Determinants of interspecific variation in season length of perennial herbs

. 2023 Oct 18 ; 132 (2) : 281-291.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37398990

BACKGROUND AND AIMS: Perennial plants in seasonal climates need to optimize their carbon balance by adjusting their active season length to avoid risks of tissue loss under adverse conditions. As season length is determined by two processes, namely spring growth and senescence, it is likely to vary in response to several potentially contrasting selective forces. Here we aim to disentangle the cascade of ecological determinants of interspecific differences in season length. METHODS: We measured size trajectories in 231 species in a botanical garden. We examined correlations between their spring and autumn size changes and determined how they make up season length. We used structural equation models (SEMs) to determine how niche parameters and species traits combine in their effect on species-specific season length. KEY RESULTS: Interspecific differences in season length were mainly controlled by senescence, while spring growth was highly synchronized across species. SEMs showed that niche parameters (light and moisture) had stronger, and often trait-independent, effects compared to species traits. Several niche (light) and trait variables (plant height, clonal spreading) had opposing effects on spring growth and senescence. CONCLUSIONS: The findings indicate different drivers and potential risks in growth and senescence. The strong role of niche-based predictors implies that shifts in season length due to global change are likely to differ among habitats and will not be uniform across the whole flora.

Erratum v

PubMed

Zobrazit více v PubMed

Augspurger CK. 2013. Reconstructing patterns of temperature, phenology, and frost damage over 124 years: Spring damage risk is increasing. Ecology 94: 41–50. doi:10.1890/12-0200.1. PubMed DOI

Augspurger CK, Salk CF.. 2017. Constraints of cold and shade on the phenology of spring ephemeral herb species. Journal of Ecology 105: 246–254.

Augspurger CK, Cheeseman JM, Salk CF.. 2005. Light gains and physiological capacity of understorey woody plants during phenological avoidance of canopy shade. Functional Ecology 19: 537–546. doi:10.1111/j.1365-2435.2005.01027.x. DOI

Bartoń K. 2020. Package ‘MuMIn’: Multi-Model Inference, version 1.43. 17. https://cran.r-project.org/package=MuMIn

Baudisch A, Salguero-Gómez R, Jones OR, et al. . 2013. The pace and shape of senescence in angiosperms. Journal of Ecology 101: 596–606.

Bucher SF, Römermann C.. 2021. The timing of leaf senescence relates to flowering phenology and functional traits in 17 herbaceous species along elevational gradients. Journal of Ecology 109: 1537–1548. doi:10.1111/1365-2745.13577. DOI

Bucher SF, Feiler R, Buchner O, et al. . 2019. Temporal and spatial trade-offs between resistance and performance traits in herbaceous plant species. Environmental and Experimental Botany 157: 187–196. doi:10.1016/j.envexpbot.2018.10.015. DOI

Castillioni K, Newman GS, Souza L, Iler AM.. 2022. Effects of drought on grassland phenology depend on functional types. New Phytologist 236: 1558–1571. doi:10.1111/nph.18462. PubMed DOI

Chytrý M, Danihelka J, Kaplan Z, et al. . 2021. Pladias Database of the Czech flora and vegetation. Preslia 93: 1–87.

Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD.. 2007. Shifting plant phenology in response to global change. Trends in Ecology and Evolution 22: 357–365. doi:10.1016/j.tree.2007.04.003. PubMed DOI

Delpierre N, Dufrêne E, Soudani K, et al. . 2009. Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agricultural and Forest Meteorology 149: 938–948. doi:10.1016/j.agrformet.2008.11.014. DOI

Denny EG, Gerst KL, Miller-Rushing AJ, et al. . 2014. Standardized phenology monitoring methods to track plant and animal activity for science and resource management applications. International Journal of Biometeorology 58: 591–601. doi:10.1007/s00484-014-0789-5. PubMed DOI PMC

Diekmann M. 2003. Species indicator values as an important tool in applied plant ecology - A review. Basic and Applied Ecology 4: 493–506. doi:10.1078/1439-1791-00185. DOI

Ellenberg H, Weber HE, Duell R, Wirth W, Werner W, Paulissen D.. 1992. Zeigerwerte von Pflanzen in Mitteleuropa. Göttingen: Verlag Erich Goltze KG.

