Mechanism of WS2 Nanotube Formation Revealed by in Situ/ex Situ Imaging

. 2024 May 14 ; 18 (19) : 12284-12294. [epub] 20240503

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38698720

Multiwall WS2 nanotubes have been synthesized from W18O49 nanowhiskers in substantial amounts for more than a decade. The established growth model is based on the "surface-inward" mechanism, whereby the high-temperature reaction with H2S starts on the nanowhisker surface, and the oxide-to-sulfide conversion progresses inward until hollow-core multiwall WS2 nanotubes are obtained. In the present work, an upgraded in situ SEM μReactor with H2 and H2S sources has been conceived to study the growth mechanism in detail. A hitherto undescribed growth mechanism, named "receding oxide core", which complements the "surface-inward" model, is observed and kinetically evaluated. Initially, the nanowhisker is passivated by several WS2 layers via the surface-inward reaction. At this point, the diffusion of H2S through the already existing outer layers becomes exceedingly sluggish, and the surface-inward reaction is slowed down appreciably. Subsequently, the tungsten suboxide core is anisotropically volatilized within the core close to its tips. The oxide vapors within the core lead to its partial out-diffusion, partially forming a cavity that expands with reaction time. Additionally, the oxide vapors react with the internalized H2S gas, forming fresh WS2 layers in the cavity of the nascent nanotube. The rate of the receding oxide core mode increases with temperatures above 900 °C. The growth of nanotubes in the atmospheric pressure flow reactor is carried out as well, showing that the proposed growth model (receding oxide core) is also relevant under regular reaction parameters. The current study comprehensively explains the WS2 nanotube growth mechanism, combining the known model with contemporary insight.

Zobrazit více v PubMed

Tenne R.; Margulis L.; Genut M.; Hodes G. Polyhedral and Cylindrical Structures of Tungsten Disulphide. Nature 1992, 360 (6403), 444–446. 10.1038/360444a0. DOI

Zak A.; Sallacan-Ecker L.; Margolin A.; Genut M.; Tenne R. Insight into the growth mechanism of WS2 nanotubes in the scaled-up fluidized bed reactor. NANO 2009, 04 (02), 91–98. 10.1142/S1793292009001551. DOI

Remškar M. Inorganic Nanotubes. Adv. Mater. 2004, 16 (17), 1497–1504. 10.1002/adma.200306428. DOI

Rothschild A.; Sloan J.; Tenne R. Growth of WS2 Nanotubes Phases. J. Am. Chem. Soc. 2000, 122 (21), 5169–5179. 10.1021/ja994118v. DOI

Kim H.; Yun S. J.; Park J. C.; Park M. H.; Park J.-H.; Kim K. K.; Lee Y. H. Seed Growth of Tungsten Diselenide Nanotubes from Tungsten Oxides. Small 2015, 11 (18), 2192–2199. 10.1002/smll.201403279. PubMed DOI

Sun S.; Zou Z.; Min G. Synthesis of Tungsten Disulfide Nanotubes from Different Precursor. Mater. Chem. Phys. 2009, 114 (2–3), 884–888. 10.1016/j.matchemphys.2008.10.061. DOI

Remskar M.; Mrzel A.; Virsek M.; Godec M.; Krause M.; Kolitsch A.; Singh A.; Seabaugh A. The MoS2 Nanotubes with Defect-Controlled Electric Properties. Nanoscale Res. Lett. 2011, 10.1007/s11671-010-9765-0. PubMed DOI PMC

Rahman Md. A.; Yomogida Y.; Nagano M.; Tanaka R.; Miyata Y.; Yanagi K. Improved Synthesis of WS2 Nanotubes with Relatively Small Diameters by Tuning Sulfurization Timing and Reaction Temperature. Jpn. J. Appl. Phys. 2021, 60 (10), 10090210.35848/1347-4065/ac2013. DOI

Hossain E.; Rahman A. A.; Bapat R. D.; Parmar J. B.; Shah A. P.; Arora A.; Bratschitsch R.; Bhattacharya A. Facile Synthesis of WS2 Nanotubes by Sulfurization of Tungsten Thin Films: Formation Mechanism, and Structural and Optical Properties. Nanoscale 2018, 10 (35), 16683–16691. 10.1039/C8NR03138J. PubMed DOI

