Understanding the Effect of Electron Irradiation on WS2 Nanotube Devices to Improve Prototyping Routines
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39735571
PubMed Central
PMC11673106
DOI
10.1021/acsaelm.4c01450
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
To satisfy the needs of the current technological world that demands high performance and efficiency, a deep understanding of the whole fabrication process of electronic devices based on low-dimensional materials is necessary for rapid prototyping of devices. The fabrication processes of such nanoscale devices often include exposure to an electron beam. A field effect transistor (FET) is a core device in current computation technology, and FET configuration is also commonly used for extraction of electronic properties of low-dimensional materials. In this experimental study, we analyze the effect of electron beam exposure on electrical properties of individual WS2 nanotubes in the FET configuration by in-operando transport measurements inside a scanning electron microscope. Upon exposure to the electron beam, we observed a significant change in the resistance of individual substrate-supported nanotubes (by a factor of 2 to 14) that was generally irreversible. The resistance of each nanotube did not return to its original state even after keeping it under ambient conditions for hours to days. Furthermore, we employed Kelvin probe force microscopy to monitor surface potential and identified that substrate charging is the primary cause of changes in nanotubes' resistance. Hence, extra care should be taken when analyzing nanostructures in contact with insulating oxides that are subject to electron exposure during or after fabrication.
Zobrazit více v PubMed
Böckle R.; Sistani M.; Eysin K.; Bartmann M. G.; Luong M. A.; den Hertog M. I.; Lugstein A.; Weber W. M. Gate-Tunable Negative Differential Resistance in Next-Generation Ge Nanodevices and Their Performance Metrics. Adv. Electron. Mater. 2021, 7, 2001178.10.1002/aelm.202001178. DOI
Schwarz M.; Vethaak T. D.; Derycke V.; Francheteau A.; Iniguez B.; Kataria S.; Kloes A.; Lefloch F.; Lemme M.; Snyder J. P.; et al. The Schottky barrier transistor in emerging electronic devices. Nanotechnology 2023, 34, 352002.10.1088/1361-6528/acd05f. PubMed DOI
Mikolajick T.; Galderisi G.; Rai S.; Simon M.; Böckle R.; Sistani M.; Cakirlar C.; Bhattacharjee N.; Mauersberger T.; Heinzig A.; Kumar A.; Weber W. M.; Trommer J. Reconfigurable field effect transistors: A technology enablers perspective. Solid-State Electron. 2022, 194, 108381.10.1016/j.sse.2022.108381. DOI
Chong P. F.; Cho B. J.; Chor E. F.; Joo M. S.. Effects of electron-beam lithography on thin gate oxide reliability. In Proceedings of the 2001 8th International Symposium on the Physical and Failure Analysis of Integrated Circuits. IPFA 2001, Singapore, 2001; pp 55–58.
Neelisetty K. K.; Mu X.; Gutsch S.; Vahl A.; Molinari A.; von Seggern F.; Hansen M.; Scherer T.; Zacharias M.; Kienle L.; Chakravadhanula V. S. K.; Kübel C. Electron Beam Effects on Oxide Thin Films—Structure and Electrical Property Correlations. Microsc. Microanal. 2019, 25 (3), 592–600. 10.1017/S1431927619000175. PubMed DOI
Ding K.; Feng Y.; Huang S.; Li B.; Wang Y.; Liu H.; Qian G. The effect of electron beam irradiation on WS2 nanotubes. Nanotechnology 2012, 23, 415703.10.1088/0957-4484/23/41/415703. PubMed DOI
Sutter E.; Huang Y.; Komsa H.-P.; Ghorbani-Asl M.; Krasheninnikov A. V.; Sutter P. Electron-Beam Induced Transformations of Layered Tin Dichalcogenides. Nano Lett. 2016, 16, 4410–4416. 10.1021/acs.nanolett.6b01541. PubMed DOI