Falge E, Baldocchi D, Tenhunen J, et al. . 2002. Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology 113: 53–74. doi:10.1016/s0168-1923(02)00102-8. DOI

Fu YH, Piao S, Delpierre N, et al. . 2018. Larger temperature response of autumn leaf senescence than spring leaf-out phenology. Global Change Biology 24: 2159–2168. doi:10.1111/gcb.14021. PubMed DOI

Gallinat AS, Primack RB, Wagner DL.. 2015. Autumn, the neglected season in climate change research. Trends in Ecology and Evolution 30: 169–176. doi:10.1016/j.tree.2015.01.004. PubMed DOI

Heberling JM, Cassidy ST, Fridley JD, Kalisz S.. 2019. Carbon gain phenologies of spring-flowering perennials in a deciduous forest indicate a novel niche for a widespread invader. New Phytologist 221: 778–788. PubMed

Herben T, Chytrý M, Klimešová J.. 2016. A quest for species-level indicator values for disturbance. Journal of Vegetation Science 27: 628–636. doi:10.1111/jvs.12384. DOI

Herben T, Klimešová J, Chytrý M.. 2018. Effects of disturbance frequency and severity on plant traits: An assessment across a temperate flora. Functional Ecology 32: 799–808.

Huang L, Koubek T, Weiser M, Herben T.. 2018. Environmental drivers and phylogenetic constraints of growth phenologies across a large set of herbaceous species. Journal of Ecology 106: 1621–1633. doi:10.1111/1365-2745.12927. DOI

Huang L, Xue W, Herben T.. 2019. Temporal niche differentiation among species changes with habitat productivity and light conditions. Journal of Vegetation Science 30: 438–447.

Kaplan Z, Danihelka J.. 2019. Klíč ke květeně České republiky. Praha: Academia.

Keenan TF, Richardson AD.. 2015. The timing of autumn senescence is affected by the timing of spring phenology: Implications for predictive models. Global Change Biology 21: 2634–2641. doi:10.1111/gcb.12890. PubMed DOI

Killingbeck KT. 1996. Nutrients in senesced leaves: keys to the search for potential resorption and resorption proficiency. Ecology 77: 1716–1727. doi:10.2307/2265777. DOI

Kleyer M, Bekker RM, Knevel IC, et al. . 2008. The LEDA Traitbase: A database of life-history traits of the Northwest European flora. Journal of Ecology 96: 1266–1274. doi:10.1111/j.1365-2745.2008.01430.x. DOI

Klimešová J, Danihelka J, Chrtek J, de Bello F, Herben T.. 2017. CLO-PLA: a database of clonal and bud-bank traits of the Central European flora. Ecology 98: 1179. doi:10.1002/ecy.1745. PubMed DOI

König P, Tautenhahn S, Cornelissen JHC, Kattge J, Bönisch G, Römermann C.. 2017. Advances in flowering phenology across the Northern Hemisphere are explained by functional traits. Global Ecology and Biogeography 27: 310–321.

Kooyers NJ. 2015. The evolution of drought escape and avoidance in natural herbaceous populations. Plant Science 234: 155–162. doi:10.1016/j.plantsci.2015.02.012. PubMed DOI

Lang W, Chen X, Qian S, Liu G, Piao S.. 2019. A new process-based model for predicting autumn phenology: How is leaf senescence controlled by photoperiod and temperature coupling? Agricultural and Forest Meteorology 268: 124–135. doi:10.1016/j.agrformet.2019.01.006. DOI

Lechowicz MJ. 1995. Seasonality of flowering and fruiting in temperate forest trees. Canadian Journal of Botany 73: 175–182. doi:10.1139/b95-021. DOI

Lee BR, Miller TK, Rosche C, et al. . 2022. Wildflower phenological escape differs by continent and spring temperature. Nature Communications 13: 7157. doi:10.1038/s41467-022-34936-9. PubMed DOI PMC

Lefcheck JS. 2016. piecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution 7: 573–579.

Linderholm HW. 2006. Growing season changes in the last century. Agricultural and Forest Meteorology 137: 1–14. doi:10.1016/j.agrformet.2006.03.006. DOI

Lu C, Zhang J, Min X, et al. . 2023. Contrasting responses of early‐ and late‐season plant phenophases to altered precipitation. Oikos 5: e09829.

Martínková J, Klimeš A, Puy J, Klimešová J.. 2020. Response of clonal versus non-clonal herbs to disturbance: Different strategies revealed. Perspectives in Plant Ecology, Evolution and Systematics 44: 125529. doi:10.1016/j.ppees.2020.125529. DOI

Mašková T, Herben T, Hošková K, Koubek T.. 2022. Shoot senescence in herbaceous perennials of the temperate zone: Identifying drivers of senescence pace and shape. Journal of Ecology 110: 1296–1311. doi:10.1111/1365-2745.13870. DOI

May JD, Killingbeck KT.. 1992. Effects of preventing nutrient resorption on plant fitness and foliar nutrient dynamics. Ecology 73: 1868–1878. doi:10.2307/1940038. DOI

Menzel A, Fabian P.. 1998. Growing season extended in Europe. Nature 397: 659.

