Functional traits influence patterns in vegetative and reproductive plant phenology - a multi-botanical garden study
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35762815
DOI
10.1111/nph.18345
Knihovny.cz E-zdroje
- Klíčová slova
- PhenObs phenological network, botanical gardens, first flowering day, growing season length, leaf traits, phylogeny,
- MeSH
- biodiverzita MeSH
- klimatické změny * MeSH
- květy MeSH
- roční období MeSH
- rostliny MeSH
- rozmnožování * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Phenology has emerged as key indicator of the biological impacts of climate change, yet the role of functional traits constraining variation in herbaceous species' phenology has received little attention. Botanical gardens are ideal places in which to investigate large numbers of species growing under common climate conditions. We ask whether interspecific variation in plant phenology is influenced by differences in functional traits. We recorded onset, end, duration and intensity of initial growth, leafing out, leaf senescence, flowering and fruiting for 212 species across five botanical gardens in Germany. We measured functional traits, including plant height, absolute and specific leaf area, leaf dry matter content, leaf carbon and nitrogen content and seed mass and accounted for species' relatedness. Closely related species showed greater similarities in timing of phenological events than expected by chance, but species' traits had a high degree of explanatory power, pointing to paramount importance of species' life-history strategies. Taller plants showed later timing of initial growth, and flowered, fruited and underwent leaf senescence later. Large-leaved species had shorter flowering and fruiting durations. Taller, large-leaved species differ in their phenology and are more competitive than smaller, small-leaved species. We assume climate warming will change plant communities' competitive hierarchies with consequences for biodiversity.
Apatity Murmansk Region 184209 Russia
Biology Department Boston University Boston MA 02215 USA
Botanic Garden Berlin Freie Universität Berlin Berlin 14195 Germany
Core Facility Botanical Garden University Vienna Vienna 1030 Austria
Department of Botany Faculty of Science Charles University Prague 12801 Czech Republic
Department of Botany University of Kashmir Srinagar Jammu and Kashmir 190006 India
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig 04103 Germany
Institute of Biodiversity Friedrich Schiller University Jena Jena 07743 Germany
Institute of Biology Leipzig University Leipzig 04103 Germany
Institute of Evolution and Ecology University of Tübingen Tübingen 72076 Germany
Max Planck Institute for Biogeochemistry Jena 07745 Germany
Palmengarten and Botanical Garden Frankfurt Frankfurt am Main 60323 Germany
Zobrazit více v PubMed
Aragón CF, Méndez M, Escudero A. 2009. Survival costs of reproduction in a short-lived perennial plant: live hard, die young. American Journal of Botany 96: 904-911.
Bianchini K, Morrissey CA. 2020. Species traits predict the aryl hydrocarbon receptor 1 (AHR1) subtypes responsible for dioxin sensitivity in birds. Scientific Reports 10: 1-11.
Blinova IV, Willems JH, van Reenen J. 2003. Intraspecific variation in orchid populations in two different climatic areas in Europe, Murmansk Region and The Netherlands. Journal of European Orchids 35: 79-99.
Bolmgren K, Cowan PD. 2008. Time - size tradeoffs: a phylogenetic comparative study of flowering time, plant height and seed mass in a north-temperate flora. Oikos 117: 424-429.
Bucher SF, König P, Menzel A, Migliavacca M, Ewald J, Römermann C. 2018. Traits and climate are associated with first flowering day in herbaceous species along elevational gradients. Ecology and Evolution 8: 1147-1158.
Bucher SF, Römermann C. 2020. Flowering patterns change along elevational gradients and relate to life-history strategies in 29 herbaceous species. Alpine Botany 130: 41-58.
Bucher SF, Römermann C. 2021. The timing of leaf senescence relates to flowering phenology and functional traits in 17 herbaceous species along elevational gradients. Journal of Ecology 109: 1537-1548.
Cleland EE, Allen JM, Crimmins TM, Dunne JA, Pau S, Travers SE, Zavaleta ES, Wolkovich EM. 2012. Phenological tracking enables positive species responses to climate change. Ecology 93: 1765-1771.
Craine JM, Wolkovich EM, Gene Towne E, Kembel SW. 2012. Flowering phenology as a functional trait in a tallgrass prairie. New Phytologist 193: 673-682.
Davies TJ, Wolkovich EM, Kraft NJ, Salamin N, Allen JM, Ault TR, Betancourt JL, Bolmgren K, Cleland EE, Cook BI et al. 2013. Phylogenetic conservatism in plant phenology. Journal of Ecology 101: 1520-1530.
Davis CC, Willis CG, Primack RB, Miller-Rushing AJ. 2010. The importance of phylogeny to the study of phenological response to global climate change. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 365: 3201-3213.
Deutscher Wetterdienst (DWD). 2021. Climate Data Center (CDC) OpenData [WWW document] URL https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/monthly/kl/recent/ [accessed 9 December 2021].
Díaz S, Hodgson JG, Thompson K, Cabido M, Cornelissen JHC, Jalili A, Montserrat-Martí G, Grime JP, Zarrinkamar F, Asri Y et al. 2004. The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science 15: 295-304.
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC et al. 2016. The global spectrum of plant form and function. Nature 529: 167-171.
Diniz-Filho JAF, de Sant'Ana CER, Bini LM. 1998. An eigenvector method for estimating phylogenetic inertia. Evolution 52: 1247-1262.
Elith J, Leathwick JR, Hastie T. 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77: 802-813.
Ellenberg H, Leuschner C. 2010. Vegetation Mitteleuropas mit den Alpen: in ökologischer, dynamischer und historischer Sicht. Stuttgart, Germany: Ulmer Verlag.
Elzinga JA, Atlan A, Biere A, Gigord L, Weis AE, Bernasconi G. 2007. Time after time: flowering phenology and biotic interactions. Trends in Ecology & Evolution 22: 432-439.
Estiarte M, Peñuelas J. 2015. Alteration of the phenology of leaf senescence and fall in winter deciduous species by climate change: effects on nutrient proficiency. Global Change Biology 21: 1005-1017.
Estrella N, Sparks TH, Menzel A. 2007. Trends and temperature response in the phenology of crops in Germany. Global Change Biology 13: 1737-1747.
Ettinger AK, Gee S, Wolkovich EM. 2018. Phenological sequences: how early-season events define those that follow. American Journal of Botany 105: 1771-1780.
Fitter AH, Fitter RSR. 2002. Rapid changes in flowering time in British plants. Science 296: 1689-1691.
Freiberg M, Winter M, Gentile A, Zizka A, Muellner-Riehl AN, Weigelt A, Wirth C. 2020. LCVP, The Leipzig catalogue of vascular plants, a new taxonomic reference list for all known vascular plants. Scientific Data 7: 1-7.
Gallinat AS, Primack RB, Wagner DL. 2015. Autumn, the neglected season in climate change research. Trends in Ecology & Evolution 30: 169-176.
Gaudet CL, Keddy PA. 1988. A comparative approach to predicting competitive ability from plant traits. Nature 334: 242-243.
Greenwell B, Boehmke B, Cunningham J. 2020. gbm: generalized boosted regression models. [WWW document] URL https://github.com/gbm-developers [accessed 9 December 2021].
Grime JP. 1974. Vegetation classification by reference to strategies. Nature 250: 26-31.
Harrell FE. 2021. hmisc: Harrell miscellaneous. R package version 4.5-0. [WWW document] URL https://CRAN.R-project.org/package=Hmisc [accessed 9 December 2021].
Heberling JM, MacKenzie CM, Fridley JD, Kalisz S, Primack RB. 2019. Phenological mismatch with trees reduces wildflower carbon budgets. Ecology Letters 22: 616-623.
Huang L, Koubek T, Weiser M, Herben T. 2018. Environmental drivers and phylogenetic constraints of growth phenologies across a large set of herbaceous species. Journal of Ecology 106: 1621-1633.
Jin Y, Qian H. 2019. v.phylomaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42: 1353-1359.
Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M. 2017. Climatologies at high resolution for the earth's land surface areas. Scientific Data 4: 170-122.
Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M. 2018. Data from: Climatologies at high resolution for the earth's land surface areas. Dryad Digital Repository. doi: 10.5061/dryad.kd1d4.
Kassambara A, Mundt F. 2020. factoextra: extract and visualize the results of multivariate data analyses. R package v.1.0.7. [WWW document] URL https://CRAN.R-project.org/package=factoextra [accessed 9 December 2021].
König P, Tautenhahn S, Cornelissen JHC, Kattge J, Bönisch G, Römermann C. 2018. Advances in flowering phenology across the Northern Hemisphere are explained by functional traits. Global Ecology and Biogeography 27: 310-321.
Kudo G, Cooper EJ. 2019. When spring ephemerals fail to meet pollinators: mechanism of phenological mismatch and its impact on plant reproduction. Proceedings of the Royal Society B: Biological Sciences 286: 20190573.
Larcher W. 1994. Ökophysiologie der Pflanzen. Stuttgart, Germany: Verlag Eugen Ulmer.
Leishman MR, Murray BR. 2001. The relationship between seed size and abundance in plant communities: model predictions and observed patterns. Oikos 94: 151-161.
Liu Q, Fu YH, Zhu Z, Liu Y, Liu Z, Huang M, Janssens IA, Piao S. 2016. Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Global Change Biology 22: 3702-3711.
Liu Y, Li G, Wu X, Niklas KJ, Yang Z, Sun S. 2021. Linkage between species traits and plant phenology in an alpine meadow. Oecologia 195: 409-419.
Menzel A, Yuan Y, Matiu M, Sparks T, Scheifinger H, Gehrig R, Estrella N. 2020. Climate change fingerprints in recent European plant phenology. Global Change Biology 26: 2599-2612.
