• This record comes from PubMed

W18O49 Nanowhiskers Decorating SiO2 Nanofibers: Lessons from In Situ SEM/TEM Growth to Large Scale Synthesis and Fundamental Structural Understanding

. 2024 Jan 03 ; 24 (1) : 378-390. [epub] 20231205

Status PubMed-not-MEDLINE Language English Country United States Media electronic-ecollection

Document type Journal Article

Tungsten suboxide W18O49 nanowhiskers are a material of great interest due to their potential high-end applications in electronics, near-infrared light shielding, catalysis, and gas sensing. The present study introduces three main approaches for the fundamental understanding of W18O49 nanowhisker growth and structure. First, W18O49 nanowhiskers were grown from γ-WO3/a-SiO2 nanofibers in situ in a scanning electron microscope (SEM) utilizing a specially designed microreactor (μReactor). It was found that irradiation by the electron beam slows the growth kinetics of the W18O49 nanowhisker, markedly. Following this, an in situ TEM study led to some new fundamental understanding of the growth mode of the crystal shear planes in the W18O49 nanowhisker and the formation of a domain (bundle) structure. High-resolution scanning transmission electron microscopy analysis of a cross-sectioned W18O49 nanowhisker revealed the well-documented pentagonal Magnéli columns and hexagonal channel characteristics for this phase. Furthermore, a highly crystalline and oriented domain structure and previously unreported mixed structural arrangement of tungsten oxide polyhedrons were analyzed. The tungsten oxide phases found in the cross section of the W18O49 nanowhisker were analyzed by nanodiffraction and electron energy loss spectroscopy (EELS), which were discussed and compared in light of theoretical calculations based on the density functional theory method. Finally, the knowledge gained from the in situ SEM and TEM experiments was valorized in developing a multigram synthesis of W18O49/a-SiO2 urchin-like nanofibers in a flow reactor.

See more in PubMed

Bandi S.; Srivastav A. K. Review: Oxygen-Deficient Tungsten Oxides. J. Mater. Sci. 2021, 56 (11), 6615–6644. 10.1007/s10853-020-05757-2. DOI

Zhang L.; Wang H.; Liu J.; Zhang Q.; Yan H. Nonstoichiometric Tungsten Oxide: Structure, Synthesis, and Applications. J. Mater. Sci.: Mater. Electron. 2020, 31 (2), 861–873. 10.1007/s10854-019-02596-z. DOI

Wu C.-M.; Naseem S.; Chou M.-H.; Wang J.-H.; Jian Y.-Q. Recent Advances in Tungsten-Oxide-Based Materials and Their Applications. Front. Mater. 2019, 6, 49. 10.3389/fmats.2019.00049. DOI

Cong S.; Geng F.; Zhao Z. Tungsten Oxide Materials for Optoelectronic Applications. Adv. Mater. 2016, 28 (47), 10518–10528. 10.1002/adma.201601109. PubMed DOI

Xi G.; Ouyang S.; Li P.; Ye J.; Ma Q.; Su N.; Bai H.; Wang C. Ultrathin W PubMed DOI

Guo C.; Yin S.; Huang Y.; Dong Q.; Sato T. Synthesis of W PubMed DOI

Guo C.; Yin S.; Yan M.; Kobayashi M.; Kakihana M.; Sato T. Morphology-Controlled Synthesis of W PubMed DOI

Li G.; Wu G.; Guo C.; Wang B. Fabrication of One-Dimensional W DOI

Chang Y.; Wang Z.; Shi Y.; Ma X.; Ma L.; Zhang Y.; Zhan J. Hydrophobic W DOI

Fang Z.; Jiao S.; Wang B.; Yin W.; Pang G. A Flexible, Self-Floating Composite for Efficient Water Evaporation. Global Chall. 2019, 3 (6), 1800085. 10.1002/gch2.201800085. PubMed DOI PMC

Chala T. F.; Wu C.-M.; Chou M.-H.; Guo Z.-L. Melt Electrospun Reduced Tungsten Oxide /Polylactic Acid Fiber Membranes as a Photothermal Material for Light-Driven Interfacial Water Evaporation. ACS Appl. Mater. Interfaces 2018, 10 (34), 28955–28962. 10.1021/acsami.8b07434. PubMed DOI

Zhang M.; Cheng G.; Wei Y.; Wen Z.; Chen R.; Xiong J.; Li W.; Han C.; Li Z. Cuprous Ion (Cu+) Doping Induced Surface/Interface Engineering for Enhancing the CO PubMed DOI

Li X.; Yang S.; Sun J.; He P.; Xu X.; Ding G. Tungsten Oxide Nanowire-Reduced Graphene Oxide Aerogel for High-Efficiency Visible Light Photocatalysis. Carbon 2014, 78, 38–48. 10.1016/j.carbon.2014.06.034. DOI