Menzel A, Sparks TH, Estrella N, et al. . 2006. European phenological response to climate change matches the warming pattern. Global Change Biology 12: 1969–1976. doi:10.1111/j.1365-2486.2006.01193.x. DOI

Nordt B, Hensen I, Bucher SF, et al. . 2021. The PhenObs initiative: A standardised protocol for monitoring phenological responses to climate change using herbaceous plant species in botanical gardens. Functional Ecology 35: 821–834. doi:10.1111/1365-2435.13747. DOI

Orme D, Freckleton R, Thomas G, et al. . 2018. Package ‘caper’: comparative analyses of phylogenetics and evolution in R, R package version 1.0. 1. https://cran.r-project.org/package=caper

Panchen ZA, Primack RB, Gallinat AS, et al. . 2015. Substantial variation in leaf senescence times among 1360 temperate woody plant species: Implications for phenology and ecosystem processes. Annals of Botany 116: 865–873. doi:10.1093/aob/mcv015. PubMed DOI PMC

Parmesan C, Yohe G.. 2003. A globally coherent fingerprint of climate change. Nature 421: 37–42. doi:10.1038/nature01286. PubMed DOI

Peñuelas J, Filella I, Comas P.. 2002. Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region. Global Change Biology 8: 531–544. doi:10.1046/j.1365-2486.2002.00489.x. DOI

Piao S, Friedlingstein P, Ciais P, Viovy N, Demarty J.. 2007. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Global Biogeochemical Cycles 21. doi:10.1029/2006gb002888. DOI

R Core Team. 2020. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.r-project.org/.

Schaffers AP, Sýkora K V.. 2000. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. Journal of Vegetation Science 11: 225–244. doi:10.2307/3236802. DOI

Schnablová R, Huang L, Klimešová J, Šmarda P, Herben T.. 2021. Inflorescence preformation prior to winter: a surprisingly widespread strategy that drives phenology of temperate perennial herbs. New Phytologist 229: 620–630. PubMed

Sporbert M, Jakubka D, Bucher SF, et al. . 2022. Functional traits influence patterns in vegetative and reproductive plant phenology ‐ a multi‐botanical garden study. New Phytologist 74: 1–29. PubMed

Stuefer JF, van Hulzen JB, During HJ.. 2002. A genotypic trade-off between the number and size of clonal offspring in the stoloniferous herb Potentilla reptans. Journal of Evolutionary Biology 15: 880–884. doi:10.1046/j.1420-9101.2002.00435.x. DOI

Sun S, Frelich LE.. 2011. Flowering phenology and height growth pattern are associated with maximum plant height, relative growth rate and stem tissue mass density in herbaceous grassland species. Journal of Ecology 99: 991–1000. doi:10.1111/j.1365-2745.2011.01830.x. DOI

ter Braak CJF, Šmilauer P.. 2012. Canoco reference manual and user’s guide: software for ordination, version 5.0. Ithaca: Microcomputer Power.

Ummenhofer CC, Meehl GA.. 2017. Extreme weather and climate events with ecological relevance: a review. Philosophical Transactions of the Royal Society B: Biological Sciences 372: 20160135. doi:10.1098/rstb.2016.0135. PubMed DOI PMC

Wagner M, Kahmen A, Schlumprecht H, et al. . 2007. Prediction of herbage yield in grassland: How well do Ellenberg N-values perform? Applied Vegetation Science 10: 15–24. doi:10.1111/j.1654-109x.2007.tb00499.x. DOI

Whigham DF. 2004. Ecology of woodland herbs in temperate deciduous forests. Annual Review of Ecology, Evolution, and Systematics 35: 583–621. doi:10.1146/annurev.ecolsys.35.021103.105708. DOI

Wolkovich EM, Chamberlain CJ, Buonaiuto DM, Ettinger AK, Morales-Castilla I.. 2022. Integrating experiments to predict interactive cue effects on spring phenology with warming. New Phytologist 235: 1719–1728. PubMed

Wu C, Chen JM, Black TA, et al. . 2013. Interannual variability of net ecosystem productivity in forests is explained by carbon flux phenology in autumn. Global Ecology and Biogeography 22: 994–1006. doi:10.1111/geb.12044. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...