Inhibition activity of tomato endophyte Bacillus velezensis FQ-G3 against postharvest Botrytis cinerea

. 2024 Apr ; 69 (2) : 361-371. [epub] 20230712

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37436591

Grantová podpora
20210302123087 Natural Science Foundation of Shanxi Province
20210302123084 Natural Science Foundation of Shanxi Province
YCKJ-2021029 Science and Technology Program of Yuncheng
YCKJ-2021030 Science and Technology Program of Yuncheng
SKX-202205 Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research

Odkazy

PubMed 37436591
DOI 10.1007/s12223-023-01075-7
PII: 10.1007/s12223-023-01075-7
Knihovny.cz E-zdroje

Grey mold, caused by Botrytis cinerea, is a widespread and harmful disease of tomato. Biocontrol agents derived from endophytic bacteria are known to hold great potential for inhibition of phytopathogen. We conducted this study to explore the tomato endophytic strains with inhibition activity against B. cinerea. Endophytic strain Bacillus velezensis FQ-G3 exhibited excellent inhibition activity against B. cinerea. Inhibitory effects against B. cinerea were investigated both in vitro and in vivo. The in vitro assays displayed that FQ-G3 could significantly inhibit mycelia growth with inhibition rate of 85.93%, and delay conidia germination of B. cinerea. Tomato fruit inoculated with B. velezensis FQ-G3 revealed lower grey mold during treatment. The antifungal activity was attributed to activation of defense-related enzymes, as evidenced by the higher levels of peroxidase, polyphenol oxidase, and phenylalanine ammonia lyase in tomatoes after inoculation. In addition, scanning electron microscope was applied to elucidate the interaction between endophytes and pathogen, and bacterial colonization and antibiosis appeared to be the underlying mechanisms that FQ-G3 could suppress growth of B. cinerea. Collectively, our present results suggested that FQ-G3 may potentially be useful as a biocontrol agent in postharvest tomatoes.

Zobrazit více v PubMed

Ahmad T, Bashir A, Farooq S, Riyaz-UI-Hassan S (2022) Burkholderia gladioli E39CS3, an endophyte of Crocus sativus Linn., induces host resistance against corm-rot caused by Fusarium oxysporum. J Appl Microbiol 132:495–508. https://doi.org/10.1111/jam.15190 DOI

Aiello D, Restuccia C, Stefani E, Vitale A, Cirvilleri G (2019) Postharvest biocontrol ability of Pseudomonas synxantha against Monilinia fructicola and Monilinia fructigena on stone fruit. Postharvest Biol Technol 149:83–89. https://doi.org/10.1016/j.postharvbio.2018.11.020 DOI

Ali MA, Luo J, Ahmed T, Zhang J, Xie T, Dai D, Jiang J, Zhu J, Hassan S, Alorabi JA, Li B, An Q (2022) Pseudomonas bijieensis strain XL17 within the P. corrugata subgroup producing 2,4- diacetylphloroglucinol and lipopeptides controls bacterial canker and grey mold pathogens of kiwifruit. Microorganisms 10:425.  https://doi.org/10.3390/microorganisms10020425

Bastias DA, Martínez-Ghersa MA, Ballaré CL, Gundel PE (2017) Epichloë fungal endophytes and plant defenses: not just alkaloids. Trends Plant Sci 22:939–948. https://doi.org/10.1016/j.tplants.2017.08.005 DOI

Bokka R, Ramos AP, Fiume I, Manno M, Raccosta S, Turiák L, Sugár S, Adamo G, Csizmadia T, Pocsfalvi G (2020) Biomanufacturing of Tomato-Derived Nanovesicles Foods. 9:1852. https://doi.org/10.3390/foods9121852 DOI

Bolívar-Anillo HJ, Garrido C, Collado IG (2020) Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea. Phytochem Rev 19:721–740. https://doi.org/10.1007/s11101-019-09603-5

Bruisson S, Zufferey M, Floriane L, Eva T, Abhishek A, Agnès D, Vrieze M, Weisskopf L (2019) Endophytes and epiphytes from the grapevine leaf microbiome as potential biocontrol agents against phytopathogens. Front Microbiol 10:2726. https://doi.org/10.3389/fmicb.2019.02726 DOI

Calvo H, Mendiara I, Arias E, Gracia AP, Blanco D, Venturini ME (2020) Antifungal activity of the volatile organic compounds produced by Bacillus velezensis strains against postharvest fungal pathogens. Postharvest Biol Technol 166:111208. https://doi.org/10.1016/j.postharvbio.2020.111208

Chaouachi M, Marzouk T, Jallouli S, Elkahoui S, Gentzbittel L, Ben C, Djébali N (2021) Activity assessment of tomato endophytic bacteria bioactive compounds for the postharvest biocontrol of Botrytis cinerea. Postharvest Biol Technol 172:111389. https://doi.org/10.1016/j.postharvbio.2020.111389

