Capillary Wave Driven Dynamics of Graphene Domains during Growth on Molten Metals
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40960255
PubMed Central
PMC12478858
DOI
10.1021/acs.jpclett.5c02321
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Rheotaxy─growth of crystalline layers on molten surfaces─is considered as a promising approach for achieving large-scale monolayers of two-dimensional (2D) materials via seamless stitching of 2D domains during growth on molten metals. However, the mechanisms leading to this process are not well understood. Here, we present in situ microscopic observations of rheotaxy of graphene via chemical vapor deposition on molten gold and copper. We show that the graphene domains undergo translational and rotational motions, leading to self-assembly, during growth on molten metals. Using environmental and ultrahigh vacuum scanning electron microscopy and high-temperature (∼1300 K) atomic force microscopy, coupled with density functional theory and continuum modeling, we suggest that the observed graphene domain dynamics is due to forces arising from capillary waves on the surface of the liquid metal. Our results provide new insights into the mechanisms leading to self-assembly during rheotaxy of 2D layers.
CEITEC BUT Brno University of Technology Purkyňova 123 612 00 Brno Czech Republic
Thermo Fisher Scientific Vlastimila Pecha 12 627 00 Brno Czech Republic
Zobrazit více v PubMed
Zhang L., Dong J., Ding F.. Strategies, Status, and Challenges in Wafer Scale Single Crystalline Two-Dimensional Materials Synthesis. Chem. Rev. 2021;121(11):6321–6372. doi: 10.1021/acs.chemrev.0c01191. PubMed DOI
Li X., Cai W., An J., Kim S., Nah J., Yang D., Piner R., Velamakanni A., Jung I., Tutuc E., Banerjee S. K., Colombo L., Ruoff R. S.. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science (1979) 2009;324(5932):1312–1314. doi: 10.1126/science.1171245. PubMed DOI
Bae S., Kim H., Lee Y., Xu X., Park J. S., Zheng Y., Balakrishnan J., Lei T., Ri Kim H., Song Y. Il, Kim Y. J., Kim K. S., Özyilmaz B., Ahn J. H., Hong B. H., Iijima S.. Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes. Nat. Nanotechnol. 2010;5(8):574–578. doi: 10.1038/nnano.2010.132. PubMed DOI
Hao Y., Bharathi M. S., Wang L., Liu Y., Chen H., Nie S., Wang X., Chou H., Tan C., Fallahazad B., Ramanarayan H., Magnuson C. W., Tutuc E., Yakobson B. I., McCarty K. F., Zhang Y. W., Kim P., Hone J., Colombo L., Ruoff R. S.. The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper. Science (1979) 2013;342(6159):720–723. doi: 10.1126/science.1243879. PubMed DOI
Kim K. S., Zhao Y., Jang H., Lee S. Y., Kim J. M., Kim K. S., Ahn J. H., Kim P., Choi J. Y., Hong B. H.. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature. 2009;457(7230):706–710. doi: 10.1038/nature07719. PubMed DOI
Lee J. H., Lee E. K., Joo W. J., Jang Y., Kim B. S., Lim J. Y., Choi S. H., Ahn S. J., Ahn J. R., Park M. H., Yang C. W., Choi B. L., Hwang S. W., Whang D.. Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium. Science (1979) 2014;344(6181):286. doi: 10.1126/science.1252268. PubMed DOI
Wu T., Zhang X., Yuan Q., Xue J., Lu G., Liu Z., Wang H., Wang H., Ding F., Yu Q., Xie X., Jiang M.. Fast Growth of Inch-Sized Single-Crystalline Graphene from a Controlled Single Nucleus on Cu–Ni Alloys. Nat. Mater. 2016;15(1):43–47. doi: 10.1038/nmat4477. PubMed DOI
Rasmanis, E. Method of Forming Single Crystal Films on a Material in Fluid Form, U.S. Pat US3139361, June 30, 1964.
