Herbarium specimens reveal a cryptic invasion of polyploid Centaurea stoebe in Europe
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39439296
PubMed Central
PMC11617643
DOI
10.1111/nph.20212
Knihovny.cz E-zdroje
- Klíčová slova
- Centaurea stoebe (spotted knapweed), climatic niche, colonization ability, cryptic invasion, herbarium specimens, polyploidy, range expansion, ruderal habitats,
- MeSH
- Centaurea * genetika fyziologie MeSH
- diploidie MeSH
- ekosystém MeSH
- fylogeografie MeSH
- polyploidie * MeSH
- zavlečené druhy * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Numerous plant species are expanding their native ranges due to anthropogenic environmental change. Because cytotypes of polyploid complexes often show similar morphologies, there may be unnoticed range expansions (i.e. cryptic invasions) of one cytotype into regions where only the other cytotype is native. We critically revised herbarium specimens of diploid and tetraploid Centaurea stoebe, collected across Europe between 1790 and 2023. Based on their distribution in natural and relict habitats and phylogeographic data, we estimated the native ranges of both cytotypes. Diploids are native across their entire European range, whereas tetraploids are native only to South-Eastern Europe and have recently expanded their range toward Central Europe. The proportion of tetraploids has exponentially increased over time in their expanded but not in their native range. This cryptic invasion predominantly occurred in ruderal habitats and enlarged the climatic niche of tetraploids toward a more oceanic climate. We conclude that spatio-temporally explicit assessments of range shifts, habitat preferences and niche evolution can improve our understanding of cryptic invasions. We also emphasize the value of herbarium specimens for accurate estimation of species´ native ranges, with fundamental implications for the design of research studies and the assessment of biodiversity trends.
College of Resources and Environment Huazhong Agricultural University Wuhan 430070 China
Department of Biology University of Fribourg Fribourg 1700 Switzerland
Department of Botany and Zoology Masaryk University Brno 60200 Czech Republic
Department of Botany Charles University Prague 12801 Czech Republic
Department of Ecology and Evolution University of Lausanne Lausanne 1015 Switzerland
Faculty of Informatics and Data Science University of Regensburg Regensburg 93040 Germany
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig 04103 Germany
Herbarium collections Charles University Prague 12801 Czech Republic
Institute of Botany Czech Academy of Sciences Průhonice 25243 Czech Republic
Institute of Earth Surface Dynamics University of Lausanne Lausanne 1015 Switzerland
Institute of Geobotany Martin Luther University Halle Wittenberg Halle 06108 Germany
M G Kholodny Institute of Botany National Academy of Sciences of Ukraine Kyiv 01601 Ukraine
State Museum of Natural History National Academy of Sciences of Ukraine Lviv 79008 Ukraine
W Szafer Institute of Botany Polish Academy of Sciences Kraków 31 512 Poland
Zobrazit více v PubMed
Atwater DZ, Ervine C, Barney JN. 2018. Climatic niche shifts are common in introduced plants. Nature Ecology & Evolution 2: 34–43. PubMed
Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I. 2007. Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution 22: 148–155. PubMed
Broennimann O, Mráz P, Petitpierre B, Guisan A, Müller‐Schärer H. 2014. Contrasting spatio‐temporal climatic niche dynamics during the eastern and western invasions of spotted knapweed in North America. Journal of Biogeography 41: 1126–1136.
Dainese M, Aikio S, Hulme PE, Bertolli A, Prosser F, Marini L. 2017. Human disturbance and upward expansion of plants in a warming climate. Nature Climate Change 7: 577–580.
Davis CC. 2023. The herbarium of the future. Trends in Ecology & Evolution 38: 412–423. PubMed
Delisle F, Lavoie C, Jean M, Lachance D. 2003. Reconstructing the spread of invasive plants: taking into account biases associated with herbarium specimens. Journal of Biogeography 30: 1033–1042.
van Drunen WE, Johnson MTJ. 2022. Polyploidy in urban environments. Trends in Ecology & Evolution 37: 507–516. PubMed
Elith J, Leathwick JR, Hastie T. 2008. A working guide to boosted regression trees. Journal of Animal Ecology 77: 802–813. PubMed
Essl F, Dullinger S, Genovesi P, Hulme PE, Jeschke JM, Katsanevakis S, Kühn I, Lenzner B, Pauchard A, Pyšek P et al. 2019. A conceptual framework for range‐expanding species that track human‐induced environmental change. Bioscience 69: 908–919.
Follak S, Eberius M, Essl F, Fürdös A, Sedlacek N, Trognitz F. 2018. Invasive alien plants along roadsides in Europe. EPPO Bulletin 48: 256–265.
