Understanding the Effect of Electron Irradiation on WS2 Nanotube Devices to Improve Prototyping Routines

. 2024 Dec 24 ; 6 (12) : 8776-8782. [epub] 20241213

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39735571

To satisfy the needs of the current technological world that demands high performance and efficiency, a deep understanding of the whole fabrication process of electronic devices based on low-dimensional materials is necessary for rapid prototyping of devices. The fabrication processes of such nanoscale devices often include exposure to an electron beam. A field effect transistor (FET) is a core device in current computation technology, and FET configuration is also commonly used for extraction of electronic properties of low-dimensional materials. In this experimental study, we analyze the effect of electron beam exposure on electrical properties of individual WS2 nanotubes in the FET configuration by in-operando transport measurements inside a scanning electron microscope. Upon exposure to the electron beam, we observed a significant change in the resistance of individual substrate-supported nanotubes (by a factor of 2 to 14) that was generally irreversible. The resistance of each nanotube did not return to its original state even after keeping it under ambient conditions for hours to days. Furthermore, we employed Kelvin probe force microscopy to monitor surface potential and identified that substrate charging is the primary cause of changes in nanotubes' resistance. Hence, extra care should be taken when analyzing nanostructures in contact with insulating oxides that are subject to electron exposure during or after fabrication.

Zobrazit více v PubMed

Böckle R.; Sistani M.; Eysin K.; Bartmann M. G.; Luong M. A.; den Hertog M. I.; Lugstein A.; Weber W. M. Gate-Tunable Negative Differential Resistance in Next-Generation Ge Nanodevices and Their Performance Metrics. Adv. Electron. Mater. 2021, 7, 2001178.10.1002/aelm.202001178. DOI

Schwarz M.; Vethaak T. D.; Derycke V.; Francheteau A.; Iniguez B.; Kataria S.; Kloes A.; Lefloch F.; Lemme M.; Snyder J. P.; et al. The Schottky barrier transistor in emerging electronic devices. Nanotechnology 2023, 34, 352002.10.1088/1361-6528/acd05f. PubMed DOI

Mikolajick T.; Galderisi G.; Rai S.; Simon M.; Böckle R.; Sistani M.; Cakirlar C.; Bhattacharjee N.; Mauersberger T.; Heinzig A.; Kumar A.; Weber W. M.; Trommer J. Reconfigurable field effect transistors: A technology enablers perspective. Solid-State Electron. 2022, 194, 108381.10.1016/j.sse.2022.108381. DOI

Chong P. F.; Cho B. J.; Chor E. F.; Joo M. S.. Effects of electron-beam lithography on thin gate oxide reliability. In Proceedings of the 2001 8th International Symposium on the Physical and Failure Analysis of Integrated Circuits. IPFA 2001, Singapore, 2001; pp 55–58.

Neelisetty K. K.; Mu X.; Gutsch S.; Vahl A.; Molinari A.; von Seggern F.; Hansen M.; Scherer T.; Zacharias M.; Kienle L.; Chakravadhanula V. S. K.; Kübel C. Electron Beam Effects on Oxide Thin Films—Structure and Electrical Property Correlations. Microsc. Microanal. 2019, 25 (3), 592–600. 10.1017/S1431927619000175. PubMed DOI

Ding K.; Feng Y.; Huang S.; Li B.; Wang Y.; Liu H.; Qian G. The effect of electron beam irradiation on WS2 nanotubes. Nanotechnology 2012, 23, 415703.10.1088/0957-4484/23/41/415703. PubMed DOI

Sutter E.; Huang Y.; Komsa H.-P.; Ghorbani-Asl M.; Krasheninnikov A. V.; Sutter P. Electron-Beam Induced Transformations of Layered Tin Dichalcogenides. Nano Lett. 2016, 16, 4410–4416. 10.1021/acs.nanolett.6b01541. PubMed DOI

Sun L.; Banhart F.; Warner J. Two-dimensional materials under electron irradiation. MRS Bull. 2015, 40, 29–37. 10.1557/mrs.2014.303. DOI

Mendes R. G.; Pang J.; Bachmatiuk A.; Ta H. Q.; Zhao L.; Gemming T.; Fu L.; Liu Z.; Rümmeli M. H. Electron-Driven In Situ Transmission Electron Microscopy of 2D Transition Metal Dichalcogenides and Their 2D Heterostructures. ACS Nano 2019, 13, 978–995. 10.1021/acsnano.8b08079. PubMed DOI