Chithaiah P.; Ghosh S.; Idelevich A.; Rovinsky L.; Livneh T.; Zak A. Solving the “MoS2 Nanotubes” Synthetic Enigma and Elucidating the Route for Their Catalyst-Free and Scalable Production. ACS Nano 2020, 14 (3), 3004–3016. 10.1021/acsnano.9b07866. PubMed DOI

Zelenski C. M.; Dorhout P. K. Template Synthesis of Near-Monodisperse 1 Microscale Nanofibers and Nanotubules of MoS2. J. Am. Chem. Soc. 1998, 120 (4), 734–742. 10.1021/ja972170q. DOI

Hsu W. K.; Chang B. H.; Zhu Y. Q.; Han W. Q.; Terrones H.; Terrones M.; Grobert N.; Cheetham A. K.; Kroto H. W.; Walton D. R. M. An Alternative Route to Molybdenum Disulfide Nanotubes. J. Am. Chem. Soc. 2000, 122 (41), 10155–10158. 10.1021/ja001607i. DOI

Kundrát V.; Rosentsveig R.; Bukvišová K.; Citterberg D.; Kolíbal M.; Keren S.; Pinkas I.; Yaffe O.; Zak A.; Tenne R. Submillimeter-Long WS2 Nanotubes: The Pathway to Inorganic Buckypaper. Nano Lett. 2023, 23 (22), 10259–10266. 10.1021/acs.nanolett.3c02783. PubMed DOI PMC

Qin F.; Shi W.; Ideue T.; Yoshida M.; Zak A.; Tenne R.; Kikitsu T.; Inoue D.; Hashizume D.; Iwasa Y. Superconductivity in a Chiral Nanotube. Nat. Commun. 2017, 8 (1), 14465.10.1038/ncomms14465. PubMed DOI PMC

Zhang Y. J.; Ideue T.; Onga M.; Qin F.; Suzuki R.; Zak A.; Tenne R.; Smet J. H.; Iwasa Y. Enhanced Intrinsic Photovoltaic Effect in Tungsten Disulfide Nanotubes. Nature 2019, 570 (7761), 349–353. 10.1038/s41586-019-1303-3. PubMed DOI

Kazanov D. R.; Poshakinskiy A. V.; Davydov V. Yu.; Smirnov A. N.; Eliseyev I. A.; Kirilenko D. A.; Remškar M.; Fathipour S.; Mintairov A.; Seabaugh A.; Gil B.; Shubina T. V. Multiwall MoS2 Tubes as Optical Resonators. Appl. Phys. Lett. 2018, 113 (10), 10110610.1063/1.5047792. DOI

Sinha S. S.; Zak A.; Rosentsveig R.; Pinkas I.; Tenne R.; Yadgarov L. Nanotubes: Size-Dependent Control of Exciton–Polariton Interactions in WS2 Nanotubes (Small 4/2020). Small 2020, 16 (4), 207002210.1002/smll.202070022. PubMed DOI

Xia H.; Chen X.; Luo S.; Qin F.; Idelevich A.; Ghosh S.; Ideue T.; Iwasa Y.; Zak A.; Tenne R.; Chen Z.; Liu W.-T.; Wu S. Probing the Chiral Domains and Excitonic States in Individual WS2 Tubes by Second-Harmonic Generation. Nano Lett. 2021, 21 (12), 4937–4943. 10.1021/acs.nanolett.1c00497. PubMed DOI

Ben-Shimon Y.; Bhingardive V.; Joselevich E.; Ya’akobovitz A. Self-Sensing WS2 Nanotube Torsional Resonators. Nano Lett. 2022, 22 (19), 8025–8031. 10.1021/acs.nanolett.2c01422. PubMed DOI

Sun Y.; Xu S.; Xu Z.; Tian J.; Bai M.; Qi Z.; Niu Y.; Aung H. H.; Xiong X.; Han J.; Lu C.; Yin J.; Wang S.; Chen Q.; Tenne R.; Zak A.; Guo Y. Mesoscopic Sliding Ferroelectricity Enabled Photovoltaic Random Access Memory for Material-Level Artificial Vision System. Nat. Commun. 2022, 13 (1), 5391.10.1038/s41467-022-33118-x. PubMed DOI PMC

