Chiral Nanoparticle Chains on Inorganic Nanotube Templates
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37387593
PubMed Central
PMC10347696
DOI
10.1021/acs.nanolett.3c01213
Knihovny.cz E-zdroje
- Klíčová slova
- chirality, nanoparticle assembly, nanotubes, step edge, tungsten disulfide,
- Publikační typ
- časopisecké články MeSH
Fabrication of chiral assemblies of plasmonic nanoparticles is a highly attractive and challenging task, with promising applications in light emission, detection, and sensing. So far, primarily organic chiral templates have been used for chirality inscription. Despite recent progress in using chiral ionic liquids in synthesis, the use of organic templates significantly limits the variety of nanoparticle preparation techniques. Here, we demonstrate the utilization of seemingly achiral inorganic nanotubes as templates for the chiral assembly of nanoparticles. We show that both metallic and dielectric nanoparticles can be attached to scroll-like chiral edges propagating on the surfaces of WS2 nanotubes. Such assembly can be performed at temperatures as high as 550 °C. This large temperature range significantly widens the portfolio of nanoparticle fabrication techniques, allowing us to demonstrate a variety of chiral nanoparticle assemblies, ranging from metals (Au, Ga), semiconductors (Ge), and compound semiconductors (GaAs) to oxides (WO3).
CEITEC BUT Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
Faculty of Sciences Holon Institute of Technology 52 Golomb St Holon 5810201 Israel
Zobrazit více v PubMed
Sallembien Q.; Bouteiller L.; Crassous J.; Raynal M. Possible Chemical and Physical Scenarios towards Biological Homochirality. Chem. Soc. Rev. 2022, 51 (9), 3436–3476. 10.1039/D1CS01179K. PubMed DOI
Gao H.; Chen P.; Lo T. W.; Jin W.; Lei D. Selective Excitation of Polarization-Steered Chiral Photoluminescence in Single Plasmonic Nanohelicoids. Adv. Funct. Materials 2021, 31 (30), 2101502.10.1002/adfm.202101502. DOI
Both S.; Schäferling M.; Sterl F.; Muljarov E. A.; Giessen H.; Weiss T. Nanophotonic Chiral Sensing: How Does It Actually Work?. ACS Nano 2022, 16 (2), 2822–2832. 10.1021/acsnano.1c09796. PubMed DOI
Hu J.; Lawrence M.; Dionne J. A. High Quality Factor Dielectric Metasurfaces for Ultraviolet Circular Dichroism Spectroscopy. ACS Photonics 2020, 7 (1), 36–42. 10.1021/acsphotonics.9b01352. DOI
García-Guirado J.; Svedendahl M.; Puigdollers J.; Quidant R. Enhanced Chiral Sensing with Dielectric Nanoresonators. Nano Lett. 2020, 20 (1), 585–591. 10.1021/acs.nanolett.9b04334. PubMed DOI
Ben-Moshe A.; Wolf S. G.; Sadan M. B.; Houben L.; Fan Z.; Govorov A. O.; Markovich G. Enantioselective Control of Lattice and Shape Chirality in Inorganic Nanostructures Using Chiral Biomolecules. Nat. Commun. 2014, 5 (1), 4302.10.1038/ncomms5302. PubMed DOI
