Submillimeter-Long WS2 Nanotubes: The Pathway to Inorganic Buckypaper
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37805929
PubMed Central
PMC10683059
DOI
10.1021/acs.nanolett.3c02783
Knihovny.cz E-zdroje
- Klíčová slova
- buckypaper, felt, growth, sulfidation, tungsten disulfide nanotubes, tungsten suboxide nanowhiskers, wet-laying,
- Publikační typ
- časopisecké články MeSH
WS2 nanotubes present many new technologies under development, including reinforced biocompatible polymers, membranes, photovoltaic-based memories, ferroelectric devices, etc. These technologies depend on the aspect ratio (length/diameter) of the nanotubes, which was limited to 100 or so. A new synthetic technique is presented, resulting in WS2 nanotubes a few hundred micrometers long and diameters below 50 nm (aspect ratios of 2000-5000) in high yields. Preliminary investigation into the mechanistic aspects of the two-step synthesis reveals that W5O14 nanowhisker intermediates are formed in the first step of the reaction instead of the ubiquitous W18O49 nanowhiskers used in the previous syntheses. The electrical and photoluminescence properties of the long nanotubes were studied. WS2 nanotube-based paper-like material was prepared via a wet-laying process, which could not be realized with the 10 μm long WS2 nanotubes. Ultrafiltration of gold nanoparticles using the nanotube-paper membrane was demonstrated.
Department of Chemical and Biological Physics Weizmann Institute of Science Rehovot 7600001 Israel
Department of Chemical Research Support Weizmann Institute of Science Rehovot 7600001 Israel
Faculty of Science Holon Institute of Technology Golomb Street 52 Holon 5810201 Israel
Thermo Fisher Scientific Vlastimila Pecha 12 CZ 62700 Brno Czech Republic
Zobrazit více v PubMed
Tenne R.; Margulis L.; Genut M.; Hodes G. Polyhedral and Cylindrical Structures of Tungsten Disulphide. Nature 1992, 360 (6403), 444–446. 10.1038/360444a0. DOI
Chithaiah P.; Ghosh S.; Idelevich A.; Rovinsky L.; Livneh T.; Zak A. Solving the “MoS2 Nanotubes” Synthetic Enigma and Elucidating the Route for Their Catalyst-Free and Scalable Production. ACS Nano 2020, 14 (3), 3004–3016. 10.1021/acsnano.9b07866. PubMed DOI
Rothschild A.; Sloan J.; Tenne R. Growth of WS2 Nanotubes Phases. J. Am. Chem. Soc. 2000, 122 (21), 5169–5179. 10.1021/ja994118v. DOI
Kim H.; Yun S. J.; Park J. C.; Park M. H.; Park J.-H.; Kim K. K.; Lee Y. H. Seed Growth of Tungsten Diselenide Nanotubes from Tungsten Oxides. Small 2015, 11 (18), 2192–2199. 10.1002/smll.201403279. PubMed DOI
Sun S.; Zou Z.; Min G. Synthesis of Tungsten Disulfide Nanotubes from Different Precursor. Mater. Chem. Phys. 2009, 114 (2–3), 884–888. 10.1016/j.matchemphys.2008.10.061. DOI
Remskar M.; Mrzel A.; Virsek M.; Godec M.; Krause M.; Kolitsch A.; Singh A.; Seabaugh A. The MoS2 Nanotubes with Defect-Controlled Electric Properties. Nanoscale Res. Lett. 2011, 10.1007/s11671-010-9765-0. PubMed DOI PMC
Rahman Md. A.; Yomogida Y.; Nagano M.; Tanaka R.; Miyata Y.; Yanagi K. Improved Synthesis of WS 2 Nanotubes with Relatively Small Diameters by Tuning Sulfurization Timing and Reaction Temperature. Jpn. J. Appl. Phys. 2021, 60 (10), 100902.10.35848/1347-4065/ac2013. DOI