Ramachandran K.; Shao Z.; Di Luccio T.; Shen B.; Bello E. E. R.; Tammaro L.; Villani F.; Loffredo F.; Borriello C.; Di Benedetto F.; Magee E.; McNally T.; Kornfield J. A. Tungsten Disulfide Nanotubes Enhance Flow-Induced Crystallization and Radio-Opacity of Polylactide without Adversely Affecting in Vitro Toxicity. Acta Biomaterialia 2022, 138, 313–326. 10.1016/j.actbio.2021.11.005. PubMed DOI PMC

Naffakh M.; Remškar M.; Marco C.; Gómez-Fatou M. A. Dynamic Crystallization Kinetics and Nucleation Parameters of a New Generation of Nanocomposites Based on Isotactic Polypropylene and MoS 2 Inorganic Nanotubes. J. Phys. Chem. B 2011, 115 (12), 2850–2856. 10.1021/jp1115788. PubMed DOI

Shneider M.; Dodiuk H.; Tenne R.; Kenig S. Nanoinduced Morphology and Enhanced Properties of Epoxy Containing Tungsten Disulfide Nanoparticles. Polym. Eng. Sci. 2013, 53 (12), 2624–2632. 10.1002/pen.23517. DOI

Zhang Z.; Wang Y.; Li H.; Yuan W.; Zhang X.; Sun C.; Zhang Z. Atomic-Scale Observation of Vapor–Solid Nanowire Growth via Oscillatory Mass Transport. ACS Nano 2016, 10 (1), 763–769. 10.1021/acsnano.5b05851. PubMed DOI

Sahle W. Electron Microscopy Studies of W18O49. 2. Defects and Disorder Introduced by Partial Oxidation. J. Solid State Chem. 1982, 45 (3), 334–342. 10.1016/0022-4596(82)90179-7. DOI

Sarin V. K. Morphological Changes Occurring during Reduction of WO3. J. Mater. Sci. 1975, 10 (4), 593–598. 10.1007/BF00566566. DOI

Belton G. R.; McCarron R. L. The Volatilization of Tungsten in the Presence of Water Vapor. J. Phys. Chem. 1964, 68 (7), 1852–1856. 10.1021/j100789a030. DOI

Wang B.; Chen W.-J.; Zhao B.-C.; Zhang Y.-F.; Huang X. Tetratungsten Oxide Clusters W4On–/0 (n = 10–13): Structural Evolution and Chemical Bonding. J. Phys. Chem. A 2010, 114 (4), 1964–1972. 10.1021/jp909676s. PubMed DOI

Smigelskas A. D.; Kirkendall E. O. Zinc Diffusion in Alpha Brass. Trans. AIME 1947, 171, 130–142.

Lei C.; Rockett A.; Robertson I. M.; Shafarman W. N.; Beck M. Void Formation and Surface Energies in Cu(InGa)Se2. J. Appl. Phys. 2006, 100 (7), 07351810.1063/1.2357422. DOI

Fan H. J.; Gösele U.; Zacharias M. Formation of Nanotubes and Hollow Nanoparticles Based on Kirkendall and Diffusion Processes: A Review. Small 2007, 3 (10), 1660–1671. 10.1002/smll.200700382. PubMed DOI

Godefroo S.; Hayne M.; Jivanescu M.; Stesmans A.; Zacharias M.; Lebedev O. I.; Van Tendeloo G.; Moshchalkov V. V. Classification and Control of the Origin of Photoluminescence from Si Nanocrystals. Nat. Nanotechnol. 2008, 3 (3), 174–178. 10.1038/nnano.2008.7. PubMed DOI

Krivanek O. L.; Chisholm M. F.; Nicolosi V.; Pennycook T. J.; Corbin G. J.; Dellby N.; Murfitt M. F.; Own C. S.; Szilagyi Z. S.; Oxley M. P.; Pantelides S. T.; Pennycook S. J. Atom-by-Atom Structural and Chemical Analysis by Annular Dark-Field Electron Microscopy. Nature 2010, 464 (7288), 571–574. 10.1038/nature08879. PubMed DOI

Da Silva A. G. M.; Rodrigues T. S.; Haigh S. J.; Camargo P. H. C. Galvanic Replacement Reaction: Recent Developments for Engineering Metal Nanostructures towards Catalytic Applications. Chem. Commun. 2017, 53 (53), 7135–7148. 10.1039/C7CC02352A. PubMed DOI

