 22q11 deletion syndrome. Hum Mol Genet. 2007;16(1):83–91. doi: 10.1093/hmg/ddl443 PubMed DOI
Jacquet H, Demily C, Houy E, et al. . Hyperprolinemia is a risk factor for schizoaffective disorder. Mol Psychiatry. 2005;10(5):479–485. doi: 10.1038/sj.mp.4001597 PubMed DOI
van de Ven S, Gardeitchik T, Kouwenberg D, Kluijtmans L, Wevers R, Morava E.. Long-term clinical outcome, therapy and mild mitochondrial dysfunction in hyperprolinemia. J Inherit Metab Dis. 2013;37(3):383–390. doi:10.1007/s10545-013-9660-9. PubMed DOI
Mitsubuchi H, Nakamura K, Matsumoto S, Endo F.. Biochemical and clinical features of hereditary hyperprolinemia. Pediatr Int. 2014;56(4):492–496. doi: 10.1111/ped.12420 PubMed DOI PMC
Lundstr K, Salminen M, Jalanko A, Savolainen R, Ulmanen I.. Cloning and characterization of human placental catechol--methyltransferase cDNA. DNA Cell Biol. 1991;10(3):181–189. doi: 10.1089/dna.1991.10.181 PubMed DOI
Ulmanen I, Peranen J, Tenhunen J, et al. . Expression and intracellular localization of catechol O-methyltransferase in transfected mammalian cells. Eur J Biochem. 1997;243(1–2):452–459. doi: 10.1111/j.1432-1033.1997.0452a.x PubMed DOI
Yavich L, Forsberg MM, Karayiorgou M, Gogos JA, Männistö PT.. Site-specific role of catechol- O -methyltransferase in dopamine overflow within prefrontal cortex and dorsal striatum. J Neurosci. 2007;27(38):10196–10209. doi: 10.1523/JNEUROSCI.0665-07.2007 PubMed DOI PMC
Chen J, Lipska BK, Halim N, et al. . Functional analysis of Genetic variation in catechol-O-methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain. Am. J Hum Genet. 2004;75(5):807–821. doi: 10.1086/425589 PubMed DOI PMC
Antshel KM, Shprintzen R, Fremont W, Higgins AM, Faraone S V, Kates WR.. Cognitive and psychiatric predictors to psychosis in velocardiofacial syndrome: a 3-year follow-up study. J Am Acad Child Adolesc Psychiatry. 2010;49(4):333–344. PubMed PMC
Gothelf D, Feinstein C, Thompson T, et al. . Risk factors for the emergence of psychotic disorders in adolescents with 22q11.2 deletion syndrome. Am J Psychiatry. 2007;164(4):663–669. doi: 10.1176/ajp.2007.164.4.663 PubMed DOI
Gong J, Zhang T, Zhou L, et al. . Gender divergent effect of COMT gene rs4680 polymorphism on the association between executive dysfunction and psychotic-like experiences. Behav Brain Res. 2023;439:114215. doi: 10.1016/j.bbr.2022.114215 PubMed DOI
van Beveren NJM, Krab LC, Swagemakers S, et al. . Functional gene-expression analysis shows involvement of schizophrenia-relevant pathways in patients with 22q11 deletion syndrome. PLoS One. 2012;7(3):e33473. doi: 10.1371/journal.pone.0033473 PubMed DOI PMC
Boot E, Booij J, Zinkstok J, et al. . Disrupted dopaminergic neurotransmission in 22q11 deletion syndrome. Neuropsychopharmacology. 2008;33(6):1252–1258. doi: 10.1038/sj.npp.1301508 PubMed DOI
Evers LJM, Curfs LMG, Bakker JA, et al. . Serotonergic, noradrenergic and dopaminergic markers are related to cognitive function in adults with 22q11 deletion syndrome. Int J Neuropsychopharmacol. 2014;17(08):1159–1165. doi: 10.1017/S1461145714000376 PubMed DOI
Moncrieff J. A critique of the dopamine hypothesis of schizophrenia and psychosis. Harv Rev Psychiatry. 2009;17(3):214–225. doi: 10.1080/10673220902979896 PubMed DOI
Paterlini M, Zakharenko SS, Lai WS, et al. . Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nat Neurosci. 2005;8(11):1586–1594. doi: 10.1038/nn1562 PubMed DOI
Riederer P, Müller T.. Use of monoamine oxidase inhibitors in chronic neurodegeneration. Expert Opin Drug Metab Toxicol. 2017;13(2):233–240. doi: 10.1080/17425255.2017.1273901 PubMed DOI
Soto-Otero R, Méndez-Álvarez E, Hermida-Ameijeiras A, Sánchez-Sellero I, Cruz-Landeira A, Lamas MLR.. Inhibition of brain monoamine oxidase activity by the generation of hydroxyl radicals Potential implications in relation to oxidative stress. Life Sci. 2001;69(8):879–889. doi: 10.1016/S0024-3205(01)01178-X PubMed DOI
Bard F, Casano L, Mallabiabarrena A, et al. . Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature. 2006;439(7076):604–607. doi: 10.1038/nature04377 PubMed DOI
Milev MP, Saint‐Dic D, Zardoui K, et al. . The phenotype associated with variants in <scp> TANGO2 </scp> may be explained by a dual role of the protein in <scp>ER‐to‐Golgi</scp> transport and at the mitochondria. J Inherit Metab Dis. 2021;44(2):426–437. doi:10.1002/jimd.12312. PubMed DOI
Mingirulli N, Pyle A, Hathazi D, et al. . Clinical presentation and proteomic signature of patients with TANGO2 mutations. J Inherit Metab Dis. 2020;43(2):297–308. doi: 10.1002/jimd.12156 PubMed DOI PMC
Kremer LS, Distelmaier F, Alhaddad B, et al. . Bi-allelic truncating mutations in TANGO2 cause infancy-onset recurrent metabolic crises with encephalocardiomyopathy. Am J Hum Genet. 2016;98(2):358–362. doi: 10.1016/j.ajhg.2015.12.009 PubMed DOI PMC
Heiman P, Mohsen AW, Karunanidhi A, et al. . Mitochondrial dysfunction associated with TANGO2 deficiency. Sci Rep. 2022;12(1):3045. doi: 10.1038/s41598-022-07076-9 PubMed DOI PMC
Jennions E, Hedberg‐Oldfors C, Berglund A, et al. . TANGO2 deficiency as a cause of neurodevelopmental delay with indirect effects on mitochondrial energy metabolism. J Inherit Metab Dis. 2019;42(5):898–908. doi: 10.1002/jimd.12149 PubMed DOI
Maynard TM, Meechan DW, Dudevoir ML, et al. . Mitochondrial localization and function of a subset of 22q11 deletion syndrome candidate genes. Mol Cell Neurosci. 2008;39(3):439–451. doi: 10.1016/j.mcn.2008.07.027 PubMed DOI PMC
Tabaczar S, Czogalla A, Podkalicka J, Biernatowska A, Sikorski AF.. Protein palmitoylation: palmitoyltransferases and their specificity. Exp Biol Med. 2017;242(11):1150–1157. doi: 10.1177/1535370217707732 PubMed DOI PMC
Singaraja RR, Kang MH, Vaid K, et al. . Palmitoylation of ATP-binding cassette transporter A1 is essential for its trafficking and function. Circ Res. 2009;105(2):138–147. doi: 10.1161/CIRCRESAHA.108.193011 PubMed DOI
Karasinska JM, Rinninger F, Lutjohann D, et al. . Specific loss of brain ABCA1 increases brain cholesterol uptake and influences neuronal structure and function. J Neurosci. 2009;29(11):3579–3589. doi: 10.1523/JNEUROSCI.4741-08.2009 PubMed DOI PMC
Moutin E, Nikonenko I, Stefanelli T, et al. . Palmitoylation of cdc42 promotes spine stabilization and rescues spine density deficit in a mouse model of 22q11.2 deletion syndrome. Cereb Cortex. 2016; 27(7):3618–3629. doi: 10.1093/cercor/bhw183 PubMed DOI
Thomas GM, Hayashi T, Huganir RL, Linden DJ.. DHHC8-dependent PICK1 palmitoylation is required for induction of cerebellar long-term synaptic depression. J Neurosci. 2013;33(39):15401–15407. doi: 10.1523/JNEUROSCI.1283-13.2013 PubMed DOI PMC
Philippe JM, Jenkins PM.. Spatial organization of palmitoyl acyl transferases governs substrate localization and function. Mol Membr Biol. 2019;35(1):60–75. doi: 10.1080/09687688.2019.1710274 PubMed DOI PMC
Fernández-Hernando C, Fukata M, Bernatchez PN, et al. . Identification of Golgi-localized acyl transferases that palmitoylate and regulate endothelial nitric oxide synthase. J Cell Biol. 2006;174(3):369–377. doi: 10.1083/jcb.200601051 PubMed DOI PMC
Iwase K, Miyanaka K, Shimizu A, et al. . Induction of endothelial nitric-oxide synthase in rat brain astrocytes by systemic lipopolysaccharide treatment. J Biol Chem. 2000;275(16):11929–11933. doi: 10.1074/jbc.275.16.11929 PubMed DOI