Hossain E.; Rahman A. A.; Bapat R. D.; Parmar J. B.; Shah A. P.; Arora A.; Bratschitsch R.; Bhattacharya A. Facile Synthesis of WS 2 Nanotubes by Sulfurization of Tungsten Thin Films: Formation Mechanism, and Structural and Optical Properties. Nanoscale 2018, 10 (35), 16683–16691. 10.1039/C8NR03138J. PubMed DOI
Zelenski C. M.; Dorhout P. K. Template Synthesis of Near-Monodisperse 1 Microscale Nanofibers and Nanotubules of MoS 2. J. Am. Chem. Soc. 1998, 120 (4), 734–742. 10.1021/ja972170q. DOI
Hsu W. K.; Chang B. H.; Zhu Y. Q.; Han W. Q.; Terrones H.; Terrones M.; Grobert N.; Cheetham A. K.; Kroto H. W.; Walton D. R. M. An Alternative Route to Molybdenum Disulfide Nanotubes. J. Am. Chem. Soc. 2000, 122 (41), 10155–10158. 10.1021/ja001607i. DOI
An Q.; Xiong W.; Hu F.; Yu Y.; Lv P.; Hu S.; Gan X.; He X.; Zhao J.; Yuan S. Direct Growth of Single-Chiral-Angle Tungsten Disulfide Nanotubes Using Gold Nanoparticle Catalysts. Nat. Mater. 2023, 10.1038/s41563-023-01590-5. PubMed DOI
Qin F.; Shi W.; Ideue T.; Yoshida M.; Zak A.; Tenne R.; Kikitsu T.; Inoue D.; Hashizume D.; Iwasa Y. Superconductivity in a Chiral Nanotube. Nat. Commun. 2017, 8 (1), 14465.10.1038/ncomms14465. PubMed DOI PMC
Zhang Y. J.; Ideue T.; Onga M.; Qin F.; Suzuki R.; Zak A.; Tenne R.; Smet J. H.; Iwasa Y. Enhanced Intrinsic Photovoltaic Effect in Tungsten Disulfide Nanotubes. Nature 2019, 570 (7761), 349–353. 10.1038/s41586-019-1303-3. PubMed DOI
Kazanov D. R.; Poshakinskiy A. V.; Davydov V. Yu.; Smirnov A. N.; Eliseyev I. A.; Kirilenko D. A.; Remškar M.; Fathipour S.; Mintairov A.; Seabaugh A.; Gil B.; Shubina T. V. Multiwall MoS 2 Tubes as Optical Resonators. Appl. Phys. Lett. 2018, 113 (10), 101106.10.1063/1.5047792. DOI
Sinha S. S.; Višić B.; Byregowda A.; Yadgarov L. Dynamical Nature of Exciton-Polariton Coupling in WS 2 Nanoparticles. Isr. J. Chem. 2022, 10.1002/ijch.202100128. DOI
Xia H.; Chen X.; Luo S.; Qin F.; Idelevich A.; Ghosh S.; Ideue T.; Iwasa Y.; Zak A.; Tenne R.; Chen Z.; Liu W.-T.; Wu S. Probing the Chiral Domains and Excitonic States in Individual WS 2 Tubes by Second-Harmonic Generation. Nano Lett. 2021, 21 (12), 4937–4943. 10.1021/acs.nanolett.1c00497. PubMed DOI
Sun Y.; Xu S.; Xu Z.; Tian J.; Bai M.; Qi Z.; Niu Y.; Aung H. H.; Xiong X.; Han J.; Lu C.; Yin J.; Wang S.; Chen Q.; Tenne R.; Zak A.; Guo Y. Mesoscopic Sliding Ferroelectricity Enabled Photovoltaic Random Access Memory for Material-Level Artificial Vision System. Nat. Commun. 2022, 13 (1), 5391.10.1038/s41467-022-33118-x. PubMed DOI PMC
Schock R. T. K.; Neuwald J.; Möckel W.; Kronseder M.; Pirker L.; Remškar M.; Hüttel A. K. Non-Destructive Low-Temperature Contacts to MoS 2 Nanoribbon and Nanotube Quantum Dots. Adv. Mater. 2023, 35 (13), 2209333.10.1002/adma.202209333. PubMed DOI
Ben-Shimon Y.; Bhingardive V.; Joselevich E.; Ya’akobovitz A. Self-Sensing WS 2 Nanotube Torsional Resonators. Nano Lett. 2022, 22 (19), 8025–8031. 10.1021/acs.nanolett.2c01422. PubMed DOI
Shneider M.; Dodiuk H.; Tenne R.; Kenig S. Nanoinduced Morphology and Enhanced Properties of Epoxy Containing Tungsten Disulfide Nanoparticles. Polym. Eng. Sci. 2013, 53 (12), 2624–2632. 10.1002/pen.23517. DOI
Naffakh M.; Remškar M.; Marco C.; Gómez-Fatou M. A. Dynamic Crystallization Kinetics and Nucleation Parameters of a New Generation of Nanocomposites Based on Isotactic Polypropylene and MoS 2 Inorganic Nanotubes. J. Phys. Chem. B 2011, 115 (12), 2850–2856. 10.1021/jp1115788. PubMed DOI
Naffakh M.; Díez-Pascual A. Thermoplastic Polymer Nanocomposites Based on Inorganic Fullerene-like Nanoparticles and Inorganic Nanotubes. Inorganics 2014, 2 (2), 291–312. 10.3390/inorganics2020291. DOI
Ramachandran K.; Shao Z.; Di Luccio T.; Shen B.; Bello E. E. R.; Tammaro L.; Villani F.; Loffredo F.; Borriello C.; Di Benedetto F.; Magee E.; McNally T.; Kornfield J. A. Tungsten Disulfide Nanotubes Enhance Flow-Induced Crystallization and Radio-Opacity of Polylactide without Adversely Affecting in Vitro Toxicity. Acta Biomaterialia 2022, 138, 313–326. 10.1016/j.actbio.2021.11.005. PubMed DOI PMC
Lalwani G.; Henslee A. M.; Farshid B.; Parmar P.; Lin L.; Qin Y.-X.; Kasper F. K.; Mikos A. G.; Sitharaman B. Tungsten Disulfide Nanotubes Reinforced Biodegradable Polymers for Bone Tissue Engineering. Acta Biomaterialia 2013, 9 (9), 8365–8373. 10.1016/j.actbio.2013.05.018. PubMed DOI PMC
Naffakh M.; Díez-Pascual A. M. Nanocomposite Biomaterials Based on Poly(Ether-Ether-Ketone) (PEEK) and WS2 Inorganic Nanotubes. J. Mater. Chem. B 2014, 2 (28), 4509.10.1039/c4tb00557k. PubMed DOI
Shalom H.; Kapishnikov S.; Brumfeld V.; Naveh N.; Tenne R.; Lachman N. Strong, Tough and Bio-Degradable Polymer-Based 3D-Ink for Fused Filament Fabrication (FFF) Using WS2 Nanotubes. Sci. Rep 2020, 10 (1), 8892.10.1038/s41598-020-65861-w. PubMed DOI PMC
Barber A. H.; Cohen S. R.; Wagner H. D. Measurement of Carbon Nanotube–Polymer Interfacial Strength. Appl. Phys. Lett. 2003, 82 (23), 4140–4142. 10.1063/1.1579568. DOI
Frey G. L.; Rothschild A.; Sloan J.; Rosentsveig R.; Popovitz-Biro R.; Tenne R. Investigations of Nonstoichiometric Tungsten Oxide Nanoparticles. J. Solid State Chem. 2001, 162 (2), 300–314. 10.1006/jssc.2001.9319. DOI
Margolin A.; Rosentsveig R.; Albu-Yaron A.; Popovitz-Biro R.; Tenne R. Study of the Growth Mechanism of WS2 Nanotubes Produced by a Fluidized Bed Reactor. J. Mater. Chem. 2004, 14 (4), 617.10.1039/b310609h. DOI
Rosentsveig R.; Margolin A.; Feldman Y.; Popovitz-Biro R.; Tenne R. WS 2 Nanotube Bundles and Foils. Chem. Mater. 2002, 14 (2), 471–473. 10.1021/cm010630f. DOI
Sinha S. S.; Yadgarov L.; Aliev S. B.; Feldman Y.; Pinkas I.; Chithaiah P.; Ghosh S.; Idelevich A.; Zak A.; Tenne R. MoS 2 and WS 2 Nanotubes: Synthesis, Structural Elucidation, and Optical Characterization. J. Phys. Chem. C 2021, 125 (11), 6324–6340. 10.1021/acs.jpcc.0c10784. DOI
Nanotube Superfiber Materials: Changing Engineering Design; Schulz M. J., Shanov V. N., Yin Z., Eds.; Micro and Nano technology series; William Andrew, an imprint of Elsevier: Amsterdam, Boston, Heidelberg, 2014.