Sun L.; Banhart F.; Warner J. Two-dimensional materials under electron irradiation. MRS Bull. 2015, 40, 29–37. 10.1557/mrs.2014.303. DOI
Mendes R. G.; Pang J.; Bachmatiuk A.; Ta H. Q.; Zhao L.; Gemming T.; Fu L.; Liu Z.; Rümmeli M. H. Electron-Driven In Situ Transmission Electron Microscopy of 2D Transition Metal Dichalcogenides and Their 2D Heterostructures. ACS Nano 2019, 13, 978–995. 10.1021/acsnano.8b08079. PubMed DOI
Jiang N. Electron irradiation effects in transmission electron microscopy: Random displacements and collective migrations. Micron 2023, 171, 103482.10.1016/j.micron.2023.103482. PubMed DOI
Meyer J. C.; Eder F.; Kurasch S.; Skakalova V.; Kotakoski J.; Park H. J.; Roth S.; Chuvilin A.; Eyhusen S.; Benner G.; Krasheninnikov A. V.; Kaiser U. Accurate Measurement of Electron Beam Induced Displacement Cross Sections for Single-Layer Graphene. Phys. Rev. Lett. 2012, 108, 196102.10.1103/PhysRevLett.108.196102. PubMed DOI
Meyer J. C.; Eder F.; Kurasch S.; Skakalova V.; Kotakoski J.; Park H. J.; Roth S.; Chuvilin A.; Eyhusen S.; Benner G.; Krasheninnikov A. V.; Kaiser U. Erratum: Accurate Measurement of Electron Beam Induced Displacement Cross Sections for Single-Layer Graphene [Phys. Rev. Lett. 108, 196102 (2012)]. Phys. Rev. Lett. 2013, 110, 239902.10.1103/PhysRevLett.110.239902. PubMed DOI
Komsa H.-P.; Kotakoski J.; Kurasch S.; Lehtinen O.; Kaiser U.; Krasheninnikov A. V. Two-Dimensional Transition Metal Dichalcogenides under Electron Irradiation: Defect Production and Doping. Phys. Rev. Lett. 2012, 109, 035503.10.1103/PhysRevLett.109.035503. PubMed DOI
Chong P. F.; Cho B. J.; Chor E. F.; Joo M. S.; Yeo I. S. Investigation of Reliability Degradation of Ultra-Thin Gate Oxides Irradiated under Electron-Beam Lithography Conditions. Jpn. J. Appl. Phys. 2000, 39, 2181.10.1143/JJAP.39.2181. DOI
Cho B. J.; Chong P. F.; Chor E. F.; Joo M. S.; Yeo I. S. J. Electron-beam irradiation-induced gate oxide degradation. Appl. Phys. Lett. 2000, 88, 6731–6735. 10.1063/1.1321030. DOI
Nykänen H.; Suihkonen S.; Kilanski L.; Sopanen M.; Tuomisto F. Low energy electron beam induced vacancy activation in GaN. Appl. Phys. Lett. 2012, 100, 122105.10.1063/1.3696047. DOI
Nykänen H.; Mattila P.; Suihkonen S.; Riikonen J.; Quillet E.; Homeyer E.; Bellessa J.; Sopanen M. Low energy electron beam induced damage on InGaN/GaN quantum well structure. J. Appl. Phys. 2011, 109, 083105.10.1063/1.3574655. DOI
Selhorst R.; Yu Z.; Moore D.; Jiang J.; Susner M. A.; Glavin N. R.; Pachter R.; Terrones M.; Maruyama B.; Rao R. Precision Modification of Monolayer Transition Metal Dichalcogenides via Environmental E-Beam Patterning. ACS Nano 2023, 17, 2958–2967. 10.1021/acsnano.2c11503. PubMed DOI
Xie X.; Kang J.; Cao W.; Chu J. H.; Gong Y.; Ajayan P. M.; Banerjee K. Designing artificial 2D crystals with site and size controlled quantum dots. Nat. Sci. Rep. 2017, 7, 9965.10.1038/s41598-017-08776-3. PubMed DOI PMC
Teweldebrhan D.; Balandin A. A. Modification of Graphene Properties due to Electron-Beam Irradiation. Appl. Phys. Lett. 2009, 94, 013101.10.1063/1.3062851. DOI
Liang J.; Zhang L.; Li X.; Pan B.; Luo T.; Liu N.; Zou C.; Yang Y.; Huang S. Electron Transport Properties of WS2 Field-Effect Transistors Modulated by Electron Beam Irradiation Under Gate Voltage. IEEE Electron Device Lett. 2019, 40, 1542–1545. 10.1109/LED.2019.2926400. DOI
Kang S.; Movva H. C. P.; Sanne A.; Rai A.; Banerjee S. K. Influence of electron-beam lithography exposure current level on the transport characteristics of graphene field effect transistors. J. Appl. Phys. 2016, 119, 124502.10.1063/1.4944599. DOI
Liu G.; Teweldebrhan D.; Balandin A. A. Tuning of Graphene Properties via Controlled Exposure to Electron Beams. Nanotechnology 2011, 10, 865–870. 10.1109/TNANO.2010.2087391. DOI
Childres I.; Jauregui L. A.; Foxe M.; Tian J.; Jalilian R.; Jovanovic I.; Chen Y. P. Effect of electron-beam irradiation on graphene field effect devices. Appl. Phys. Lett. 2010, 97, 173109.10.1063/1.3502610. DOI
Kretschmer S.; Lehnert T.; Kaiser U.; Krasheninnikov A. V. Formation of Defects in Two-Dimensional MoS2 in the Transmission Electron Microscope at Electron Energies below the Knock-on Threshold: The Role of Electronic Excitations. Nano Lett. 2020, 20, 2865–2870. 10.1021/acs.nanolett.0c00670. PubMed DOI
Komsa H.-P.; Kurasch S.; Lehtinen O.; Kaiser U.; Krasheninnikov A. V. From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 88, 035301.10.1103/PhysRevB.88.035301. DOI
de Graaf S.; Kooi B. J. Radiation damage and defect dynamics in 2D WS2: a low-voltage scanning transmission electron microscopy study. 2D Mater. 2022, 9, 015009.10.1088/2053-1583/ac3377. DOI
Levi R.; Bitton O.; Leitus G.; Tenne R.; Joselevich E. Field-Effect Transistors Based on WS2 Nanotubes with High Current-Carrying Capacity. Nano Lett. 2013, 13, 3736–3741. 10.1021/nl401675k. PubMed DOI
Kundrát V.; Rosentsveig R.; Bukvišová K.; Citterberg D.; Kolíbal M.; Keren S.; Pinkas I.; Yaffe O.; Zak A.; Tenne R. Submillimeter-Long WS2 Nanotubes: The Pathway to Inorganic Buckypaper. Nano Lett. 2023, 23, 10259–10266. 10.1021/acs.nanolett.3c02783. PubMed DOI PMC
Grillo A.; Passacantando M.; Zak A.; Pelella A.; Di Bartolomeo A. WS2 Nanotubes: Electrical Conduction and Field Emission Under Electron Irradiation and Mechanical Stress. Small 2020, 16, 2002880.10.1002/smll.202002880. PubMed DOI
Zhang C.; Ning Z.; Liu Y.; Xu T.; Guo Y.; Zak A.; Zhang Z.; Wang S.; Tenne R.; Chen Q. Electrical transport properties of individual WS2 nanotubes and their dependence on water and oxygen absorption. Appl. Phys. Lett. 2012, 101, 113112.10.1063/1.4752440. DOI
Melitz W.; Shen J.; Kummel A. C.; Lee S. Kelvin probe force microscopy and its application. Surf. Sci. Rep. 2011, 66, 1–27. 10.1016/j.surfrep.2010.10.001. DOI
Hanrath T.; Korgel B. A. Influence of Surface States on Electron Transport through Intrinsic Ge Nanowires. J. Phys. Chem. B 2005, 109, 5518–5524. 10.1021/jp044491b. PubMed DOI
Sistani M.; Staudinger P.; Lugstein A. Polarity Control in Ge Nanowires by Electronic Surface Doping. J. Phys. Chem. C 2020, 124, 19858–19863. 10.1021/acs.jpcc.0c05749. PubMed DOI PMC
Kolíbal M.; Bukvišová K.; Kachtík L.; Zak A.; Novák L.; Šikola T. Formation of Tungsten Oxide Nanowires by Electron-Beam-Enhanced Oxidation of WS2 Nanotubes and Platelets. J. Phys. Chem. C 2019, 123, 9552–9559. 10.1021/acs.jpcc.9b00592. DOI
Švarc V.; Bartošík M.; Konečný M.; Piastek J.; Nezval D.; Mach J.; Šikola T. Side charge propagation in simultaneous KPFM and transport measurement of humidity exposed graphene FET sensor. Carbon 2023, 215, 118471.10.1016/j.carbon.2023.118471. DOI
Grasser T. Stochastic charge trapping in oxides: From random telegraph noise to bias temperature instabilities. Microelectron. Reliab. 2012, 52, 39–70. 10.1016/j.microrel.2011.09.002. DOI