Forstermann U, Sessa WC.. Nitric oxide synthases: regulation and function. Eur Heart J. 2012;33(7):829–37, 837a. doi: 10.1093/eurheartj/ehr304 PubMed DOI PMC
Crockett AM, Ryan SK, Vásquez AH, et al. . Disruption of the blood–brain barrier in 22q11.2 deletion syndrome. Brain. 2021;144(5):1351–1360. doi: 10.1093/brain/awab055 PubMed DOI PMC
Nasyrova RF, Ivashchenko Dv, Ivanov Mv, Neznanov NG.. Role of nitric oxide and related molecules in schizophrenia pathogenesis: biochemical, genetic and clinical aspects. Front Physiol. 2015;6(139):1–16. doi: 10.3389/fphys.2015.00139 PubMed DOI PMC
Mukai J, Tamura M, Fénelon K, et al. . Molecular substrates of altered axonal growth and brain connectivity in a mouse model of schizophrenia. Neuron. 2015;86(3):680–695. doi: 10.1016/j.neuron.2015.04.003 PubMed DOI PMC
Wu X, Li L, Jiang H.. Doa1 targets ubiquitinated substrates for mitochondria-associated degradation. J Cell Biol. 2016;213(1):49–63. doi: 10.1083/jcb.201510098 PubMed DOI PMC
Alsayyah C, Ozturk O, Cavellini L, Belgareh-Touzé N, Cohen MM.. The regulation of mitochondrial homeostasis by the ubiquitin proteasome system. Biochim Biophys Acta Bioenerg. 2020;1861(12):148302. doi: 10.1016/j.bbabio.2020.148302 PubMed DOI
Quinn PMJ, Moreira PI, Ambrósio AF, Alves CH.. PINK1/PARKIN signalling in neurodegeneration and neuroinflammation. Acta Neuropathol Commun. 2020;8(1):189. doi: 10.1186/s40478-020-01062-w PubMed DOI PMC
Nguyen T, Brenu E, Staines D, Marshall-Gradisnik S.. MicroRNAs in the intracellular space. Regulation of organelle specific pathways in health and disease. MicroRNA. 2015;3(2):98–107. doi: 10.2174/2211536604666141218154252 PubMed DOI
Earls LR, Fricke RG, Yu J, Berry RB, Baldwin LT, Zakharenko SS.. Age-dependent MicroRNA control of synaptic plasticity in 22q11 deletion syndrome and schizophrenia. J Neurosci. 2012;32(41):14132–14144. doi: 10.1523/JNEUROSCI.1312-12.2012 PubMed DOI PMC
Nakajima K, Ishiwata M, Weitemier AZ, et al. . Brain-specific heterozygous loss-of-function of ATP2A2, endoplasmic reticulum Ca2+ pump responsible for Darier’s disease, causes behavioral abnormalities and a hyper-dopaminergic state. Hum Mol Genet. 2021;30(18):1762–1772. doi: 10.1093/hmg/ddab137 PubMed DOI PMC
Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ.. Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry. 2010;15(12):1176–1189. doi: 10.1038/mp.2009.84 PubMed DOI PMC
Brzustowicz LM, Bassett AS.. miRNA-mediated risk for schizophrenia in 22q11.2 deletion syndrome. Front Genet. 2012;3(291):1–9. doi: 10.3389/fgene.2012.00291 PubMed DOI PMC
Chun S, Westmoreland JJ, Bayazitov IT, et al. . Specific disruption of thalamic inputs to the auditory cortex in schizophrenia models. Science. 2014;344(6188):1178–1182. doi: 10.1126/science.1253895 PubMed DOI PMC
Chun S, Du F, Westmoreland JJ, et al. . Thalamic miR-338-3p mediates auditory thalamocortical disruption and its late onset in models of 22q11.2 microdeletion. Nat Med. 2017;23(1):39–48. doi: 10.1038/nm.4240 PubMed DOI PMC
Eom TY, Han SB, Kim J, et al. . Schizophrenia-related microdeletion causes defective ciliary motility and brain ventricle enlargement via microRNA-dependent mechanisms in mice. Nat Commun. 2020;11(1):912. doi: 10.1038/s41467-020-14628-y PubMed DOI PMC
Horga G, Bernacer J, Dusi N, et al. . Correlations between ventricular enlargement and gray and white matter volumes of cortex, thalamus, striatum, and internal capsule in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2011;261(7):467–476. doi: 10.1007/s00406-011-0202-x PubMed DOI PMC
Fénelon K, Mukai J, Xu B, et al. . Deficiency of Dgcr8 , a gene disrupted by the 22q11.2 microdeletion, results in altered short-term plasticity in the prefrontal cortex. Proc Natl Acad Sci USA. 2011;108(11):4447–4452. doi: 10.1073/pnas.1101219108 PubMed DOI PMC
Fenelon K, Xu B, Lai CS, et al. . The pattern of cortical dysfunction in a mouse model of a schizophrenia-related microdeletion. J Neurosci. 2013;33(37):14825–14839. doi: 10.1523/JNEUROSCI.1611-13.2013 PubMed DOI PMC
Toritsuka M, Kimoto S, Muraki K, et al. . Deficits in microRNA-mediated Cxcr4/Cxcl12 signaling in neurodevelopmental deficits in a 22q11 deletion syndrome mouse model. Proc Natl Acad Sci USA. 2013;110(43):17552–17557. doi: 10.1073/pnas.1312661110 PubMed DOI PMC
Chen L, Cai W, Wang W, Liu Z, Lin GN.. Spatiotemporal 22q11.21 protein network implicates DGCR8-dependent MicroRNA biogenesis as a risk for late fetal cortical development in psychiatric diseases. Life. 2021;11(6):514514. doi: 10.3390/life11060514 PubMed DOI PMC
Hauberg ME, Roussos P, Grove J, Børglum AD, Mattheisen M.. Analyzing the role of MicroRNAs in schizophrenia in the context of common genetic risk variants. JAMA Psychiatry. 2016;73(4):369369. doi: 10.1001/jamapsychiatry.2015.3018 PubMed DOI PMC
Nogami M, Miyamoto K, Hayakawa-Yano Y, Nakanishi A, Yano M, Okano H.. DGCR8-dependent efficient pri-miRNA processing of human pri-miR-9-2. J Biol Chem. 2021;296:100409. doi: 10.1016/j.jbc.2021.100409 PubMed DOI PMC
Beveridge NJ, Cairns MJ.. MicroRNA dysregulation in schizophrenia. Neurobiol Dis. 2012;46(2):263–271. doi: 10.1016/j.nbd.2011.12.029 PubMed DOI
Forstner AJ, Degenhardt F, Schratt G, Nöthen MM.. MicroRNAs as the cause of schizophrenia in 22q11.2 deletion carriers, and possible implications for idiopathic disease: a mini-review. Front Mol Neurosci. 2013;6(47):1–10. doi: 10.3389/fnmol.2013.00047 PubMed DOI PMC
Nguyen TA, Jo MH, Choi YG, et al. . Functional anatomy of the human microprocessor. Cell. 2015;161(6):1374–1387. doi: 10.1016/j.cell.2015.05.010 PubMed DOI
Das S, Ferlito M, Kent OA, et al. . Nuclear miRNA regulates the mitochondrial genome in the heart. Circ Res. 2012;110(12):1596–1603. doi: 10.1161/CIRCRESAHA.112.267732 PubMed DOI PMC
Wang WX, Springer J.. Role of mitochondria in regulating microRNA activity and its relevance to the central nervous system. Neural Regen Res. 2015;10(7):10261026. doi: 10.4103/1673-5374.160061 PubMed DOI PMC
Bose M, Chatterjee S, Chakrabarty Y, Barman B, Bhattacharyya SN.. Retrograde trafficking of Argonaute 2 acts as a rate-limiting step for de novo miRNP formation on endoplasmic reticulum–attached polysomes in mammalian cells. Life Sci Alliance. 2020;3(2):e201800161e201800161. doi: 10.26508/lsa.201800161 PubMed DOI PMC
Merico D, Costain G, Butcher NJ, et al. . MicroRNA dysregulation, gene networks, and risk for schizophrenia in 22q11.2 deletion syndrome. Front Neurol. 2014;5(238):1–12. doi: 10.3389/fneur.2014.00238 PubMed DOI PMC
Du Q, de la Morena MT, van Oers NSC.. The genetics and epigenetics of 22q11.2 deletion syndrome. Front Genet. 2020;10(1365):1–16. doi: 10.3389/fgene.2019.01365 PubMed DOI PMC
Chen Y, Wang X.. miRDB: an online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020;48(D1):D127–D131. doi: 10.1093/nar/gkz757 PubMed DOI PMC
Gokhale A, Lee CE, Zlatic SA, et al. . Mitochondrial proteostasis requires genes encoded in a neurodevelopmental syndrome locus. J Neurosci. 2021;41(31):6596–6616. doi: 10.1523/JNEUROSCI.2197-20.2021 PubMed DOI PMC
Cleynen I, Engchuan W, Hestand MS, et al. ; International 22q11.2DS Brain and Behavior Consortium. Genetic contributors to risk of schizophrenia in the presence of a 22q11.2 deletion. Mol Psychiatry. 2021;26(8):4496–4510. doi: 10.1038/s41380-020-0654-3 PubMed DOI PMC