Moles AT, Warton DI, Warman L, Swenson NG, Laffan SW, Zanne AE, Pitman A, Hemmings FA, Leishman MR. 2009. Global patterns in plant height. Journal of Ecology 97: 923-932.
Moles AT, Westoby M. 2003. Latitude, seed predation and seed mass. Journal of Biogeography 30: 105-128.
Nord EA, Lynch JP. 2009. Plant phenology: a critical controller of soil resource acquisition. Journal of Experimental Botany 60: 1927-1937.
Nordt B, Hensen I, Bucher SF, Freiberg M, Primack RB, Stevens A-D, Bonn A, Wirth C, Jakubka D, Plos C et al. 2021. The PhenObs initiative: a standardised protocol for monitoring phenological responses to climate change using herbaceous plant species in botanical gardens. Functional Ecology 35: 821-834.
Pagel M. 1999. Inferring the historical patterns of biological evolution. Nature 401: 877-884.
Panchen ZA, Primack RB, Nordt B, Ellwood ER, Stevens A-D, Renner SS, Willis CG, Fahey R, Whittemore A, Du Y et al. 2014. Leaf out times of temperate woody plants are related to phylogeny, deciduousness, growth habit and wood anatomy. New Phytologist 203: 1208-1219.
Paradis E, Schliep K. 2019. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35: 526-528.
Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, Bret-Harte MS, Cornwell WK, Craine JM, Gurvich DE et al. 2013. New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany 61: 167-234.
Pistón N, de Bello F, Dias AT, Götzenberger L, Rosado BH, de Mattos EA, Salguero-Gómez R, Carmona CP. 2019. Multidimensional ecological analyses demonstrate how interactions between functional traits shape fitness and life history strategies. Journal of Ecology 107: 2317-2328.
Primack RB. 1987. Relationships among flowers, fruits, and seeds. Annual Review of Ecology and Systematics 18: 409-430.
Primack RB, Ellwood ER, Gallinat AS, Miller-Rushing AJ. 2021. The growing and vital role of botanical gardens in climate change research. New Phytologist 231: 917-932.
Primack RB, Miller-Rushing AJ. 2009. The role of botanical gardens in climate change research. New Phytologist 182: 303-313.
R Core Team. 2021. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [WWW document] URL https://www.R-project.org/ [accessed 9 December 2021].
Renner SS, Wesche M, Zohner CM. 2021. Climate data and flowering times for 450 species from 1844 deepen the record of phenological change in southern Germany. American Journal of Botany 108: 711-717.
Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA. 2003. Fingerprints of global warming on wild animals and plants. Nature 421: 57-60.
Rosbakh S, Hartig F, Sandanov DV, Bukharova EV, Miller TK, Primack RB. 2021. Siberian plants shift their phenology in response to climate change. Global Change Biology 27: 4435-4448.
Segrestin J, Navas ML, Garnier E. 2020. Reproductive phenology as a dimension of the phenotypic space in 139 plant species from the Mediterranean. New Phytologist 225: 740-753.
Sun S, Frelich LE. 2011. Flowering phenology and height growth pattern are associated with maximum plant height, relative growth rate and stem tissue mass density in herbaceous grassland species. Journal of Ecology 99: 991-1000.
Sun S, Jin D, Li R. 2006. Leaf emergence in relation to leaf traits in temperate woody species in East-Chinese Quercus fabri forests. Acta Oecologica 30: 212-222.
Vile D, Shipley B, Garnier E. 2006. A structural equation model to integrate changes in functional strategies during old-field succession. Ecology 87: 504-517.
Violle C, Navas M-L, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E. 2007. Let the concept of trait be functional! Oikos 116: 882-892.
Vitasse Y, François C, Delpierre N, Dufrêne E, Kremer A, Chuine I, Delzon S. 2011. Assessing the effects of climate change on the phenology of European temperate trees. Agricultural and Forest Meteorology 151: 969-980.
Wolkovich EM, Cleland EE. 2014. Phenological niches and the future of invaded ecosystems with climate change. AoB Plants 6: 1-16.
Wolkovich EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Travers SE, Pau S, Regetz J, Davies TJ, NJB K et al. 2012. Advances in plant flowering and leafing times in response to warming are underpredicted by experimental warming studies. Nature 485: 494-497.
Wright IJ, Dong N, Maire V, Prentice IC, Westoby M, Díaz S, Gallagher RV, Jacobs BF, Kooyman R, Law EA et al. 2017. Global climatic drivers of leaf size. Science 357: 917-921.
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M et al. 2004. The worldwide leaf economics spectrum. Nature 428: 821-827.
ZhiGuo L, Kai L, YongLi C, Yan F. 2011. Correlations between leafing phenology and traits: woody species of evergreen broad-leaved forests in subtropical China. Polish Journal of Ecology 59: 463-473.
Herbarium specimens reveal a cryptic invasion of polyploid Centaurea stoebe in Europe
Determinants of interspecific variation in season length of perennial herbs