Meyer R. R.; Sloan J.; Dunin-Borkowski R. E.; Kirkland A. I.; Novotny M. C.; Bailey S. R.; Hutchison J. L.; Green M. L. H. Discrete Atom Imaging of One-Dimensional Crystals Formed Within Single-Walled Carbon Nanotubes. Science 2000, 289 (5483), 1324–1326. 10.1126/science.289.5483.1324. PubMed DOI

Sadan M. B.; Houben L.; Enyashin A. N.; Seifert G.; Tenne R. Atom by Atom: HRTEM Insights into Inorganic Nanotubes and Fullerene-like Structures. Proc. Natl. Acad. Sci. U. S. A. 2008, 105 (41), 15643–15648. 10.1073/pnas.0805407105. PubMed DOI PMC

Lin Y.-C.; Dumcenco D. O.; Huang Y.-S.; Suenaga K. Atomic Mechanism of the Semiconducting-to-Metallic Phase Transition in Single-Layered MoS2. Nat. Nanotechnol. 2014, 9 (5), 391–396. 10.1038/nnano.2014.64. PubMed DOI

Zhang W. J.; Song X. Y.; Hui S. X.; Ye W. J. In-Situ SEM Observations of Fracture Behavior of BT25y Alloy during Tensile Process at Different Temperature. Materials & Design 2017, 116, 638–643. 10.1016/j.matdes.2016.12.050. DOI

Zhu Y.; Espinosa H. D. An Electromechanical Material Testing System for in Situ Electron Microscopy and Applications. Proc. Natl. Acad. Sci. U.S.A. 2005, 102 (41), 14503–14508. 10.1073/pnas.0506544102. PubMed DOI PMC

Wang Z.-J.; Dong J.; Cui Y.; Eres G.; Timpe O.; Fu Q.; Ding F.; Schloegl R.; Willinger M.-G. Stacking Sequence and Interlayer Coupling in Few-Layer Graphene Revealed by in Situ Imaging. Nat. Commun. 2016, 7 (1), 13256.10.1038/ncomms13256. PubMed DOI PMC

Kühne M.; Börrnert F.; Fecher S.; Ghorbani-Asl M.; Biskupek J.; Samuelis D.; Krasheninnikov A. V.; Kaiser U.; Smet J. H. Reversible Superdense Ordering of Lithium between Two Graphene Sheets. Nature 2018, 564 (7735), 234–239. 10.1038/s41586-018-0754-2. PubMed DOI

Banhart F.; Ajayan P. M. Carbon Onions as Nanoscopic Pressure Cells for Diamond Formation. Nature 1996, 382 (6590), 433–435. 10.1038/382433a0. DOI

Kolíbal M.; Bukvišová K.; Kachtík L.; Zak A.; Novák L.; Šikola T. Formation of Tungsten Oxide Nanowires by Electron-Beam-Enhanced Oxidation of WS2 Nanotubes and Platelets. J. Phys. Chem. C 2019, 123 (14), 9552–9559. 10.1021/acs.jpcc.9b00592. DOI

Kundrat V.; Bukvisova K.; Novak L.; Prucha L.; Houben L.; Zalesak J.; Vukusic A.; Holec D.; Tenne R.; Pinkas J. W18O49 Nanowhiskers Decorating SiO2 Nanofibers: Lessons from In Situ SEM/TEM Growth to Large Scale Synthesis and Fundamental Structural Understanding. Cryst. Growth Des. 2024, 24, 37810.1021/acs.cgd.3c01094. PubMed DOI PMC

Hashimoto H.; Tanaka K.; Yoda E. Growth and Evaporation of Tungsten Oxide Crystals. J. Phys. Soc. Jpn. 1960, 15 (6), 1006–1014. 10.1143/JPSJ.15.1006. DOI

Tilley R. J. D. The Crystal Chemistry of the Higher Tungsten Oxides. International Journal of Refractory Metals and Hard Materials 1995, 13 (1–3), 93–109. 10.1016/0263-4368(95)00004-6. DOI

Cong S.; Yuan Y.; Chen Z.; Hou J.; Yang M.; Su Y.; Zhang Y.; Li L.; Li Q.; Geng F.; Zhao Z. Noble Metal-Comparable SERS Enhancement from Semiconducting Metal Oxides by Making Oxygen Vacancies. Nat. Commun. 2015, 6 (1), 7800.10.1038/ncomms8800. PubMed DOI PMC