Burson K. M.; Cullen W. G.; Adam S.; Dean C. R.; Watanabe K.; Taniguchi T.; Kim P.; Fuhrer M. S. Direct Imaging of Charged Impurity Density in Common Graphene Substrates. Nano Lett. 2013, 13, 3576–3580. 10.1021/nl4012529. PubMed DOI
Liang J.; Zhang L.; Li X.; Pan B.; Luo T.; Liu N.; Zou C.; Yang Y.; Huang S. Electron Transport Properties of WS2 Field-Effect Transistors Modulated by Electron Beam Irradiation Under Gate Voltage. IEEE Electron Device Lett. 2019, 40, 1542–1545. 10.1109/LED.2019.2926400. DOI
Lin J.; Pantelides S. T.; Zhou W. Vacancy-Induced Formation and Growth of Inversion Domains in Transition-Metal Dichalcogenide Monolayer. ACS Nano 2015, 9, 5189–5197. 10.1021/acsnano.5b00554. PubMed DOI
Yoshimura A.; Lamparski M.; Kharche N.; Meunier V. First-principles simulation of local response in transition metal dichalcogenides under electron irradiation. Nanoscale 2018, 10, 2388–2397. 10.1039/C7NR07024A. PubMed DOI
de Graaf S.; Kooi B. J. Radiation damage and defect dynamics in 2D WS2. 2D Mater. 2022, 9, 015009.10.1088/2053-1583/ac3377. DOI
Parkin W. M.; Balan A.; Liang L.; Das P. M.; Lamparski M.; Naylor C. H.; Rodríguez-Manzo J. A.; Johnson A. T. C.; Meunier V.; Drndić M. Raman Shifts in Electron-Irradiated Monolayer MoS2. ACS Nano 2016, 10, 4134–4142. 10.1021/acsnano.5b07388. PubMed DOI PMC
de Graaf S.; Ahmadi M.; Lazić I.; Bosch E. G. T.; Kooi B. J. Imaging atomic motion of light elements in 2D materials with 30 kV electron microscopy. Nanoscale 2021, 13, 20683–20691. 10.1039/D1NR06614E. PubMed DOI
Xu T.; Chen Q.; Zhang C.; Ran K.; Wang J.; Rosentsveig R.; Tenne R. Self-healing of bended WS2nanotubes and its effect on the nanotube’s properties. Nanoscale 2012, 4, 7825–7831. 10.1039/c2nr32591h. PubMed DOI
Fan Y.; Robertson A. W.; Zhang X.; Tweedie M.; Zhou Y.; Rummeli M. H.; Zheng H.; Warner J. H. Negative Electro-conductance in Suspended 2D WS2 Nanoscale Devices. ACS Appl. Mater. Interfaces 2016, 8, 32963–32970. 10.1021/acsami.6b11480. PubMed DOI
Amara K. K.; Chen Y.; Lin Y.-C.; Kumar R.; Okunishi E.; Suenaga K.; Quek S. Y.; Eda G. Dynamic Structural Evolution of Metal-Metal Bonding Network in Monolayer WS2. Chem. Mater. 2016, 28, 2308–2314. 10.1021/acs.chemmater.6b00379. DOI
Wang Y.; Feng Y.; Chen Y.; Mo F.; Qian G.; Yu D.; Wang Y.; Zhang X. Morphological and structural evolution of WS2 nanosheets irradiated with an electron beam. Phys. Chem. Chem. Phys. 2015, 17, 2678–2685. 10.1039/C4CP04251D. PubMed DOI
Hills G.; Lau C.; Wright A.; Fuller S.; Bishop M. D.; Srimani T.; Kanhaiya P.; Ho R.; Amer A.; Stein Y.; Murphy D.; Arvind; Chandrakasan A.; Shulaker M. M. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602. 10.1038/s41586-019-1493-8. PubMed DOI
Lau D.; Hughes A. E.; Muster T. H.; Davis T. J.; Glenn A. M. Electron-Beam-Induced Carbon Contamination on Silicon: Characterization Using Raman Spectroscopy and Atomic Force Microscopy. Microsc. Microanal. 2010, 16, 13–20. 10.1017/S1431927609991206. PubMed DOI
Zak A.; Sallacan-Ecker L.; Margolin A.; Genut M.; Tenne R. Insight into the growth mechanism of WS2 nanotubes in the scaled-up fluidized-bed reactor. Nano 2009, 04, 91–98. 10.1142/S1793292009001551. DOI
Zak A.; Sallacan Ecker L.; Efrati R.; Drangai L.; Fleischer N.; Tenne R. Large-scale Synthesis of WS2Multiwall Nanotubes and their Dispersion, an Update. Sens. Transducers J. 2011, 12 (Special Issue), 1–10.
Wagner T.; Beyer H.; Reissner P.; Mensch P.; Riel H.; Gotsmann B.; Stemmer A. Kelvin probe force microscopy for local characterisation of active nanoelectronic devices. Beilstein J. Nanotechnol. 2015, 6, 2193–2206. 10.3762/bjnano.6.225. PubMed DOI PMC