Romeo N.. Quasi-Rheotaxy: Growth of Large Crystalline Grain Thin Films on Quasi-Liquid Substrates. J. Cryst. Growth. 1981;52:692–698. doi: 10.1016/0022-0248(81)90364-X. DOI
Graef M. W. M., Giling L. J., Bloem J.. Enhanced Crystallinity of Silicon Films Deposited by CVD on Liquid Layers (CVDOLL Process): Silicon on Tin Layers in the Presence of Hydrogen Chloride. J. Appl. Phys. 1977;48(9):3937–3940. doi: 10.1063/1.324268. DOI
Romeo N., Cozzi S., Tedeschi R., Bosio A., Canevari V., Tagliente M. A., Penza M.. High Quality ZnS:Mn Thin Films Grown by Quasi-Rheotaxy for Electroluminescent Devices. Thin Solid Films. 1999;348(1–2):49–55. doi: 10.1016/S0040-6090(99)00009-7. DOI
Lee S. H., Bergmann R., Bauser E., Queisser H. J.. Solution Growth of Silicon on Al-Si Coated Quartz Glass Substrates. Mater. Lett. 1994;19(1–2):1–6. doi: 10.1016/0167-577X(94)90096-5. DOI
Geng D., Wu B., Guo Y., Huang L., Xue Y., Chen J., Yu G., Jiang L., Hu W., Liu Y.. Uniform Hexagonal Graphene Flakes and Films Grown on Liquid Copper Surface. Proc. Natl. Acad. Sci. U. S. A. 2012;109(21):7992–7996. doi: 10.1073/pnas.1200339109. PubMed DOI PMC
Wu Y. A., Fan Y., Speller S., Creeth G. L., Sadowski J. T., He K., Robertson A. W., Allen C. S., Warner J. H.. Large Single Crystals of Graphene on Melted Copper Using Chemical Vapor Deposition. ACS Nano. 2012;6(6):5010–5017. doi: 10.1021/nn3016629. PubMed DOI
Ma W., Chen M. L., Yin L., Liu Z., Li H., Xu C., Xin X., Sun D. M., Cheng H. M., Ren W.. Interlayer Epitaxy of Wafer-Scale High-Quality Uniform AB-Stacked Bilayer Graphene Films on Liquid Pt3Si/Solid Pt. Nat. Commun. 2019;10(1):2809. doi: 10.1038/s41467-019-10691-2. PubMed DOI PMC
Belyaeva L. A., Jiang L., Soleimani A., Methorst J., Risselada H. J., Schneider G. F.. Liquids Relax and Unify Strain in Graphene. Nat. Commun. 2020;11(1):898. doi: 10.1038/s41467-020-14637-x. PubMed DOI PMC
Zhu W., Zhang Y., Shen J., Shi Y., Li M., Lian J.. Large-Area Uniaxial-Oriented Growth of Free-Standing Thin Films at the Liquid-Air Interface with Millimeter-Sized Grains. ACS Nano. 2022;16(8):11802–11814. doi: 10.1021/acsnano.1c07662. PubMed DOI
Chen J., Zhao X., Tan S. J. R., Xu H., Wu B., Liu B., Fu D., Fu W., Geng D., Liu Y., Liu W., Tang W., Li L., Zhou W., Sum T. C., Loh K. P.. Chemical Vapor Deposition of Large-Size Monolayer MoSe 2 Crystals on Molten Glass. J. Am. Chem. Soc. 2017;139(3):1073–1076. doi: 10.1021/jacs.6b12156. PubMed DOI
Lee J. S., Choi S. H., Yun S. J., Kim Y. I., Boandoh S., Park J.-H., Shin B. G., Ko H., Lee S. H., Kim Y.-M., Lee Y. H., Kim K. K., Kim S. M.. Wafer-Scale Single-Crystal Hexagonal Boron Nitride Film via Self-Collimated Grain Formation. Science (1979) 2018;362(6416):817–821. doi: 10.1126/science.aau2132. PubMed DOI
Jankowski M., Saedi M., La Porta F., Manikas A. C., Tsakonas C., Cingolani J. S., Andersen M., De Voogd M., Van Baarle G. J. C., Reuter K., Galiotis C., Renaud G., Konovalov O. V., Groot I. M. N.. Real-Time Multiscale Monitoring and Tailoring of Graphene Growth on Liquid Copper. ACS Nano. 2021;15(6):9638–9648. doi: 10.1021/acsnano.0c10377. PubMed DOI PMC
Tsakonas C., Dimitropoulos M., Manikas A. C., Galiotis C.. Growth and in Situ Characterization of 2D Materials by Chemical Vapour Deposition on Liquid Metal Catalysts: A Review. Nanoscale. 2021;13(6):3346–3373. doi: 10.1039/D0NR07330J. PubMed DOI
Rein V., Gao H., Heenen H. H., Sghaier W., Manikas A. C., Tsakonas C., Saedi M., Margraf J. T., Galiotis C., Renaud G., Konovalov O. V., Groot I. M. N., Reuter K., Jankowski M.. Operando Characterization and Molecular Simulations Reveal the Growth Kinetics of Graphene on Liquid Copper During Chemical Vapor Deposition. ACS Nano. 2024;18(19):12503–12511. doi: 10.1021/acsnano.4c02070. PubMed DOI PMC
Anderson M. L., Bartelt N. C., Feibelman P. J., Swartzentruber B. S., Kellogg G. L.. The Effect of Embedded Pb on Cu Diffusion on Pb/Cu(1 1 1) Surface Alloys. Surf. Sci. 2006;600(9):1901–1908. doi: 10.1016/j.susc.2006.02.034. DOI
Zhang J. J., Montalenti F., Rastelli A., Hrauda N., Scopece D., Groiss H., Stangl J., Pezzoli F., Schäffler F., Schmidt O. G., Miglio L., Bauer G.. Collective Shape Oscillations of Sige Islands on Pit-Patterned Si(001) Substrates: A Coherent-Growth Strategy Enabled by Self-Regulated Intermixing. Phys. Rev. Lett. 2010;105(16):166102. doi: 10.1103/PhysRevLett.105.166102. PubMed DOI
Repp J., Moresco F., Meyer G., Rieder K. H., Hyldgaard P., Persson M.. Substrate Mediated Long-Range Oscillatory Interaction between Adatoms: Cu/Cu(111) Phys. Rev. Lett. 2000;85(14):2981. doi: 10.1103/PhysRevLett.85.2981. PubMed DOI
Barth J. V., Costantini G., Kern K.. Engineering Atomic and Molecular Nanostructures at Surfaces. Nature. 2005;437(7059):671–679. doi: 10.1038/nature04166. PubMed DOI
Novak L., Wandrol P., Vesseur E. J. R.. Microreactor for Clean and Controlled In-Situ SEM Imaging of CVD Processes. Microscopy and Microanalysis. 2020;26:1144–1145. doi: 10.1017/S1431927620017092. DOI
Kundrat V., Bukvisova K., Novak L., Prucha L., Houben L., Zalesak J., Vukusic A., Holec D., Tenne R., Pinkas J.. W 18 O 49 Nanowhiskers Decorating SiO 2 Nanofibers: Lessons from In Situ SEM/TEM Growth to Large Scale Synthesis and Fundamental Structural Understanding. Cryst. Growth Des. 2024;24(1):378–390. doi: 10.1021/acs.cgd.3c01094. PubMed DOI PMC
James, A. M. ; Lord, M. P. . Macmillan’s Chemical and Physical Data; Macmillan: London, U.K., 1992.
Nguyen V. L., Shin B. G., Duong D. L., Kim S. T., Perello D., Lim Y. J., Yuan Q. H., Ding F., Jeong H. Y., Shin H. S., Lee S. M., Chae S. H., Vu Q. A., Lee S. H., Lee Y. H.. Seamless Stitching of Graphene Domains on Polished Copper (111) Foil. Adv. Mater. 2015;27(8):1376–1382. doi: 10.1002/adma.201404541. PubMed DOI
Hall L. D.. The Vapor Pressure of Gold and the Activities of Gold in Gold-Copper Solid Solutions. J. Am. Chem. Soc. 1951;73(2):757–760. doi: 10.1021/ja01146a077. DOI
Sanyal M. K., Sinha S. K., Huang K. G., Ocko B. M.. X-Ray-Scattering Study of Capillary-Wave Fluctuations at a Liquid Surface. Phys. Rev. Lett. 1991;66(5):628. doi: 10.1103/PhysRevLett.66.628. PubMed DOI
Zhang Y., Sprittles J. E., Lockerby D. A.. Thermal Capillary Wave Growth and Surface Roughening of Nanoscale Liquid Films. J. Fluid Mech. 2021;915:A135. doi: 10.1017/jfm.2021.164. PubMed DOI
Tostmann H., DiMasi E., Pershan P. S., Ocko B. M., Shpyrko O. G., Deutsch M.. Surface Structure of Liquid Metals and the Effect of Capillary Waves: X-Ray Studies on Liquid Indium. Phys. Rev. B Condens Matter Mater. Phys. 1999;59(2):783. doi: 10.1103/PhysRevB.59.783. DOI
Nikolaides M. G., Bausch A. R., Hsu M. F., Dinsmore A. D., Brenner M. P., Gay C., Weitz D. A.. Electric-Field-Induced Capillary Attraction between like-Charged Particles at Liquid Interfaces. Nature. 2002;420(6913):299–301. doi: 10.1038/nature01113. PubMed DOI
Loudet J. C., Alsayed A. M., Zhang J., Yodh A. G.. Capillary Interactions between Anisotropic Colloidal Particles. Phys. Rev. Lett. 2005;94(1):018301. doi: 10.1103/PhysRevLett.94.018301. PubMed DOI
Kralchevsky P. A., Denkov N. D., Danov K. D.. Particles with an Undulated Contact Line at a Fluid Interface: Interaction between Capillary Quadrupoles and Rheology of Particulate Monolayers. Langmuir. 2001;17(24):7694–7705. doi: 10.1021/la0109359. DOI
Wang G., Nowakowski P., Farahmand Bafi N., Midtvedt B., Schmidt F., Callegari A., Verre R., Käll M., Dietrich S., Kondrat S., Volpe G.. Nanoalignment by Critical Casimir Torques. Nat. Commun. 2024;15(1):5086. doi: 10.1038/s41467-024-49220-1. PubMed DOI PMC
Gao H., Belova V., La Porta F., Cingolani J. S., Andersen M., Saedi M., Konovalov O. V., Jankowski M., Heenen H. H., Groot I. M. N., Renaud G., Reuter K.. Graphene at Liquid Copper Catalysts: Atomic-Scale Agreement of Experimental and First-Principles Adsorption Height. Advanced Science. 2022;9(36):2204684. doi: 10.1002/advs.202204684. PubMed DOI PMC
Konovalov O. V., Belova V., La Porta F., Saedi M., Groot I. M. N., Renaud G., Snigireva I., Snigirev A., Voevodina M., Shen C., Sartori A., Murphy B. M., Jankowski M.. X-Ray Reflectivity from Curved Surfaces as Illustrated by a Graphene Layer on Molten Copper. J. Synchrotron Radiat. 2022;29(3):711–720. doi: 10.1107/S1600577522002053. PubMed DOI PMC
Belova V., Jankowski M., Saedi M., Groot I. M. N., Renaud G., Konovalov O. V.. Employing Surface Curvature for Spatially Resolved X-Ray Reflectivity: Graphene Domains on Liquid Copper. Adv. Mater. Interfaces. 2023;10(15):2300053. doi: 10.1002/admi.202300053. DOI
Dubberstein T., Schürmann M., Chaves H., Heller H. P., Aneziris C. G.. A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys. Int. J. Thermophys. 2016;37(10):100. doi: 10.1007/s10765-016-2104-7. DOI
Assael M. J., Kalyva A. E., Antoniadis K. D., Michael Banish R., Egry I., Wu J., Kaschnitz E., Wakeham W. A.. Reference Data for the Density and Viscosity of Liquid Copper and Liquid Tin. J. Phys. Chem. Ref. Data. 2010;39(3):033105. doi: 10.1063/1.3467496. DOI
Cingolani J. S., Deimel M., Köcher S., Scheurer C., Reuter K., Andersen M.. Interface between Graphene and Liquid Cu from Molecular Dynamics Simulations. J. Chem. Phys. 2020;153(7):074702. doi: 10.1063/5.0020126. PubMed DOI
Goggin D. M., Zhang H., Miller E. M., Samaniuk J. R.. Interference Provides Clarity: Direct Observation of 2D Materials at Fluid-Fluid Interfaces. ACS Nano. 2020;14(1):777–790. doi: 10.1021/acsnano.9b07776. PubMed DOI
Zhang Z., Wang Y., Amarouchene Y., Boisgard R., Kellay H., Würger A., Maali A.. Near-Field Probe of Thermal Fluctuations of a Hemispherical Bubble Surface. Phys. Rev. Lett. 2021;126(17):174503. doi: 10.1103/PhysRevLett.126.174503. PubMed DOI