Gross A. J.; Holzinger M.; Cosnier S. Buckypaper Bioelectrodes: Emerging Materials for Implantable and Wearable Biofuel Cells. Energy Environ. Sci. 2018, 11 (7), 1670–1687. 10.1039/C8EE00330K. DOI
Ribeiro B.; Botelho E. C.; Costa M. L.; Bandeira C. F. Carbon Nanotube Buckypaper Reinforced Polymer Composites: A Review. Polímeros 2017, 27 (3), 247–255. 10.1590/0104-1428.03916. DOI
Khan F. S. A.; Mubarak N. M.; Tan Y. H.; Khalid M.; Karri R. R.; Walvekar R.; Abdullah E. C.; Nizamuddin S.; Mazari S. A. A Comprehensive Review on Magnetic Carbon Nanotubes and Carbon Nanotube-Based Buckypaper for Removal of Heavy Metals and Dyes. Journal of Hazardous Materials 2021, 413, 125375.10.1016/j.jhazmat.2021.125375. PubMed DOI
Cooper S. M.; Chuang H. F.; Cinke M.; Cruden B. A.; Meyyappan M. Gas Permeability of a Buckypaper Membrane. Nano Lett. 2003, 3 (2), 189–192. 10.1021/nl0259131. DOI
Endo M.; Muramatsu H.; Hayashi T.; Kim Y. A.; Terrones M.; Dresselhaus M. S. ‘Buckypaper’ from Coaxial Nanotubes. Nature 2005, 433 (7025), 476–476. 10.1038/433476a. PubMed DOI
Handbook of Carbon Nanotubes; Abraham J., Thomas S., Kalarikkal N., Eds.; Springer International Publishing: Cham, 2022; 10.1007/978-3-030-91346-5. DOI
Knapp W.; Schleussner D. Field-Emission Characteristics of Carbon Buckypaper. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 2003, 21 (1), 557–561. 10.1116/1.1527598. DOI
Kim Y. A.; Muramatsu H.; Hayashi T.; Endo M.; Terrones M.; Dresselhaus M. S. Fabrication of High-Purity, Double-Walled Carbon Nanotube Buckypaper. Chem. Vap. Deposition 2006, 12 (6), 327–330. 10.1002/cvde.200504217. DOI
Bandi S.; Srivastav A. K. Review: Oxygen-Deficient Tungsten Oxides. J. Mater. Sci. 2021, 56 (11), 6615–6644. 10.1007/s10853-020-05757-2. DOI
Moshofsky B.; Mokari T. Length and Diameter Control of Ultrathin Nanowires of Substoichiometric Tungsten Oxide with Insights into the Growth Mechanism. Chem. Mater. 2013, 25 (8), 1384–1391. 10.1021/cm302015z. DOI
Hashimoto H.; Tanaka K.; Yoda E. Growth and Evaporation of Tungsten Oxide Crystals. J. Phys. Soc. Jpn. 1960, 15 (6), 1006–1014. 10.1143/JPSJ.15.1006. DOI
Zhang L.; Wang H.; Liu J.; Zhang Q.; Yan H. Nonstoichiometric Tungsten Oxide: Structure, Synthesis, and Applications. J. Mater. Sci: Mater. Electron 2020, 31 (2), 861–873. 10.1007/s10854-019-02596-z. DOI
Wu C.-M.; Naseem S.; Chou M.-H.; Wang J.-H.; Jian Y.-Q.. Recent Advances in Tungsten-Oxide-Based Materials and Their Applications. Frontiers in Materials 2019, 6; 10.3389/fmats.2019.00049. DOI
Sahle W. Electron Microscopy Studies of W18O49. 2. Defects and Disorder Introduced by Partial Oxidation. J. Solid State Chem. 1982, 45 (3), 334–342. 10.1016/0022-4596(82)90179-7. DOI
Sarin V. K. Morphological Changes Occurring during Reduction of WO3. J. Mater. Sci. 1975, 10 (4), 593–598. 10.1007/BF00566566. DOI
Smolik G.; Pawelko R.; Anderl R.; Petti D.; Oxidation and Volatilization from Tungsten Brush High Heat Flux Armor During High Temperature Steam Exposure; Technical Report 774310; U.S. Department of Energy, Office of Scientific and Technical Information: 2000; 10.2172/774310. DOI