Jiang N. Electron irradiation effects in transmission electron microscopy: Random displacements and collective migrations. Micron 2023, 171, 103482.10.1016/j.micron.2023.103482. PubMed DOI

Meyer J. C.; Eder F.; Kurasch S.; Skakalova V.; Kotakoski J.; Park H. J.; Roth S.; Chuvilin A.; Eyhusen S.; Benner G.; Krasheninnikov A. V.; Kaiser U. Accurate Measurement of Electron Beam Induced Displacement Cross Sections for Single-Layer Graphene. Phys. Rev. Lett. 2012, 108, 196102.10.1103/PhysRevLett.108.196102. PubMed DOI

Meyer J. C.; Eder F.; Kurasch S.; Skakalova V.; Kotakoski J.; Park H. J.; Roth S.; Chuvilin A.; Eyhusen S.; Benner G.; Krasheninnikov A. V.; Kaiser U. Erratum: Accurate Measurement of Electron Beam Induced Displacement Cross Sections for Single-Layer Graphene [Phys. Rev. Lett. 108, 196102 (2012)]. Phys. Rev. Lett. 2013, 110, 239902.10.1103/PhysRevLett.110.239902. PubMed DOI

Komsa H.-P.; Kotakoski J.; Kurasch S.; Lehtinen O.; Kaiser U.; Krasheninnikov A. V. Two-Dimensional Transition Metal Dichalcogenides under Electron Irradiation: Defect Production and Doping. Phys. Rev. Lett. 2012, 109, 035503.10.1103/PhysRevLett.109.035503. PubMed DOI

Chong P. F.; Cho B. J.; Chor E. F.; Joo M. S.; Yeo I. S. Investigation of Reliability Degradation of Ultra-Thin Gate Oxides Irradiated under Electron-Beam Lithography Conditions. Jpn. J. Appl. Phys. 2000, 39, 2181.10.1143/JJAP.39.2181. DOI

Cho B. J.; Chong P. F.; Chor E. F.; Joo M. S.; Yeo I. S. J. Electron-beam irradiation-induced gate oxide degradation. Appl. Phys. Lett. 2000, 88, 6731–6735. 10.1063/1.1321030. DOI

Nykänen H.; Suihkonen S.; Kilanski L.; Sopanen M.; Tuomisto F. Low energy electron beam induced vacancy activation in GaN. Appl. Phys. Lett. 2012, 100, 122105.10.1063/1.3696047. DOI

Nykänen H.; Mattila P.; Suihkonen S.; Riikonen J.; Quillet E.; Homeyer E.; Bellessa J.; Sopanen M. Low energy electron beam induced damage on InGaN/GaN quantum well structure. J. Appl. Phys. 2011, 109, 083105.10.1063/1.3574655. DOI

Selhorst R.; Yu Z.; Moore D.; Jiang J.; Susner M. A.; Glavin N. R.; Pachter R.; Terrones M.; Maruyama B.; Rao R. Precision Modification of Monolayer Transition Metal Dichalcogenides via Environmental E-Beam Patterning. ACS Nano 2023, 17, 2958–2967. 10.1021/acsnano.2c11503. PubMed DOI

Xie X.; Kang J.; Cao W.; Chu J. H.; Gong Y.; Ajayan P. M.; Banerjee K. Designing artificial 2D crystals with site and size controlled quantum dots. Nat. Sci. Rep. 2017, 7, 9965.10.1038/s41598-017-08776-3. PubMed DOI PMC

Teweldebrhan D.; Balandin A. A. Modification of Graphene Properties due to Electron-Beam Irradiation. Appl. Phys. Lett. 2009, 94, 013101.10.1063/1.3062851. DOI

Liang J.; Zhang L.; Li X.; Pan B.; Luo T.; Liu N.; Zou C.; Yang Y.; Huang S. Electron Transport Properties of WS2 Field-Effect Transistors Modulated by Electron Beam Irradiation Under Gate Voltage. IEEE Electron Device Lett. 2019, 40, 1542–1545. 10.1109/LED.2019.2926400. DOI

Kang S.; Movva H. C. P.; Sanne A.; Rai A.; Banerjee S. K. Influence of electron-beam lithography exposure current level on the transport characteristics of graphene field effect transistors. J. Appl. Phys. 2016, 119, 124502.10.1063/1.4944599. DOI

Liu G.; Teweldebrhan D.; Balandin A. A. Tuning of Graphene Properties via Controlled Exposure to Electron Beams. Nanotechnology 2011, 10, 865–870. 10.1109/TNANO.2010.2087391. DOI