Garcia‐López M‐À, Pasidis I, Viladecans‐Marsal E. 2022. Congestion in highways when tolls and railroads matter: evidence from European cities. Journal of Economic Geography 22: 931–960.
Gong P, Li X, Wang J, Bai Y, Chen B, Hu T, Liu X, Xu B, Yang J, Zhang W et al. 2020. Annual maps of global artificial impervious area (GAIA) between 1985 and 2018. Remote Sensing of Environment 236: 111510.
González‐Moreno P, Diez JM, Richardson DM, Vilà M. 2015. Beyond climate: disturbance niche shifts in invasive species. Global Ecology and Biogeography 24: 360–370.
Hahn MA, Buckley YM, Müller‐Schärer H. 2012. Increased population growth rate in invasive polyploid Centaurea stoebe in a common garden. Ecology Letters 15: 947–954. PubMed
Hijmans RJ, Phillips S, Leathwick J, Elith J. 2023. dismo: species distribution modeling. R Package v.1.3‐14. [WWW document] URL https://CRAN.R‐project.org/package=dismo [accessed 10th December 2023].
Hochkirch A, Samways MJ, Gerlach J, Böhm M, Williams P, Cardoso P, Cumberlidge N, Stephenson PJ, Seddon MB, Clausnitzer V et al. 2021. A strategy for the next decade to address data deficiency in neglected biodiversity. Conservation Biology 35: 502–509. PubMed
Hordijk W, Broennimann O. 2012. Dispersal routes reconstruction and the minimum cost arborescence problem. Journal of Theoretical Biology 308: 115–122. PubMed
Junker RR, Kuppler J, Bathke AC, Schreyer ML, Trutschnig W. 2016. Dynamic range boxes – a robust nonparametric approach to quantify size and overlap of n‐dimensional hypervolumes. Methods in Ecology and Evolution 7: 1503–1513.
Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria‐Auza RW, Zimmermann NE, Linder HP, Kessler M. 2017. Climatologies at high resolution for the earth's land surface areas. Scientific Data 4: 170122. PubMed PMC
van Kleunen M, Dawson W, Essl F, Pergl J, Winter M, Weber E, Kreft H, Weigelt P, Kartesz J, Nishino M et al. 2015. Global exchange and accumulation of non‐native plants. Nature 525: 100–103. PubMed
Kožić K, Hartmann M, Callaway RM, Hensen I, Nagy DU, Mráz P, Al‐Gharaibeh MM, Bancheva S, Diaconu A, Danihelka J et al. 2024. Performance in the recruitment life stage and its potential contribution to invasive success in the polyploid invader Centaurea stoebe . Neobiota 20: 127654.
Kupková L, Bičík I, Najman J. 2013. Land cover changes along the Iron Curtain 1990–2006. Geografie 118: 95–115.
Kuppler J, Höfers MK, Trutschnig W, Bathke AC, Eiben JA, Daehler CC, Junker RR. 2017. Exotic flower visitors exploit large floral trait spaces resulting in asymmetric resource partitioning with native visitors. Functional Ecology 31: 2244–2254.
Kúr P, Gregor T, Jandová M, Mesterházy A, Paule J, Píšová S, Šemberová K, Koutecký P, Ducháček M, Schneeweiss GM. 2023. Cryptic invasion suggested by a cytogeographic analysis of the halophytic Puccinellia distans complex (Poaceae) in Central Europe. Frontiers in Plant Science 14: 1249292. PubMed PMC
Lang PLM, Willems FM, Scheepens JF, Burbano HA, Bossdorf O. 2019. Using herbaria to study global environmental change. New Phytologist 221: 110–122. PubMed PMC
Lee BR, Miller TK, Rosche C, Yang Y, Heberling JM, Kuebbing SE, Primack RB. 2022. Wildflower phenological escape differs by continent and spring temperature. Nature Communications 13: 7157. PubMed PMC
Lehnert M, Monjau T, Rosche C. 2023. Synopsis of Osmunda (royal ferns; Osmundaceae): towards reconciliation of genetic and biogeographic patterns with morphologic variation. Botanical Journal of the Linnean Society 20: 341–364.
Lucas MS, Hensen I, Barratt CD, Callaway RM, Durka W, Lekberg Y, Nagy DU, Onstein RE, Shah MA, van Dam NM et al. 2024. Re‐focusing sampling, design and experimental methods to assess rapid evolution by non‐native plant species. Biological Invasions 26: 1327–1343.
Lustenhouwer N, Chaubet TM, Melen MK, van der Putten WH, Parker IM. 2024. Plant–soil interactions during the native and exotic range expansion of an annual plant. Journal of Evolutionary Biology 20: voae040. PubMed
Lustenhouwer N, Parker IM. 2022. Beyond tracking climate: niche shifts during native range expansion and their implications for novel invasions. Journal of Biogeography 49: 1481–1493.