Chen C. L.; Mori H. In Situ TEM Observation of the Growth and Decomposition of Monoclinic W18O49 Nanowires. Nanotechnology 2009, 20 (28), 28560410.1088/0957-4484/20/28/285604. PubMed DOI

Shen G.; Bando Y.; Golberg D.; Zhou C. Electron-Beam-Induced Synthesis and Characterization of W18O49 Nanowires. J. Phys. Chem. C 2008, 112 (15), 5856–5859. 10.1021/jp8000338. DOI

Feldman Y.; Frey G. L.; Homyonfer M.; Lyakhovitskaya V.; Margulis L.; Cohen H.; Hodes G.; Hutchison J. L.; Tenne R. Bulk Synthesis of Inorganic Fullerene-like MS2 (M = Mo, W) from the Respective Trioxides and the Reaction Mechanism. J. Am. Chem. Soc. 1996, 118 (23), 5362–5367. 10.1021/ja9602408. DOI

Feldman Y.; Lyakhovitskaya V.; Tenne R. Kinetics of Nested Inorganic Fullerene-like Nanoparticle Formation. J. Am. Chem. Soc. 1998, 120 (17), 4176–4183. 10.1021/ja973205p. DOI

Margolin A.; Rosentsveig R.; Albu-Yaron A.; Popovitz-Biro R.; Tenne R. Study of the Growth Mechanism of WS2 Nanotubes Produced by a Fluidized Bed Reactor. J. Mater. Chem. 2004, 14 (4), 617.10.1039/b310609h. DOI

Yadgarov L.Transport, Optical and Tribological Properties of the Rhenium and Niobium Doped Inorganic Nanotubes and Fullerenes-like Structures. Disertation Thesis, Weizmann Institute of Science, Rehovot, Israel, Dec 31, 2015; 10.34933/WIS.000108. DOI

Zhu Y. Q.; Hsu W. K.; Grobert N.; Chang B. H.; Terrones M.; Terrones H.; Kroto H. W.; Walton D. R. M.; Wei B. Q. Production of WS2 Nanotubes. Chem. Mater. 2000, 12 (5), 1190–1194. 10.1021/cm991189k. DOI

Zhu Y. Q.; Hsu W. K.; Terrones H.; Grobert N.; Chang B. H.; Terrones M.; Wei B. Q.; Kroto H. W.; Walton D. R. M.; Boothroyd C. B.; Kinloch I.; Chen G. Z.; Windle A. H.; Fray D. J. Morphology, Structure and Growth of WS2 Nanotubes. J. Mater. Chem. 2000, 10 (11), 2570–2577. 10.1039/b004433o. DOI

Chen Y.; Li Y.; Wang Y.; Tian T.; Qin L.-C. Thin WS 2 Nanotubes from W18O49 Nanowires. Materials Research Letters 2017, 5 (7), 508–515. 10.1080/21663831.2017.1337050. DOI

Tenne R.; Remškar M.; Enyashin A.; Seifert G.. Inorganic Nanotubes and Fullerene-Like Structures (IF). In Carbon Nanotubes; Jorio A., Dresselhaus G., Dresselhaus M. S., Eds.; Ascheron C. E., Duhm A. H., Series Eds.; Topics in Applied Physics; Springer: Berlin, 2007; Vol. 111, pp 631–671, 10.1007/978-3-540-72865-8_20. DOI

Scheffer L.; Rosentzveig R.; Margolin A.; Popovitz-Biro R.; Seifert G.; Cohen S. R.; Tenne R. Scanning Tunneling Microscopy Study of WS2 Nanotubes. Phys. Chem. Chem. Phys. 2002, 4 (11), 2095–2098. 10.1039/b201244h. DOI

Mele L.; Konings S.; Dona P.; Evertz F.; Mitterbauer C.; Faber P.; Schampers R.; Jinschek J. R. A MEMS-Based Heating Holder for the Direct Imaging of Simultaneous in-Situ Heating and Biasing Experiments in Scanning/Transmission Electron Microscopes: MEMS-BASED HEATING HOLDER. Microsc. Res. Technol. 2016, 79 (4), 239–250. 10.1002/jemt.22623. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace