Capillary Wave Driven Dynamics of Graphene Domains during Growth on Molten Metals

. 2025 Sep 25 ; 16 (38) : 10020-10026. [epub] 20250917

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40960255

Rheotaxy─growth of crystalline layers on molten surfaces─is considered as a promising approach for achieving large-scale monolayers of two-dimensional (2D) materials via seamless stitching of 2D domains during growth on molten metals. However, the mechanisms leading to this process are not well understood. Here, we present in situ microscopic observations of rheotaxy of graphene via chemical vapor deposition on molten gold and copper. We show that the graphene domains undergo translational and rotational motions, leading to self-assembly, during growth on molten metals. Using environmental and ultrahigh vacuum scanning electron microscopy and high-temperature (∼1300 K) atomic force microscopy, coupled with density functional theory and continuum modeling, we suggest that the observed graphene domain dynamics is due to forces arising from capillary waves on the surface of the liquid metal. Our results provide new insights into the mechanisms leading to self-assembly during rheotaxy of 2D layers.

Zobrazit více v PubMed

Zhang L., Dong J., Ding F.. Strategies, Status, and Challenges in Wafer Scale Single Crystalline Two-Dimensional Materials Synthesis. Chem. Rev. 2021;121(11):6321–6372. doi: 10.1021/acs.chemrev.0c01191. PubMed DOI

Li X., Cai W., An J., Kim S., Nah J., Yang D., Piner R., Velamakanni A., Jung I., Tutuc E., Banerjee S. K., Colombo L., Ruoff R. S.. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science (1979) 2009;324(5932):1312–1314. doi: 10.1126/science.1171245. PubMed DOI

Bae S., Kim H., Lee Y., Xu X., Park J. S., Zheng Y., Balakrishnan J., Lei T., Ri Kim H., Song Y. Il, Kim Y. J., Kim K. S., Özyilmaz B., Ahn J. H., Hong B. H., Iijima S.. Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes. Nat. Nanotechnol. 2010;5(8):574–578. doi: 10.1038/nnano.2010.132. PubMed DOI

Hao Y., Bharathi M. S., Wang L., Liu Y., Chen H., Nie S., Wang X., Chou H., Tan C., Fallahazad B., Ramanarayan H., Magnuson C. W., Tutuc E., Yakobson B. I., McCarty K. F., Zhang Y. W., Kim P., Hone J., Colombo L., Ruoff R. S.. The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper. Science (1979) 2013;342(6159):720–723. doi: 10.1126/science.1243879. PubMed DOI

Kim K. S., Zhao Y., Jang H., Lee S. Y., Kim J. M., Kim K. S., Ahn J. H., Kim P., Choi J. Y., Hong B. H.. Large-Scale Pattern Growth of Graphene Films for Stretchable Transparent Electrodes. Nature. 2009;457(7230):706–710. doi: 10.1038/nature07719. PubMed DOI

Lee J. H., Lee E. K., Joo W. J., Jang Y., Kim B. S., Lim J. Y., Choi S. H., Ahn S. J., Ahn J. R., Park M. H., Yang C. W., Choi B. L., Hwang S. W., Whang D.. Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium. Science (1979) 2014;344(6181):286. doi: 10.1126/science.1252268. PubMed DOI

Wu T., Zhang X., Yuan Q., Xue J., Lu G., Liu Z., Wang H., Wang H., Ding F., Yu Q., Xie X., Jiang M.. Fast Growth of Inch-Sized Single-Crystalline Graphene from a Controlled Single Nucleus on Cu–Ni Alloys. Nat. Mater. 2016;15(1):43–47. doi: 10.1038/nmat4477. PubMed DOI

Rasmanis, E. Method of Forming Single Crystal Films on a Material in Fluid Form, U.S. Pat US3139361, June 30, 1964.

Romeo N.. Quasi-Rheotaxy: Growth of Large Crystalline Grain Thin Films on Quasi-Liquid Substrates. J. Cryst. Growth. 1981;52:692–698. doi: 10.1016/0022-0248(81)90364-X. DOI

Graef M. W. M., Giling L. J., Bloem J.. Enhanced Crystallinity of Silicon Films Deposited by CVD on Liquid Layers (CVDOLL Process): Silicon on Tin Layers in the Presence of Hydrogen Chloride. J. Appl. Phys. 1977;48(9):3937–3940. doi: 10.1063/1.324268. DOI

Romeo N., Cozzi S., Tedeschi R., Bosio A., Canevari V., Tagliente M. A., Penza M.. High Quality ZnS:Mn Thin Films Grown by Quasi-Rheotaxy for Electroluminescent Devices. Thin Solid Films. 1999;348(1–2):49–55. doi: 10.1016/S0040-6090(99)00009-7. DOI

Lee S. H., Bergmann R., Bauser E., Queisser H. J.. Solution Growth of Silicon on Al-Si Coated Quartz Glass Substrates. Mater. Lett. 1994;19(1–2):1–6. doi: 10.1016/0167-577X(94)90096-5. DOI

Geng D., Wu B., Guo Y., Huang L., Xue Y., Chen J., Yu G., Jiang L., Hu W., Liu Y.. Uniform Hexagonal Graphene Flakes and Films Grown on Liquid Copper Surface. Proc. Natl. Acad. Sci. U. S. A. 2012;109(21):7992–7996. doi: 10.1073/pnas.1200339109. PubMed DOI PMC

Wu Y. A., Fan Y., Speller S., Creeth G. L., Sadowski J. T., He K., Robertson A. W., Allen C. S., Warner J. H.. Large Single Crystals of Graphene on Melted Copper Using Chemical Vapor Deposition. ACS Nano. 2012;6(6):5010–5017. doi: 10.1021/nn3016629. PubMed DOI

Ma W., Chen M. L., Yin L., Liu Z., Li H., Xu C., Xin X., Sun D. M., Cheng H. M., Ren W.. Interlayer Epitaxy of Wafer-Scale High-Quality Uniform AB-Stacked Bilayer Graphene Films on Liquid Pt3Si/Solid Pt. Nat. Commun. 2019;10(1):2809. doi: 10.1038/s41467-019-10691-2. PubMed DOI PMC

Belyaeva L. A., Jiang L., Soleimani A., Methorst J., Risselada H. J., Schneider G. F.. Liquids Relax and Unify Strain in Graphene. Nat. Commun. 2020;11(1):898. doi: 10.1038/s41467-020-14637-x. PubMed DOI PMC

Zhu W., Zhang Y., Shen J., Shi Y., Li M., Lian J.. Large-Area Uniaxial-Oriented Growth of Free-Standing Thin Films at the Liquid-Air Interface with Millimeter-Sized Grains. ACS Nano. 2022;16(8):11802–11814. doi: 10.1021/acsnano.1c07662. PubMed DOI

Chen J., Zhao X., Tan S. J. R., Xu H., Wu B., Liu B., Fu D., Fu W., Geng D., Liu Y., Liu W., Tang W., Li L., Zhou W., Sum T. C., Loh K. P.. Chemical Vapor Deposition of Large-Size Monolayer MoSe 2 Crystals on Molten Glass. J. Am. Chem. Soc. 2017;139(3):1073–1076. doi: 10.1021/jacs.6b12156. PubMed DOI

Lee J. S., Choi S. H., Yun S. J., Kim Y. I., Boandoh S., Park J.-H., Shin B. G., Ko H., Lee S. H., Kim Y.-M., Lee Y. H., Kim K. K., Kim S. M.. Wafer-Scale Single-Crystal Hexagonal Boron Nitride Film via Self-Collimated Grain Formation. Science (1979) 2018;362(6416):817–821. doi: 10.1126/science.aau2132. PubMed DOI

Jankowski M., Saedi M., La Porta F., Manikas A. C., Tsakonas C., Cingolani J. S., Andersen M., De Voogd M., Van Baarle G. J. C., Reuter K., Galiotis C., Renaud G., Konovalov O. V., Groot I. M. N.. Real-Time Multiscale Monitoring and Tailoring of Graphene Growth on Liquid Copper. ACS Nano. 2021;15(6):9638–9648. doi: 10.1021/acsnano.0c10377. PubMed DOI PMC

Tsakonas C., Dimitropoulos M., Manikas A. C., Galiotis C.. Growth and in Situ Characterization of 2D Materials by Chemical Vapour Deposition on Liquid Metal Catalysts: A Review. Nanoscale. 2021;13(6):3346–3373. doi: 10.1039/D0NR07330J. PubMed DOI

Rein V., Gao H., Heenen H. H., Sghaier W., Manikas A. C., Tsakonas C., Saedi M., Margraf J. T., Galiotis C., Renaud G., Konovalov O. V., Groot I. M. N., Reuter K., Jankowski M.. Operando Characterization and Molecular Simulations Reveal the Growth Kinetics of Graphene on Liquid Copper During Chemical Vapor Deposition. ACS Nano. 2024;18(19):12503–12511. doi: 10.1021/acsnano.4c02070. PubMed DOI PMC

Anderson M. L., Bartelt N. C., Feibelman P. J., Swartzentruber B. S., Kellogg G. L.. The Effect of Embedded Pb on Cu Diffusion on Pb/Cu(1 1 1) Surface Alloys. Surf. Sci. 2006;600(9):1901–1908. doi: 10.1016/j.susc.2006.02.034. DOI

Zhang J. J., Montalenti F., Rastelli A., Hrauda N., Scopece D., Groiss H., Stangl J., Pezzoli F., Schäffler F., Schmidt O. G., Miglio L., Bauer G.. Collective Shape Oscillations of Sige Islands on Pit-Patterned Si(001) Substrates: A Coherent-Growth Strategy Enabled by Self-Regulated Intermixing. Phys. Rev. Lett. 2010;105(16):166102. doi: 10.1103/PhysRevLett.105.166102. PubMed DOI

Repp J., Moresco F., Meyer G., Rieder K. H., Hyldgaard P., Persson M.. Substrate Mediated Long-Range Oscillatory Interaction between Adatoms: Cu/Cu(111) Phys. Rev. Lett. 2000;85(14):2981. doi: 10.1103/PhysRevLett.85.2981. PubMed DOI

Barth J. V., Costantini G., Kern K.. Engineering Atomic and Molecular Nanostructures at Surfaces. Nature. 2005;437(7059):671–679. doi: 10.1038/nature04166. PubMed DOI

Novak L., Wandrol P., Vesseur E. J. R.. Microreactor for Clean and Controlled In-Situ SEM Imaging of CVD Processes. Microscopy and Microanalysis. 2020;26:1144–1145. doi: 10.1017/S1431927620017092. DOI

Kundrat V., Bukvisova K., Novak L., Prucha L., Houben L., Zalesak J., Vukusic A., Holec D., Tenne R., Pinkas J.. W 18 O 49 Nanowhiskers Decorating SiO 2 Nanofibers: Lessons from In Situ SEM/TEM Growth to Large Scale Synthesis and Fundamental Structural Understanding. Cryst. Growth Des. 2024;24(1):378–390. doi: 10.1021/acs.cgd.3c01094. PubMed DOI PMC

James, A. M. ; Lord, M. P. . Macmillan’s Chemical and Physical Data; Macmillan: London, U.K., 1992.

Nguyen V. L., Shin B. G., Duong D. L., Kim S. T., Perello D., Lim Y. J., Yuan Q. H., Ding F., Jeong H. Y., Shin H. S., Lee S. M., Chae S. H., Vu Q. A., Lee S. H., Lee Y. H.. Seamless Stitching of Graphene Domains on Polished Copper (111) Foil. Adv. Mater. 2015;27(8):1376–1382. doi: 10.1002/adma.201404541. PubMed DOI

Hall L. D.. The Vapor Pressure of Gold and the Activities of Gold in Gold-Copper Solid Solutions. J. Am. Chem. Soc. 1951;73(2):757–760. doi: 10.1021/ja01146a077. DOI

Sanyal M. K., Sinha S. K., Huang K. G., Ocko B. M.. X-Ray-Scattering Study of Capillary-Wave Fluctuations at a Liquid Surface. Phys. Rev. Lett. 1991;66(5):628. doi: 10.1103/PhysRevLett.66.628. PubMed DOI

Zhang Y., Sprittles J. E., Lockerby D. A.. Thermal Capillary Wave Growth and Surface Roughening of Nanoscale Liquid Films. J. Fluid Mech. 2021;915:A135. doi: 10.1017/jfm.2021.164. PubMed DOI

Tostmann H., DiMasi E., Pershan P. S., Ocko B. M., Shpyrko O. G., Deutsch M.. Surface Structure of Liquid Metals and the Effect of Capillary Waves: X-Ray Studies on Liquid Indium. Phys. Rev. B Condens Matter Mater. Phys. 1999;59(2):783. doi: 10.1103/PhysRevB.59.783. DOI

Nikolaides M. G., Bausch A. R., Hsu M. F., Dinsmore A. D., Brenner M. P., Gay C., Weitz D. A.. Electric-Field-Induced Capillary Attraction between like-Charged Particles at Liquid Interfaces. Nature. 2002;420(6913):299–301. doi: 10.1038/nature01113. PubMed DOI

Loudet J. C., Alsayed A. M., Zhang J., Yodh A. G.. Capillary Interactions between Anisotropic Colloidal Particles. Phys. Rev. Lett. 2005;94(1):018301. doi: 10.1103/PhysRevLett.94.018301. PubMed DOI

Kralchevsky P. A., Denkov N. D., Danov K. D.. Particles with an Undulated Contact Line at a Fluid Interface: Interaction between Capillary Quadrupoles and Rheology of Particulate Monolayers. Langmuir. 2001;17(24):7694–7705. doi: 10.1021/la0109359. DOI

Wang G., Nowakowski P., Farahmand Bafi N., Midtvedt B., Schmidt F., Callegari A., Verre R., Käll M., Dietrich S., Kondrat S., Volpe G.. Nanoalignment by Critical Casimir Torques. Nat. Commun. 2024;15(1):5086. doi: 10.1038/s41467-024-49220-1. PubMed DOI PMC

Gao H., Belova V., La Porta F., Cingolani J. S., Andersen M., Saedi M., Konovalov O. V., Jankowski M., Heenen H. H., Groot I. M. N., Renaud G., Reuter K.. Graphene at Liquid Copper Catalysts: Atomic-Scale Agreement of Experimental and First-Principles Adsorption Height. Advanced Science. 2022;9(36):2204684. doi: 10.1002/advs.202204684. PubMed DOI PMC

Konovalov O. V., Belova V., La Porta F., Saedi M., Groot I. M. N., Renaud G., Snigireva I., Snigirev A., Voevodina M., Shen C., Sartori A., Murphy B. M., Jankowski M.. X-Ray Reflectivity from Curved Surfaces as Illustrated by a Graphene Layer on Molten Copper. J. Synchrotron Radiat. 2022;29(3):711–720. doi: 10.1107/S1600577522002053. PubMed DOI PMC

Belova V., Jankowski M., Saedi M., Groot I. M. N., Renaud G., Konovalov O. V.. Employing Surface Curvature for Spatially Resolved X-Ray Reflectivity: Graphene Domains on Liquid Copper. Adv. Mater. Interfaces. 2023;10(15):2300053. doi: 10.1002/admi.202300053. DOI

Dubberstein T., Schürmann M., Chaves H., Heller H. P., Aneziris C. G.. A Novel Vibrating Finger Viscometer for High-Temperature Measurements in Liquid Metals and Alloys. Int. J. Thermophys. 2016;37(10):100. doi: 10.1007/s10765-016-2104-7. DOI

Assael M. J., Kalyva A. E., Antoniadis K. D., Michael Banish R., Egry I., Wu J., Kaschnitz E., Wakeham W. A.. Reference Data for the Density and Viscosity of Liquid Copper and Liquid Tin. J. Phys. Chem. Ref. Data. 2010;39(3):033105. doi: 10.1063/1.3467496. DOI

Cingolani J. S., Deimel M., Köcher S., Scheurer C., Reuter K., Andersen M.. Interface between Graphene and Liquid Cu from Molecular Dynamics Simulations. J. Chem. Phys. 2020;153(7):074702. doi: 10.1063/5.0020126. PubMed DOI

Goggin D. M., Zhang H., Miller E. M., Samaniuk J. R.. Interference Provides Clarity: Direct Observation of 2D Materials at Fluid-Fluid Interfaces. ACS Nano. 2020;14(1):777–790. doi: 10.1021/acsnano.9b07776. PubMed DOI

Zhang Z., Wang Y., Amarouchene Y., Boisgard R., Kellay H., Würger A., Maali A.. Near-Field Probe of Thermal Fluctuations of a Hemispherical Bubble Surface. Phys. Rev. Lett. 2021;126(17):174503. doi: 10.1103/PhysRevLett.126.174503. PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...