Maldonado C, Molina CI, Zizka A, Persson C, Taylor CM, Albán J, Chilquillo E, Rønsted N, Antonelli A. 2015. Estimating species diversity and distribution in the era of Big Data: to what extent can we trust public databases? Global Ecology and Biogeography 24: 973–984. PubMed PMC
McKeon CM, Kelly R, Börger L, De Palma A, Buckley YM. 2023. Human land use is comparable to climate as a driver of global plant occurrence and abundance across life forms. Global Ecology and Biogeography 32: 1618–1631.
Mezhzherin SV, Tsyba AA, Kryvokhyzha D. 2022. Cryptic expansion of hybrid polyploid spined loaches Cobitis in the rivers of Eastern Europe. Hydrobiologia 849: 1689–1700.
Morais P, Reichard M. 2018. Cryptic invasions: a review. Science of the Total Environment 613–614: 1438–1448. PubMed
Mráz P, Bourchier RS, Treier UA, Schaffner U, Müller‐Schärer H. 2011. Polyploidy in phenotypic space and invasion context: A morphometric study of Centaurea stoebe s.l. International Journal of Plant Sciences 172: 386–402.
Mráz P, Garcia‐Jacas N, Gex‐Fabry E, Susanna A, Barres L, Müller‐Schärer H. 2012a. Allopolyploid origin of highly invasive Centaurea stoebe s.l. (Asteraceae). Molecular Phylogenetics and Evolution 62: 612–623. PubMed
Mráz P, Španiel S, Keller A, Bowmann G, Farkas A, Šingliarová B, Rohr RP, Broennimann O, Müller‐Schärer H. 2012b. Anthropogenic disturbance as a driver of microspatial and microhabitat segregation of cytotypes of Centaurea stoebe and cytotype interactions in secondary contact zones. Annals of Botany 110: 615–627. PubMed PMC
Nagy DU, Stranczinger S, Godi A, Weisz A, Rosche C, Suda J, Mariano M, Pal RW. 2018. Does higher ploidy level increase the risk of invasion? A case study with two geo‐cytotypes of Solidago gigantea Aiton (Asteraceae). Journal of Plant Ecology 11: 317–327.
Nagy DU, Thoma AE, Al‐Gharaibeh MM, Callaway RM, Flory SL, Frazee LJ, Hartmann M, Hensen I, Jandová K, Khasa DP et al. 2024. Among‐population variation in drought responses is consistent across life stages but not between native and non‐native ranges. New Phytologist 243: 922–935. PubMed
Novak SJ. 2011. Geographic origins and introduction dynamics. In: Simberloff D, Rejmánek M, eds. Encyclopedia of biological invasions. Berkeley, CA, USA: University of California Press, 273–280.
Ochsmann J. 2000. Morphologische und molekularsystematische Untersuchungen an der Centaurea stoebe L.‐Gruppe (Asteraceae‐Cardueae) in Europa. Stuttgart, Germany: J. J. Cramer.
Otto SP. 2018. Adaptation, speciation and extinction in the Anthropocene. Proceedings Biological Sciences, USA 285: 20182047. PubMed PMC
Pandit MK, White SM, Pocock MJO. 2014. The contrasting effects of genome size, chromosome number and ploidy level on plant invasiveness: a global analysis. New Phytologist 203: 697–703. PubMed
van de Peer Y, Ashman T‐L, Soltis PS, Soltis DE. 2021. Polyploidy: an evolutionary and ecological force in stressful times. Plant Cell 33: 11–26. PubMed PMC
Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ. 2008. Adaptive evolution in invasive species. Trends in Plant Science 13: 288–294. PubMed
Pyšek P, Hulme PE, Meyerson LA, Smith GF, Boatwright JS, Crouch NR, Figueiredo E, Foxcroft LC, Jarosik V, Richardson DM et al. 2013. Hitting the right target: taxonomic challenges for, and of, plant invasions. AoB Plants 5: plt042.
R Core Team . 2024. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Rauschkolb R, Bucher SF, Hensen I, Ahrends A, Fernández‐Pascual E, Heubach K, Jakubka D, Jiménez‐Alfaro B, König A, Koubek T et al. 2024. Spatial variability in herbaceous plant phenology is mostly explained by variability in temperature but also by photoperiod and functional traits. International Journal of Biometeorology 68: 761–775. PubMed PMC
Rice A, Šmarda P, Novosolov M, Drori M, Glick L, Sabath N, Meiri S, Belmaker J, Mayrose I. 2019. The global biogeography of polyploid plants. Nature Ecology & Evolution 3: 265–273. PubMed
Rosche C, Baasch A, Runge K, Brade P, Träger S, Parisod C, Hensen I. 2022. Tracking population genetic signatures of local extinction with herbarium specimens. Annals of Botany 129: 857–868. PubMed PMC
Rosche C, Durka W, Hensen I, Mráz P, Hartmann M, Müller‐Schärer H, Lachmuth S. 2016. The population genetics of the fundamental cytotype‐shift in invasive Centaurea stoebe s.l.: genetic diversity, genetic differentiation and small‐scale genetic structure differ between cytotypes but not between ranges. Biological Invasions 18: 1895–1910.