Xu M.; Jia S.; Li H.; Zhang Z.; Guo Y.; Chen C.; Chen S.; Yan J.; Zhao W.; Yun J. DOI

Lundberg M.; Sundberg M.; Magnéli A. The “Pentagonal Column” as a Building Unit in Crystal and Defect Structures of Some Groups of Transition Metal Compounds. J. Solid State Chem. 1982, 44 (1), 32–40. 10.1016/0022-4596(82)90398-X. DOI

Ko R.-M.; Wang S.-J.; Hsu W.-C.; Lin Y.-R. From Metastable to Stable: Possible Mechanisms for the Evolution of W DOI

Tilley R. J. D. The Crystal Chemistry of the Higher Tungsten Oxides. Int. J. Refract. Hard Met. 1995, 13 (1–3), 93–109. 10.1016/0263-4368(95)00004-6. DOI

Yue L.; Tang J.; Li F.; Xu N.; Zhang F.; Zhang Q.; Guan R.; Hong J.; Zhang W. Enhanced Reversible Lithium Storage in Ultrathin W DOI

Zhang W.; Yue L.; Zhang F.; Zhang Q.; Gui X.; Guan R.; Hou G.; Xu N. One-Step DOI

Sun Y.; Wang W.; Qin J.; Zhao D.; Mao B.; Xiao Y.; Cao M. Oxygen Vacancy-Rich Mesoporous W DOI

de la Cruz A. M.; García-Alvarado F.; Morán E.; Alario-Franco M. A.; Torres-Martínez L. M. Lithium in W DOI

Li K.; Shao Y.; Yan H.; Lu Z.; Griffith K. J.; Yan J.; Wang G.; Fan H.; Lu J.; Huang W.; Bao B.; Liu X.; Hou C.; Zhang Q.; Li Y.; Yu J.; Wang H. Lattice-Contraction Triggered Synchronous Electrochromic Actuator. Nat. Commun. 2018, 9 (1), 4798. 10.1038/s41467-018-07241-7. PubMed DOI PMC

Margolin A.; Rosentsveig R.; Albu-Yaron A.; Popovitz-Biro R.; Tenne R. Study of the Growth Mechanism of WS DOI

Wang B.-R.; Wang R.-Z.; Liu L.-Y.; Wang C.; Zhang Y.-F.; Sun J.-B. WO DOI

Xiong Y.; Zhu Z.; Guo T.; Li H.; Xue Q. Synthesis of Nanowire Bundle-like WO PubMed DOI

Qin Y.; Li X.; Wang F.; Hu M. Solvothermally Synthesized Tungsten Oxide Nanowires/Nanorods for NO DOI

Zhao Z.; Bai Y.; Ning W.; Fan J.; Gu Z.; Chang H.; Yin S. Effect of Surfactants on the Performance of 3D Morphology W18O49 by Solvothermal Synthesis. Appl. Surf. Sci. 2019, 471, 537–544. 10.1016/j.apsusc.2018.12.041. DOI

Woo K.; Hong J.; Ahn J.-P.; Park J.-K.; Kim K.-J. Coordinatively Induced Length Control and Photoluminescence of W PubMed DOI

Moshofsky B.; Mokari T. Length and Diameter Control of Ultrathin Nanowires of Substoichiometric Tungsten Oxide with Insights into the Growth Mechanism. Chem. Mater. 2013, 25 (8), 1384–1391. 10.1021/cm302015z. DOI

Shi S.; Xue X.; Feng P.; Liu Y.; Zhao H.; Wang T. Low-Temperature Synthesis and Electrical Transport Properties of W DOI

Rao P. M.; Zheng X. Flame Synthesis of Tungsten Oxide Nanostructures on Diverse Substrates. Proc. Combust. Inst. 2011, 33 (2), 1891–1898. 10.1016/j.proci.2010.06.071. DOI

Kolíbal M.; Bukvišová K.; Kachtík L.; Zak A.; Novák L.; Šikola T. Formation of Tungsten Oxide Nanowires by Electron-Beam-Enhanced Oxidation of WS DOI

Tang Z.; Li X.; Wu G.; Gao S.; Chen Q.; Peng L.; Wei X. Whole-Journey Nanomaterial Research in an Electron Microscope: From Material Synthesis, Composition Characterization, Property Measurements to Device Construction and Tests. Nanotechnology 2016, 27 (48), 485710 10.1088/0957-4484/27/48/485710. PubMed DOI

Greiner A.; Wendorff J. H. Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. Angew. Chem., Int. Ed. 2007, 46 (30), 5670–5703. 10.1002/anie.200604646. PubMed DOI