Childres I.; Jauregui L. A.; Foxe M.; Tian J.; Jalilian R.; Jovanovic I.; Chen Y. P. Effect of electron-beam irradiation on graphene field effect devices. Appl. Phys. Lett. 2010, 97, 173109.10.1063/1.3502610. DOI

Kretschmer S.; Lehnert T.; Kaiser U.; Krasheninnikov A. V. Formation of Defects in Two-Dimensional MoS2 in the Transmission Electron Microscope at Electron Energies below the Knock-on Threshold: The Role of Electronic Excitations. Nano Lett. 2020, 20, 2865–2870. 10.1021/acs.nanolett.0c00670. PubMed DOI

Komsa H.-P.; Kurasch S.; Lehtinen O.; Kaiser U.; Krasheninnikov A. V. From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 88, 035301.10.1103/PhysRevB.88.035301. DOI

de Graaf S.; Kooi B. J. Radiation damage and defect dynamics in 2D WS2: a low-voltage scanning transmission electron microscopy study. 2D Mater. 2022, 9, 015009.10.1088/2053-1583/ac3377. DOI

Levi R.; Bitton O.; Leitus G.; Tenne R.; Joselevich E. Field-Effect Transistors Based on WS2 Nanotubes with High Current-Carrying Capacity. Nano Lett. 2013, 13, 3736–3741. 10.1021/nl401675k. PubMed DOI

Kundrát V.; Rosentsveig R.; Bukvišová K.; Citterberg D.; Kolíbal M.; Keren S.; Pinkas I.; Yaffe O.; Zak A.; Tenne R. Submillimeter-Long WS2 Nanotubes: The Pathway to Inorganic Buckypaper. Nano Lett. 2023, 23, 10259–10266. 10.1021/acs.nanolett.3c02783. PubMed DOI PMC

Grillo A.; Passacantando M.; Zak A.; Pelella A.; Di Bartolomeo A. WS2 Nanotubes: Electrical Conduction and Field Emission Under Electron Irradiation and Mechanical Stress. Small 2020, 16, 2002880.10.1002/smll.202002880. PubMed DOI

Zhang C.; Ning Z.; Liu Y.; Xu T.; Guo Y.; Zak A.; Zhang Z.; Wang S.; Tenne R.; Chen Q. Electrical transport properties of individual WS2 nanotubes and their dependence on water and oxygen absorption. Appl. Phys. Lett. 2012, 101, 113112.10.1063/1.4752440. DOI

Melitz W.; Shen J.; Kummel A. C.; Lee S. Kelvin probe force microscopy and its application. Surf. Sci. Rep. 2011, 66, 1–27. 10.1016/j.surfrep.2010.10.001. DOI

Hanrath T.; Korgel B. A. Influence of Surface States on Electron Transport through Intrinsic Ge Nanowires. J. Phys. Chem. B 2005, 109, 5518–5524. 10.1021/jp044491b. PubMed DOI

Sistani M.; Staudinger P.; Lugstein A. Polarity Control in Ge Nanowires by Electronic Surface Doping. J. Phys. Chem. C 2020, 124, 19858–19863. 10.1021/acs.jpcc.0c05749. PubMed DOI PMC

Kolíbal M.; Bukvišová K.; Kachtík L.; Zak A.; Novák L.; Šikola T. Formation of Tungsten Oxide Nanowires by Electron-Beam-Enhanced Oxidation of WS2 Nanotubes and Platelets. J. Phys. Chem. C 2019, 123, 9552–9559. 10.1021/acs.jpcc.9b00592. DOI

Švarc V.; Bartošík M.; Konečný M.; Piastek J.; Nezval D.; Mach J.; Šikola T. Side charge propagation in simultaneous KPFM and transport measurement of humidity exposed graphene FET sensor. Carbon 2023, 215, 118471.10.1016/j.carbon.2023.118471. DOI

Grasser T. Stochastic charge trapping in oxides: From random telegraph noise to bias temperature instabilities. Microelectron. Reliab. 2012, 52, 39–70. 10.1016/j.microrel.2011.09.002. DOI

Burson K. M.; Cullen W. G.; Adam S.; Dean C. R.; Watanabe K.; Taniguchi T.; Kim P.; Fuhrer M. S. Direct Imaging of Charged Impurity Density in Common Graphene Substrates. Nano Lett. 2013, 13, 3576–3580. 10.1021/nl4012529. PubMed DOI