Rosche C, Hensen I, Lachmuth S. 2018. Local pre‐adaptation to disturbance and inbreeding‐environment interactions affect colonisation abilities of diploid and tetraploid Centaurea stoebe . Plant Biology 20: 75–84. PubMed
Rosche C, Hensen I, Mráz P, Durka W, Hartmann M, Lachmuth S. 2017. Invasion success in polyploids: the role of inbreeding in the contrasting colonization abilities of diploid versus tetraploid populations of Centaurea stoebe s.l. Journal of Ecology 105: 425–435.
Rüegg S, Raeder U, Melzer A, Heubl G, Bräuchler C. 2017. Hybridisation and cryptic invasion in Najas marina L. (Hydrocharitaceae)? Hydrobiologia 784: 381–395.
Schiavina M, Melchiorri M, Pesaresi M, Politis P, Carneiro Freire SM, Maffenini L, Florio P, Ehrlich D, Goch K, Carioli A et al. 2023. GHSL data package 2023. Luxembourg City, Luxembourg: Publications Office of the European Union.
Sessa EB. 2019. Polyploidy as a mechanism for surviving global change. New Phytologist 221: 5–6. PubMed
Sheng M, Rosche C, Al‐Gharaibeh MM, Bullington LS, Callaway RM, Clark T, Cleveland CC, Duan W, Flory SL, Khasa DP et al. 2022. Acquisition and evolution of enhanced mutualism—an underappreciated mechanism for invasive success? The ISME Journal 16: 2467–2478. PubMed PMC
Šingliarová B, Hodálová I, Mráz P. 2011. Biosystematic study of the diploid‐polyploid Pilosella alpicola group with variation in breeding system: patterns and processes. Taxon 60: 450–470.
Skokanová K, Španiel S, Šingliarová B, Mereďa P Jr, Hodálová I, Svitok M. 2023. Contrasting invasion patterns of two closely related Solidago alien species. Journal of Biogeography 51: 1–14.
Sporbert M, Jakubka D, Bucher SF, Hensen I, Freiberg M, Heubach K, König A, Nordt B, Plos C, Blinova I et al. 2022. Functional traits influence patterns in vegetative and reproductive plant phenology – a multi‐botanical garden study. New Phytologist 235: 2199–2210. PubMed
Te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubesová M, Pyšek P. 2012. The more the better? The role of polyploidy in facilitating plant invasions. Annals of Botany 109: 19–45. PubMed PMC
Theoharides KA, Dukes JS. 2007. Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytologist 176: 256–273. PubMed
Turcotte MM, Kaufmann N, Wagner KL, Zallek TA, Ashman T‐L. 2024. Neopolyploidy increases stress tolerance and reduces fitness plasticity across multiple urban pollutants: support for the “general‐purpose” genotype hypothesis. Evolution Letters 20: qrad072. PubMed PMC
Uchida H, Nelson A. 2009. Agglomeration index: towards a new measure of urban concentration. In: Beall J, Guha‐Khasnobis B, Ravi Kanbur SM, eds. Urbanization and development: multidiciplinary perspectives. Oxford, UK: Oxford University Press, 41–59.
Villasor C, Robertson K, Becker T, Cahill JF, Deák B, Hensen I, Otfinowski R, Rosche C, Borovyk D, Vakhlamova T et al. 2024. Invasion success of three cool‐season grasses in the northern prairie: a test of three hypotheses. Oikos 2024: e10266.
Wood SN. 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. Journal of the Royal Statistical Society, Series B: Statistical Methodology 73: 3–36.
Wood SN, Pya N, Säfken B. 2016. Smoothing parameter and model selection for general smooth models. Journal of the American Statistical Association 111: 1548–1563.
Zalasiewicz J, Waters CN, Williams M, Barnosky AD, Cearreta A, Crutzen P, Ellis E, Ellis MA, Fairchild IJ, Grinevald J et al. 2015. When did the Anthropocene begin? A mid‐twentieth century boundary level is stratigraphically optimal. Quaternary International 383: 196–203.
Zhang Z, Yang Q, Fristoe TS, Dawson W, Essl F, Kreft H, Lenzner B, Pergl J, Pyšek P, Weigelt P et al. 2023. The poleward naturalization of intracontinental alien plants. Science Advances 9: eadi1897. PubMed PMC