Nagy G.; Schiller R. Hydrogen in Tungsten Bronzes: Mechanism of Hydrogen Intercalation. Int. J. Hydrogen Energy 1989, 14 (8), 567–572. 10.1016/0360-3199(89)90115-8. DOI
Remškar M.; Kovac J.; Viršek M.; Mrak M.; Jesih A.; Seabaugh A. W 5 O 14 Nanowires. Adv. Funct. Mater. 2007, 17 (12), 1974–1978. 10.1002/adfm.200601150. DOI
Wang M. S.; Kaplan-Ashiri I.; Wei X. L.; Rosentsveig R.; Wagner H. D.; Tenne R.; Peng L. M. In Situ TEM Measurements of the Mechanical Properties and Behavior of WS2 Nanotubes. Nano Res. 2008, 1 (1), 22.10.1007/s12274-008-8008-5. DOI
Sears A.; Batra R. C. Buckling of Multiwalled Carbon Nanotubes under Axial Compression. Phys. Rev. B 2006, 73 (8), 085410.10.1103/PhysRevB.73.085410. DOI
Viršek M.; Jesih A.; Milošević I.; Damnjanović M.; Remškar M. Raman Scattering of the MoS2 and WS2 Single Nanotubes. Surf. Sci. 2007, 601 (13), 2868–2872. 10.1016/j.susc.2006.12.050. DOI
Levi R.; Bitton O.; Leitus G.; Tenne R.; Joselevich E. Field-Effect Transistors Based on WS 2 Nanotubes with High Current-Carrying Capacity. Nano Lett. 2013, 13 (8), 3736–3741. 10.1021/nl401675k. PubMed DOI
Zhang C.; Ning Z.; Liu Y.; Xu T.; Guo Y.; Zak A.; Zhang Z.; Wang S.; Tenne R.; Chen Q. Electrical Transport Properties of Individual WS 2 Nanotubes and Their Dependence on Water and Oxygen Absorption. Appl. Phys. Lett. 2012, 101 (11), 113112.10.1063/1.4752440. DOI
Sik Hwang W.; Remskar M.; Yan R.; Protasenko V.; Tahy K.; Doo Chae S.; Zhao P.; Konar A.; Xing H.; Seabaugh A.; Jena D. Transistors with Chemically Synthesized Layered Semiconductor WS 2 Exhibiting 10 5 Room Temperature Modulation and Ambipolar Behavior. Appl. Phys. Lett. 2012, 101 (1), 013107.10.1063/1.4732522. DOI
Frey G. L.; Elani S.; Homyonfer M.; Feldman Y.; Tenne R. Optical-Absorption Spectra of Inorganic Fullerenelike M S 2 (M = Mo, W). Phys. Rev. B 1998, 57 (11), 6666–6671. 10.1103/PhysRevB.57.6666. DOI
Cong C.; Shang J.; Wang Y.; Yu T. Optical Properties of 2D Semiconductor WS 2. Advanced Optical Materials 2018, 6 (1), 1700767.10.1002/adom.201700767. DOI
Polyakov A. Yu; Yadgarov L.; Popovitz-Biro R.; Lebedev V. A.; Pinkas I.; Rosentsveig R.; Feldman Y.; Goldt A. E.; Goodilin E. A.; Tenne R. Decoration of WS 2 Nanotubes and Fullerene-Like MoS 2 with Gold Nanoparticles. J. Phys. Chem. C 2014, 118 (4), 2161–2169. 10.1021/jp407388h. DOI
Kachtík L.; Citterberg D.; Bukvišová K.; Kejík L.; Ligmajer F.; Kovařík M.; Musálek T.; Krishnappa M.; Šikola T.; Kolíbal M. Chiral Nanoparticle Chains on Inorganic Nanotube Templates. Nano Lett. 2023, 23 (13), 6010–6017. 10.1021/acs.nanolett.3c01213. PubMed DOI PMC
Kim J.; Byun S.; Smith A. J.; Yu J.; Huang J. Enhanced Electrocatalytic Properties of Transition-Metal Dichalcogenides Sheets by Spontaneous Gold Nanoparticle Decoration. J. Phys. Chem. Lett. 2013, 4 (8), 1227–1232. 10.1021/jz400507t. PubMed DOI
Subramanian S.; Seeram R. New directions in nanofiltration applications — Are nanofibers the right materials as membranes in desalination?. Desalination 2013, 308, 198–208. 10.1016/j.desal.2012.08.014. DOI
Mechanism of WS2 Nanotube Formation Revealed by in Situ/ex Situ Imaging