Liang J.; Zhang L.; Li X.; Pan B.; Luo T.; Liu N.; Zou C.; Yang Y.; Huang S. Electron Transport Properties of WS2 Field-Effect Transistors Modulated by Electron Beam Irradiation Under Gate Voltage. IEEE Electron Device Lett. 2019, 40, 1542–1545. 10.1109/LED.2019.2926400. DOI

Lin J.; Pantelides S. T.; Zhou W. Vacancy-Induced Formation and Growth of Inversion Domains in Transition-Metal Dichalcogenide Monolayer. ACS Nano 2015, 9, 5189–5197. 10.1021/acsnano.5b00554. PubMed DOI

Yoshimura A.; Lamparski M.; Kharche N.; Meunier V. First-principles simulation of local response in transition metal dichalcogenides under electron irradiation. Nanoscale 2018, 10, 2388–2397. 10.1039/C7NR07024A. PubMed DOI

de Graaf S.; Kooi B. J. Radiation damage and defect dynamics in 2D WS2. 2D Mater. 2022, 9, 015009.10.1088/2053-1583/ac3377. DOI

Parkin W. M.; Balan A.; Liang L.; Das P. M.; Lamparski M.; Naylor C. H.; Rodríguez-Manzo J. A.; Johnson A. T. C.; Meunier V.; Drndić M. Raman Shifts in Electron-Irradiated Monolayer MoS2. ACS Nano 2016, 10, 4134–4142. 10.1021/acsnano.5b07388. PubMed DOI PMC

de Graaf S.; Ahmadi M.; Lazić I.; Bosch E. G. T.; Kooi B. J. Imaging atomic motion of light elements in 2D materials with 30 kV electron microscopy. Nanoscale 2021, 13, 20683–20691. 10.1039/D1NR06614E. PubMed DOI

Xu T.; Chen Q.; Zhang C.; Ran K.; Wang J.; Rosentsveig R.; Tenne R. Self-healing of bended WS2nanotubes and its effect on the nanotube’s properties. Nanoscale 2012, 4, 7825–7831. 10.1039/c2nr32591h. PubMed DOI

Fan Y.; Robertson A. W.; Zhang X.; Tweedie M.; Zhou Y.; Rummeli M. H.; Zheng H.; Warner J. H. Negative Electro-conductance in Suspended 2D WS2 Nanoscale Devices. ACS Appl. Mater. Interfaces 2016, 8, 32963–32970. 10.1021/acsami.6b11480. PubMed DOI

Amara K. K.; Chen Y.; Lin Y.-C.; Kumar R.; Okunishi E.; Suenaga K.; Quek S. Y.; Eda G. Dynamic Structural Evolution of Metal-Metal Bonding Network in Monolayer WS2. Chem. Mater. 2016, 28, 2308–2314. 10.1021/acs.chemmater.6b00379. DOI

Wang Y.; Feng Y.; Chen Y.; Mo F.; Qian G.; Yu D.; Wang Y.; Zhang X. Morphological and structural evolution of WS2 nanosheets irradiated with an electron beam. Phys. Chem. Chem. Phys. 2015, 17, 2678–2685. 10.1039/C4CP04251D. PubMed DOI

Hills G.; Lau C.; Wright A.; Fuller S.; Bishop M. D.; Srimani T.; Kanhaiya P.; Ho R.; Amer A.; Stein Y.; Murphy D.; Arvind; Chandrakasan A.; Shulaker M. M. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602. 10.1038/s41586-019-1493-8. PubMed DOI

Lau D.; Hughes A. E.; Muster T. H.; Davis T. J.; Glenn A. M. Electron-Beam-Induced Carbon Contamination on Silicon: Characterization Using Raman Spectroscopy and Atomic Force Microscopy. Microsc. Microanal. 2010, 16, 13–20. 10.1017/S1431927609991206. PubMed DOI

Zak A.; Sallacan-Ecker L.; Margolin A.; Genut M.; Tenne R. Insight into the growth mechanism of WS2 nanotubes in the scaled-up fluidized-bed reactor. Nano 2009, 04, 91–98. 10.1142/S1793292009001551. DOI

Zak A.; Sallacan Ecker L.; Efrati R.; Drangai L.; Fleischer N.; Tenne R. Large-scale Synthesis of WS2Multiwall Nanotubes and their Dispersion, an Update. Sens. Transducers J. 2011, 12 (Special Issue), 1–10.

Wagner T.; Beyer H.; Reissner P.; Mensch P.; Riel H.; Gotsmann B.; Stemmer A. Kelvin probe force microscopy for local characterisation of active nanoelectronic devices. Beilstein J. Nanotechnol. 2015, 6, 2193–2206. 10.3762/bjnano.6.225. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...