Xue J.; Xie J.; Liu W.; Xia Y. Electrospun Nanofibers: New Concepts, Materials, and Applications. Acc. Chem. Res. 2017, 50 (8), 1976–1987. 10.1021/acs.accounts.7b00218. PubMed DOI PMC

Thavasi V.; Singh G.; Ramakrishna S. Electrospun Nanofibers in Energy and Environmental Applications. Energy Environ. Sci. 2008, 1 (2), 205. 10.1039/b809074m. DOI

Kundrat V.; Moravec Z.; Pinkas J. Preparation of Thorium Dioxide Nanofibers by Electrospinning. J. Nucl. Mater. 2020, 534, 152153 10.1016/j.jnucmat.2020.152153. DOI

Lu N.; Zhang Z.; Wang Y.; Liu B.; Guo L.; Wang L.; Huang J.; Liu K.; Dong B. Direct Evidence of IR-Driven Hot Electron Transfer in Metal-Free Plasmonic W DOI

Zhang Z.; Jiang X.; Liu B.; Guo L.; Lu N.; Wang L.; Huang J.; Liu K.; Dong B. IR-Driven Ultrafast Transfer of Plasmonic Hot Electrons in Nonmetallic Branched Heterostructures for Enhanced H PubMed DOI

Ma Y.; He D.; Liu J.; Wang Y.; Yang M.; Wang H.; Qiu J.; Li W.; Li Y.; Wang C.. Adsorption and Visible Light Photocatalytic Degradation of Electrospun PAN@W DOI

Kundrat V.; Vykoukal V.; Moravec Z.; Simonikova L.; Novotny K.; Pinkas J. Preparation of Polycrystalline Tungsten Nanofibers by Needleless Electrospinning. J. Alloys Compd. 2022, 900, 163542 10.1016/j.jallcom.2021.163542. DOI

Kundrat V.; Rosentsveig R.; Brontvein O.; Tenne R.; Pinkas J.. Synthesis and Characterization of WS DOI

Hashimoto H.; Tanaka K.; Yoda E. Growth and Evaporation of Tungsten Oxide Crystals. J. Phys. Soc. Jpn. 1960, 15 (6), 1006–1014. 10.1143/JPSJ.15.1006. DOI

Zhang Z.; Wang Y.; Li H.; Yuan W.; Zhang X.; Sun C.; Zhang Z. Atomic-Scale Observation of Vapor–Solid Nanowire Growth PubMed DOI

Shen G.; Bando Y.; Golberg D.; Zhou C. Electron-Beam-Induced Synthesis and Characterization of W DOI

Chen C. L.; Mori H. PubMed DOI

Blackburn P. E.; Hoch M.; Johnston H. L. The Vaporization of Molybdenum and Tungsten Oxides. J. Phys. Chem. 1958, 62 (7), 769–773. 10.1021/j150565a001. DOI

Zhu L.; Zhang Z.; Ke X.; Wang J.; Perepezko J.; Sui M. WO DOI

Migas D. B.; Shaposhnikov V. L.; Borisenko V. E. Tungsten Oxides. II. The Metallic Nature of Magnéli Phases. J. Appl. Phys. 2010, 108 (9), 093714 10.1063/1.3505689. DOI

Migas D. B.; Filonov A. B.; Skorodumova N. V. Effects of Bipolarons on Oxidation States, and the Electronic and Optical Properties of W PubMed DOI

Lu Y.; Jia X.; Ma Z.; Li Y.; Yue S.; Liu X.; Zhang J. W DOI

Yang Y.-Y.; Egerton R. F. Tests of Two Alternative Methods for Measuring Specimen Thickness in a Transmission Electron Microscope. Micron 1995, 26 (1), 1–5. 10.1016/0968-4328(94)00039-S. DOI

Kirkland E. J. Some Effects of Electron Channeling on Electron Energy Loss Spectroscopy. Ultramicroscopy 2005, 102 (3), 199–207. 10.1016/j.ultramic.2004.09.010. PubMed DOI

Mele L.; Konings S.; Dona P.; Evertz F.; Mitterbauer C.; Faber P.; Schampers R.; Jinschek J. R. A MEMS-Based Heating Holder for the Direct Imaging of Simultaneous PubMed DOI

Novák L.; Stárek J.; Vystavěl T.; Mele L. MEMS-Based Heating Element for DOI

Newest 20 citations...

See more in
Medvik | PubMed

Capillary Wave Driven Dynamics of Graphene Domains during Growth on Molten Metals

. 2025 Sep 25 ; 16 (38) : 10020-10026. [epub] 20250917

Mechanism of WS2 Nanotube Formation Revealed by in Situ/ex Situ Imaging

. 2024 May 14 ; 18 (19) : 12284-12294. [epub] 20240503

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...