Ben-Moshe A.; Govorov A. O.; Markovich G. Enantioselective Synthesis of Intrinsically Chiral Mercury Sulfide Nanocrystals. Angew. Chem., Int. Ed. 2013, 52 (4), 1275–1279. 10.1002/anie.201207489. PubMed DOI
Wang P.; Yu S.-J.; Govorov A. O.; Ouyang M. Cooperative Expression of Atomic Chirality in Inorganic Nanostructures. Nat. Commun. 2017, 8 (1), 14312.10.1038/ncomms14312. PubMed DOI PMC
Fan Z.; Govorov A. O. Plasmonic Circular Dichroism of Chiral Metal Nanoparticle Assemblies. Nano Lett. 2010, 10 (7), 2580–2587. 10.1021/nl101231b. PubMed DOI
Guerrero-Martínez A.; Alonso-Gómez J. L.; Auguié B.; Cid M. M.; Liz-Marzán L. M. From Individual to Collective Chirality in Metal Nanoparticles. Nano Today 2011, 6 (4), 381–400. 10.1016/j.nantod.2011.06.003. DOI
Lv J.; Gao X.; Han B.; Zhu Y.; Hou K.; Tang Z. Self-Assembled Inorganic Chiral Superstructures. Nat. Rev. Chem. 2022, 6 (2), 125–145. 10.1038/s41570-021-00350-w. PubMed DOI
Kuzyk A.; Schreiber R.; Fan Z.; Pardatscher G.; Roller E.-M.; Högele A.; Simmel F. C.; Govorov A. O.; Liedl T. DNA-Based Self-Assembly of Chiral Plasmonic Nanostructures with Tailored Optical Response. Nature 2012, 483 (7389), 311–314. 10.1038/nature10889. PubMed DOI
Severoni E.; Maniappan S.; Liz-Marzán L. M.; Kumar J.; García de Abajo F. J.; Galantini L. Plasmon-Enhanced Optical Chirality through Hotspot Formation in Surfactant-Directed Self-Assembly of Gold Nanorods. ACS Nano 2020, 14 (12), 16712–16722. 10.1021/acsnano.0c03997. PubMed DOI
Taylor A. B.; Zijlstra P. Single-Molecule Plasmon Sensing: Current Status and Future Prospects. ACS Sens. 2017, 2 (8), 1103–1122. 10.1021/acssensors.7b00382. PubMed DOI PMC
Ohnoutek L.; Kim J.-Y.; Lu J.; Olohan B. J.; Rǎsǎdean D. M.; Dan Pantoş G.; Kotov N. A.; Valev V. K. Third-Harmonic Mie Scattering from Semiconductor Nanohelices. Nat. Photonics 2022, 16 (2), 126–133. 10.1038/s41566-021-00916-6. DOI
Feis J.; Beutel D.; Köpfler J.; Garcia-Santiago X.; Rockstuhl C.; Wegener M.; Fernandez-Corbaton I. Helicity-Preserving Optical Cavity Modes for Enhanced Sensing of Chiral Molecules. Phys. Rev. Lett. 2020, 124 (3), 033201.10.1103/PhysRevLett.124.033201. PubMed DOI
Kumar J.; Eraña H.; López-Martínez E.; Claes N.; Martín V. F.; Solís D. M.; Bals S.; Cortajarena A. L.; Castilla J.; Liz-Marzán L. M. Detection of Amyloid Fibrils in Parkinson’s Disease Using Plasmonic Chirality. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (13), 3225–3230. 10.1073/pnas.1721690115. PubMed DOI PMC
Ma W.; Kuang H.; Xu L.; Ding L.; Xu C.; Wang L.; Kotov N. A. Attomolar DNA Detection with Chiral Nanorod Assemblies. Nat. Commun. 2013, 4 (1), 2689.10.1038/ncomms3689. PubMed DOI PMC
Li S.; Liu J.; Ramesar N. S.; Heinz H.; Xu L.; Xu C.; Kotov N. A. Single- and Multi-Component Chiral Supraparticles as Modular Enantioselective Catalysts. Nat. Commun. 2019, 10 (1), 4826.10.1038/s41467-019-12134-4. PubMed DOI PMC
Negrín-Montecelo Y.; Movsesyan A.; Gao J.; Burger S.; Wang Z. M.; Nlate S.; Pouget E.; Oda R.; Comesaña-Hermo M.; Govorov A. O.; Correa-Duarte M. A. Chiral Generation of Hot Carriers for Polarization-Sensitive Plasmonic Photocatalysis. J. Am. Chem. Soc. 2022, 144 (4), 1663–1671. 10.1021/jacs.1c10526. PubMed DOI
Chen W.; Ma K.; Duan P.; Ouyang G.; Zhu X.; Zhang L.; Liu M. Circularly Polarized Luminescence of Nanoassemblies via Multi-Dimensional Chiral Architecture Control. Nanoscale 2020, 12 (38), 19497–19515. 10.1039/D0NR04239K. PubMed DOI
Hao J.; Lu H.; Mao L.; Chen X.; Beard M. C.; Blackburn J. L. Direct Detection of Circularly Polarized Light Using Chiral Copper Chloride–Carbon Nanotube Heterostructures. ACS Nano 2021, 15 (4), 7608–7617. 10.1021/acsnano.1c01134. PubMed DOI PMC
Xin L.; Zhou C.; Duan X.; Liu N. A Rotary Plasmonic Nanoclock. Nat. Commun. 2019, 10 (1), 5394.10.1038/s41467-019-13444-3. PubMed DOI PMC
Qu A.; Sun M.; Kim J.-Y.; Xu L.; Hao C.; Ma W.; Wu X.; Liu X.; Kuang H.; Kotov N. A.; Xu C. Stimulation of Neural Stem Cell Differentiation by Circularly Polarized Light Transduced by Chiral Nanoassemblies. Nat. Biomed. Eng. 2021, 5 (1), 103–113. 10.1038/s41551-020-00634-4. PubMed DOI
Hentschel M.; Schäferling M.; Weiss T.; Liu N.; Giessen H. Three-Dimensional Chiral Plasmonic Oligomers. Nano Lett. 2012, 12 (5), 2542–2547. 10.1021/nl300769x. PubMed DOI
Zhang S.; Zhou J.; Park Y.-S.; Rho J.; Singh R.; Nam S.; Azad A. K.; Chen H.-T.; Yin X.; Taylor A. J.; Zhang X. Photoinduced Handedness Switching in Terahertz Chiral Metamolecules. Nat. Commun. 2012, 3 (1), 942.10.1038/ncomms1908. PubMed DOI
Mokashi-Punekar S.; Zhou Y.; Brooks S. C.; Rosi N. L. Construction of Chiral, Helical Nanoparticle Superstructures: Progress and Prospects. Adv. Mater. 2020, 32 (41), 1905975.10.1002/adma.201905975. PubMed DOI
Morin S. A.; Forticaux A.; Bierman M. J.; Jin S. Screw Dislocation-Driven Growth of Two-Dimensional Nanoplates. Nano Lett. 2011, 11 (10), 4449–4455. 10.1021/nl202689m. PubMed DOI
Golze S. D.; Porcu S.; Zhu C.; Sutter E.; Ricci P. C.; Kinzel E. C.; Hughes R. A.; Neretina S. Sequential Symmetry-Breaking Events as a Synthetic Pathway for Chiral Gold Nanostructures with Spiral Geometries. Nano Lett. 2021, 21 (7), 2919–2925. 10.1021/acs.nanolett.0c05105. PubMed DOI
Zhuo X.; Mychinko M.; Heyvaert W.; Larios D.; Obelleiro-Liz M.; Taboada J. M.; Bals S.; Liz-Marzán L. M. Morphological and Optical Transitions during Micelle-Seeded Chiral Growth on Gold Nanorods. ACS Nano 2022, 16 (11), 19281–19292. 10.1021/acsnano.2c08668. PubMed DOI
Chen C.; Gao L.; Gao W.; Ge C.; Du X.; Li Z.; Yang Y.; Niu G.; Tang J. Circularly Polarized Light Detection Using Chiral Hybrid Perovskite. Nat. Commun. 2019, 10 (1), 1927.10.1038/s41467-019-09942-z. PubMed DOI PMC
Wang L.; Xue Y.; Cui M.; Huang Y.; Xu H.; Qin C.; Yang J.; Dai H.; Yuan M. A Chiral Reduced-Dimension Perovskite for an Efficient Flexible Circularly Polarized Light Photodetector. Angew. Chem., Int. Ed. 2020, 59 (16), 6442–6450. 10.1002/anie.201915912. PubMed DOI
Ishii A.; Miyasaka T. Direct Detection of Circular Polarized Light in Helical 1D Perovskite-Based Photodiode. Sci. Adv. 2020, 6 (46), eabd327410.1126/sciadv.abd3274. PubMed DOI PMC
Jiang W.; Qu Z.; Kumar P.; Vecchio D.; Wang Y.; Ma Y.; Bahng J. H.; Bernardino K.; Gomes W. R.; Colombari F. M.; Lozada-Blanco A.; Veksler M.; Marino E.; Simon A.; Murray C.; Muniz S. R.; de Moura A. F.; Kotov N. A. Emergence of Complexity in Hierarchically Organized Chiral Particles. Science 2020, 368 (6491), 642–648. 10.1126/science.aaz7949. PubMed DOI
Lee H.-E.; Ahn H.-Y.; Mun J.; Lee Y. Y.; Kim M.; Cho N. H.; Chang K.; Kim W. S.; Rho J.; Nam K. T. Amino-Acid- and Peptide-Directed Synthesis of Chiral Plasmonic Gold Nanoparticles. Nature 2018, 556 (7701), 360–365. 10.1038/s41586-018-0034-1. PubMed DOI
González-Rubio G.; Mosquera J.; Kumar V.; Pedrazo-Tardajos A.; Llombart P.; Solís D. M.; Lobato I.; Noya E. G.; Guerrero-Martínez A.; Taboada J. M.; Obelleiro F.; MacDowell L. G.; Bals S.; Liz-Marzán L. M. Micelle-Directed Chiral Seeded Growth on Anisotropic Gold Nanocrystals. Science 2020, 368 (6498), 1472–1477. 10.1126/science.aba0980. PubMed DOI
Cheng G.; Xu D.; Lu Z.; Liu K. Chiral Self-Assembly of Nanoparticles Induced by Polymers Synthesized via Reversible Addition–Fragmentation Chain Transfer Polymerization. ACS Nano 2019, 10.1021/acsnano.8b07151. PubMed DOI
Lee J.-J.; Kim B.-C.; Choi H.-J.; Bae S.; Araoka F.; Choi S.-W. Inverse Helical Nanofilament Networks Serving as a Chiral Nanotemplate. ACS Nano 2020, 14 (5), 5243–5250. 10.1021/acsnano.0c00393. PubMed DOI
Long G.; Sabatini R.; Saidaminov M. I.; Lakhwani G.; Rasmita A.; Liu X.; Sargent E. H.; Gao W. Chiral-Perovskite Optoelectronics. Nat. Rev. Mater. 2020, 5 (6), 423–439. 10.1038/s41578-020-0181-5. DOI
Lu J.; Xue Y.; Bernardino K.; Zhang N.-N.; Gomes W. R.; Ramesar N. S.; Liu S.; Hu Z.; Sun T.; de Moura A. F.; Kotov N. A.; Liu K. Enhanced Optical Asymmetry in Supramolecular Chiroplasmonic Assemblies with Long-Range Order. Science 2021, 371 (6536), 1368–1374. 10.1126/science.abd8576. PubMed DOI
Aloni S. S.; Perovic M.; Weitman M.; Cohen R.; Oschatz M.; Mastai Y. Amino Acid-Based Ionic Liquids as Precursors for the Synthesis of Chiral Nanoporous Carbons. Nanoscale Adv. 2019, 1 (12), 4981–4988. 10.1039/C9NA00520J. PubMed DOI PMC
Cheng J.; Le Saux G.; Gao J.; Buffeteau T.; Battie Y.; Barois P.; Ponsinet V.; Delville M.-H.; Ersen O.; Pouget E.; Oda R. GoldHelix: Gold Nanoparticles Forming 3D Helical Superstructures with Controlled Morphology and Strong Chiroptical Property. ACS Nano 2017, 11 (4), 3806–3818. 10.1021/acsnano.6b08723. PubMed DOI
Liu P.; Chen W.; Okazaki Y.; Battie Y.; Brocard L.; Decossas M.; Pouget E.; Müller-Buschbaum P.; Kauffmann B.; Pathan S.; Sagawa T.; Oda R. Optically Active Perovskite CsPbBr 3 Nanocrystals Helically Arranged on Inorganic Silica Nanohelices. Nano Lett. 2020, 20 (12), 8453–8460. 10.1021/acs.nanolett.0c02013. PubMed DOI
Wang B.; Puzyrev Y. S.; Pantelides S. T. Enhanced Chemical Reactions of Oxygen at Grain Boundaries in Polycrystalline Graphene. Polyhedron 2013, 64, 158–162. 10.1016/j.poly.2013.03.032. DOI
Sreeprasad T. S.; Nguyen P.; Kim N.; Berry V. Controlled, Defect-Guided, Metal-Nanoparticle Incorporation onto MoS 2 via Chemical and Microwave Routes: Electrical, Thermal, and Structural Properties. Nano Lett. 2013, 13 (9), 4434–4441. 10.1021/nl402278y. PubMed DOI
Ly T. H.; Chiu M.-H.; Li M.-Y.; Zhao J.; Perello D. J.; Cichocka M. O.; Oh H. M.; Chae S. H.; Jeong H. Y.; Yao F.; Li L.-J.; Lee Y. H. Observing Grain Boundaries in CVD-Grown Monolayer Transition Metal Dichalcogenides. ACS Nano 2014, 8 (11), 11401–11408. 10.1021/nn504470q. PubMed DOI
Kolíbal M.; Bukvišová K.; Kachtík L.; Zak A.; Novák L.; Šikola T. Formation of Tungsten Oxide Nanowires by Electron-Beam-Enhanced Oxidation of WS 2 Nanotubes and Platelets. J. Phys. Chem. C 2019, 123 (14), 9552–9559. 10.1021/acs.jpcc.9b00592. DOI
Ranjan P.; Shankar S.; Popovitz-Biro R.; Cohen S. R.; Kaplan-Ashiri I.; Dadosh T.; Shimon L. J. W.; Višić B.; Tenne R.; Lahav M.; van der Boom M. E. Decoration of Inorganic Nanostructures by Metallic Nanoparticles to Induce Fluorescence, Enhance Solubility, and Tune Band Gap. J. Phys. Chem. C 2018, 122 (12), 6748–6759. 10.1021/acs.jpcc.8b00510. DOI
Ranjan P.; Shankar S.; Popovitz-Biro R.; Cohen S. R.; Pinkas I.; Tenne R.; Lahav M.; van der Boom M. E. Tubular Hybrids: A Nanoparticle—Molecular Network. Langmuir 2018, 34 (7), 2464–2470. 10.1021/acs.langmuir.7b03125. PubMed DOI
Polyakov A. Yu.; Yadgarov L.; Popovitz-Biro R.; Lebedev V. A.; Pinkas I.; Rosentsveig R.; Feldman Y.; Goldt A. E.; Goodilin E. A.; Tenne R. Decoration of WS 2 Nanotubes and Fullerene-Like MoS 2 with Gold Nanoparticles. J. Phys. Chem. C 2014, 118 (4), 2161–2169. 10.1021/jp407388h. DOI
Shahar C.; Levi R.; Cohen S. R.; Tenne R. Gold Nanoparticles as Surface Defect Probes for WS 2 Nanostructures. J. Phys. Chem. Lett. 2010, 1 (2), 540–543. 10.1021/jz900332h. DOI
Chithaiah P.; Ghosh S.; Idelevich A.; Rovinsky L.; Livneh T.; Zak A. Solving the “MoS 2 Nanotubes” Synthetic Enigma and Elucidating the Route for Their Catalyst-Free and Scalable Production. ACS Nano 2020, 14 (3), 3004–3016. 10.1021/acsnano.9b07866. PubMed DOI
Tenne R.; Margulis L.; Genut M.; Hodes G. Polyhedral and Cylindrical Structures of Tungsten Disulphide. Nature 1992, 360 (6403), 444–446. 10.1038/360444a0. DOI
Zak A.; Sallacan-Ecker L.; Margolin A.; Genut M.; Tenne R. Insight into the Growth Mechanism of WS 2 Nanotubes in the Scaled-up Fluidized-Bed Reactor. NANO 2009, 04 (02), 91–98. 10.1142/S1793292009001551. DOI
Zak A.; Ecker L. S.; Efrati R.; Drangai L.; Fleischer N.; Tenne R. Large-Scale Synthesis of WS2Multiwall Nanotubes and Their Dispersion, an Update. Sensors & Transducers Journal 2011, 12, 1–10.
Gutiérrez H. R.; Perea-López N.; Elías A. L.; Berkdemir A.; Wang B.; Lv R.; López-Urías F.; Crespi V. H.; Terrones H.; Terrones M. Extraordinary Room-Temperature Photoluminescence in Triangular WS 2 Monolayers. Nano Lett. 2013, 13 (8), 3447–3454. 10.1021/nl3026357. PubMed DOI
McCreary K. M.; Hanbicki A. T.; Jernigan G. G.; Culbertson J. C.; Jonker B. T. Synthesis of Large-Area WS2Monolayers with Exceptional Photoluminescence. Sci. Rep 2016, 6 (1), 19159.10.1038/srep19159. PubMed DOI PMC
Mach J.; Piastek J.; Maniš J.; Čalkovský V.; Šamořil T.; Damková J.; Bartošík M.; Voborný S.; Konečný M.; Šikola T. Low Temperature Selective Growth of GaN Single Crystals on Pre-Patterned Si Substrates. Appl. Surf. Sci. 2019, 497, 143705.10.1016/j.apsusc.2019.143705. DOI
Kim K.; Lee H.-B.-R.; Johnson R. W.; Tanskanen J. T.; Liu N.; Kim M.-G.; Pang C.; Ahn C.; Bent S. F.; Bao Z. Selective Metal Deposition at Graphene Line Defects by Atomic Layer Deposition. Nat. Commun. 2014, 5 (1), 4781.10.1038/ncomms5781. PubMed DOI
Lan C.; Li D.; Zhou Z.; Yip S.; Zhang H.; Shu L.; Wei R.; Dong R.; Ho J. C. Direct Visualization of Grain Boundaries in 2D Monolayer WS 2 via Induced Growth of CdS Nanoparticle Chains. Small Methods 2019, 3 (2), 1800245.10.1002/smtd.201800245. DOI
Viculis L. M.; Mack J. J.; Kaner R. B. A Chemical Route to Carbon Nanoscrolls. Science 2003, 299 (5611), 1361–1361. 10.1126/science.1078842. PubMed DOI
Xie X.; Ju L.; Feng X.; Sun Y.; Zhou R.; Liu K.; Fan S.; Li Q.; Jiang K. Controlled Fabrication of High-Quality Carbon Nanoscrolls from Monolayer Graphene. Nano Lett. 2009, 9 (7), 2565–2570. 10.1021/nl900677y. PubMed DOI
Wang Z.; Wu H.-H.; Li Q.; Besenbacher F.; Zeng X. C.; Dong M. Self-Scrolling MoS 2 Metallic Wires. Nanoscale 2018, 10 (38), 18178–18185. 10.1039/C8NR04611E. PubMed DOI
Chen X.; Zhou Q.; Wang J.; Chen Q. Formation of Graphene Nanoscrolls and Their Electronic Structures Based on Ab Initio Calculations. J. Phys. Chem. Lett. 2022, 13 (11), 2500–2506. 10.1021/acs.jpclett.2c00387. PubMed DOI
Trushin M.; Neto A. H. C. Stability of a Rolled-Up Conformation State for Two-Dimensional Materials in Aqueous Solutions. Phys. Rev. Lett. 2021, 127, 156101.10.1103/PhysRevLett.127.156101. PubMed DOI
Kim J.; Byun S.; Smith A. J.; Yu J.; Huang J. Enhanced Electrocatalytic Properties of Transition-Metal Dichalcogenides Sheets by Spontaneous Gold Nanoparticle Decoration. J. Phys. Chem. Lett. 2013, 4 (8), 1227–1232. 10.1021/jz400507t. PubMed DOI
Jiang S.; Chekini M.; Qu Z.-B.; Wang Y.; Yeltik A.; Liu Y.; Kotlyar A.; Zhang T.; Li B.; Demir H. V.; Kotov N. A. Chiral Ceramic Nanoparticles and Peptide Catalysis. J. Am. Chem. Soc. 2017, 139 (39), 13701–13712. 10.1021/jacs.7b01445. PubMed DOI
Shindo Y.; Nakagawa M.; Ohmi Y. On the Problems of CD Spectropolarimeters. II: Artifacts in CD Spectrometers. Appl. Spectrosc. 1985, 39 (5), 860–868. 10.1366/0003702854250022. DOI
Schellman J.; Jensen H. Peter. Optical Spectroscopy of Oriented Molecules. Chem. Rev. 1987, 87 (6), 1359–1399. 10.1021/cr00082a004. DOI
Adhikari S.; Orrit M. Optically Probing the Chirality of Single Plasmonic Nanostructures and of Single Molecules: Potential and Obstacles. ACS Photonics 2022, 9 (11), 3486–3497. 10.1021/acsphotonics.2c01205. PubMed DOI PMC
Feng W.; Kim J.-Y.; Wang X.; Calcaterra H. A.; Qu Z.; Meshi L.; Kotov N. A. Assembly of Mesoscale Helices with Near-Unity Enantiomeric Excess and Light-Matter Interactions for Chiral Semiconductors. Sci. Adv. 2017, 3 (3), e160115910.1126/sciadv.1601159. PubMed DOI PMC
Cuadra J.; Baranov D. G.; Wersäll M.; Verre R.; Antosiewicz T. J.; Shegai T. Observation of Tunable Charged Exciton Polaritons in Hybrid Monolayer WS 2 – Plasmonic Nanoantenna System. Nano Lett. 2018, 18 (3), 1777–1785. 10.1021/acs.nanolett.7b04965. PubMed DOI
Submillimeter-Long WS2 Nanotubes: The Pathway to Inorganic Buckypaper