Dhouib H, Zouaria I, Ben Abdallaha D, Belbahri L, Taktaka W, Triki MA, Tounsi S (2019) Potential of a novel endophytic Bacillus velezensis in tomato growth promotion and protection against Verticillium wilt disease. Biol Control 139:104092. https://doi.org/10.1016/j.biocontrol.2019.104092

Dokoozlian N, Ebisuda N, Neja R (1998) Surfactants improve the response of grapevines to hydrogen cyanamide. HortScience 33:857–859. https://doi.org/10.21273/HORTSCI.33.5.857

Feng B, Chen D, Jin R, Li E, Li P (2022) Bioactivities evaluation of an endophytic bacterial strain Bacillus velezensis JRX-YG39 inhabiting wild grape. BMC Microbiol 22:170. https://doi.org/10.1186/s12866-022-02584-0 DOI

Fira D, Dimkic I, Beric T, Lozo J, Stankovic S (2018) Biological control of plant pathogens by Bacillus species. J Biotech 285:44–55. https://doi.org/10.1016/j.jbiotec.2018.07.044 DOI

Gao Z, Zhang B, Liu H, Han J, Zhang Y (2017) Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biol Control 105:27–39. https://doi.org/10.1016/j.biocontrol.2016.11.007 DOI

Haidar R, Fermaud M, Calvo-garrido C, Roudet J, Deschamps A (2017) Modes of action for biological control of Botrytis cinerea by antagonistic bacteria. Phytopathol Mediterr 55:301–322. https://doi.org/10.14601/PHYTOPATHOL_MEDITERR-18079

Hassan EA, Mostafa YS, Alamri S, Hashem M, Nafady NA (2021) Biosafe management of Botrytis grey mold of strawberry fruit by novel bioagents. Plants (Basel) 10:2737. https://doi.org/10.3390/plants10122737

Kong P, Hong C (2020) A potent Burkholderia endophyte against boxwood blight caused by Calonectria pseudonaviculata. Microorganisms 8:310. https://doi.org/10.3390/microorganisms8020310

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–9. https://doi.org/10.1093/molbev/msy096

Lastochkina O, Baymiev A, Shayahmetova A, Garshina D, Koryakov I, Shpirnaya I, Pusenkova L, Mardanshin I, Kasnak C, Palamutoglu R (2020) Effects of endophytic Bacillus subtilis and salicylic acid on postharvest diseases (Phytophthora infestans, Fusarium oxysporum) development in stored potato tubers. Plants (Basel) 9:76. https://doi.org/10.3390/plants9010076

Lastochkina O, Seifikalhor M, Aliniaeifard S, Baymiev A, Pusenkova L, Garipova S (2019) Bacillus spp.: efficient biotic strategy to control postharvest diseases of fruits and vegetables. Plants 8:97. https://doi.org/10.3390/plants8040097

Li P, Feng B, Yao Z, Wei B, Zhao Y, Shi S (2022) Antifungal activity of endophytic Bacillus K1 against Botrytis cinerea. Front Microbiol 13:935675. https://doi.org/10.3389/fmicb.2022.935675

Ling L, Luo H, Yang C, Wang Y, Cheng W, Pang M, Jiang K (2022) Volatile organic compounds produced by Bacillus velezensis L1 as a potential biocontrol agent against postharvest diseases of wolfberry. Front Microbiol 13:987844. https://doi.org/10.3389/fmicb.2022.987844

Mohammadi M, Kazemi H (2002) Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci 162:491–498. https://doi.org/10.1016/S0168-9452(01)00538-6 DOI

Morales-Cedeño LR, Orozco-Mosqueda M, Loeza-Lara PD, Parra-Cota FI, Santos-Villalobos S, Santoyo G (2021) Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: fundamentals, methods of application and future perspectives. Microb Res 242:126612. https://doi.org/10.1016/j.micres.2020.126612

Mousa WK, Shearer CR, Limay-Rios V, Ettinger CL, Eisen JA, Raizada MN (2016) Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum. Nature Microbiol 1:16167. https://doi.org/10.1038/nmicrobiol.2016.167 DOI

Müller DB, Vogel C, Bai Y, Vorholt JA (2016) The plant microbiota: systems-level insights and perspectives. Annu Rev Genet 50:211–234. https://doi.org/10.1146/annurev-genet-120215-034952 DOI

Nifakos K, Tsalgatidou PC, Thomloudi EE, Skagia A, Kotopoulis D, Baira E, Delis C, Papadimitriou K, Markellou E, Venieraki A, Katinakis P (2021) Genomic analysis, and secondary metabolites production of the endophytic Bacillus velezensis Bvel1: a biocontrol agent against botrytis cinerea causing bunch rot in postharvest table grapes. Plants (basel) 10(8):1716. https://doi.org/10.3390/plants10081716 DOI

Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125. https://doi.org/10.1016/j.tim.2007.12.009 DOI

Pang L, Xia B, Liu X, Yi Y, Jiang L, Chen C, Li P, Zhang M, Deng X, Wang R (2021) Improvement of antifungal activity of a culture filtrate of endophytic Bacillus amyloliquefaciens isolated from kiwifruit and its effect on postharvest quality of kiwifruit. J Food Biochem 45:e13551. https://doi.org/10.1111/jfbc.13551

Parafati L, Vitale A, Restuccia C, Cirvilleri G (2015) Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiol 47:85–92. https://doi.org/10.1016/j.fm.2014.11.013 DOI

Pirttilä AM, Mohammad Parast Tabas H, Baruah N, Koskimäki JJ (2021) Biofertilizers and biocontrol agents for agriculture: how to identify and develop new potent microbial strains and traits. Microorganisms 9:817. https://doi.org/10.3390/microorganisms9040817

Prasannath K, Shivas RG, Galea VJ, Akinsanmi OA (2021) Novel Botrytis and Cladosporium species associated with flower diseases of macadamia in Australia. J Fungi (basel) 7:898. https://doi.org/10.3390/jof7110898 DOI

Romanazzi G, Feliziani E, Baños SB, Sivakumar D (2017) Shelflife extension of fresh fruit and vegetables by chitosan treatment. Crit. Rev. Food Sci Nutr 57:579–601. https://doi.org/10.1080/10408398.2014.900474

Sarwar A, Brader G, Corretto E, Aleti G, Abaidullah M, Sessitsch A, Hafeez FY (2018) Qualitative analysis of biosurfactants from Bacillus species exhibiting antifungal activity. PLoS One 13:1–15. https://doi.org/10.1371/journal.pone.0198107

Sharma R, Sindhu S, Sindhu SS (2018) Suppression of Alternaria blight disease and plant growth promotion of mustard (Brassica juncea L.) by antagonistic rhizosphere bacteria. Appl Soil Ecol 129:145–150. https://doi.org/10.1016/j.apsoil.2018.05.013 DOI

Tian SP, Torres R, Ballester AR, Li BQ, Vilanov L, González-Candelas L (2016) Molecular aspects in pathogen-fruit interactions: virulence and resistance. Postharvest Biol Technol 122:11–21. https://doi.org/10.1016/j.postharvbio.2016.04.018 DOI

Wallace RL, Hirkala DL, Nelson LM (2018) Mechanisms of action of three isolates of Pseudomonas fluorescens active against postharvest grey mold decay of apple during commercial storage. Biol Control 117:13–20. https://doi.org/10.1016/j.biocontrol.2017.08.019 DOI

Wang F, Xiao J, Zhang Y, Li R, Liu L, Deng J (2021) Biocontrol ability and action mechanism of Bacillus halotolerans against Botrytis cinerea causing grey mold in postharvest strawberry fruit. Postharvest Biol Technol 174:11456. https://doi.org/10.1016/j.postharvbio.2020.111456 DOI

Wang GF, Meng JF, Tian T, Xiao XQ, Zhang B, Xiao YN (2020) Endophytic Bacillus velezensis strain B-36 is a potential biocontrol agent against lotus rot caused by Fusarium oxysporum. J Appl Microbiol 128:1153–1162. https://doi.org/10.1111/jam.14542

White JF, Kingsley KL, Zhang Q, Verma R, Obi N, Dvinskikh S, Elmore MT, Verma SK, Gond SK, Kowalski KP (2019) Review: endophytic microbes and their potential applications in crop management. Pest Manag Sci 75:2558–2565. https://doi.org/10.1002/ps.5527

Wilson CL, Wisniewski ME (1989) Biological control of postharvest diseases of fruit and vegetables: an emerging technology. Ann Rev Phytopathol 27:425–441. https://doi.org/10.1146/annurev.py.27.090189.002233 DOI

Yalage Don SM, Schmidtke LM, Gambetta JM, Steel CC (2020) Aureobasidium pullulans volatilome identified by a novel, quantitative approach employing SPME-GC-MS, suppressed Botrytis cinerea and Alternaria alternata in vitro. Sci Rep 110:4498. https://doi.org/10.1038/s41598-020-61471-8 DOI

Ye W, Sun Y, Tang Y, Zhou W (2021) Biocontrol potential of a broad-spectrum antifungal strain Bacillus amyloliquefaciens B4 for postharvest loquat fruit storage. Postharvest Biol Technol 174:111439. https://doi.org/10.1016/j.postharvbio.2020.111439

Yuan H, Shi B, Wang L, Huang T, Zhou Z, Hou H, Tu H (2022) Isolation and characterization of Bacillus velezensis strain P2–1 for biocontrol of apple postharvest decay caused by Botryosphaeria dothidea. Front Microbiol 12:808938. https://doi.org/10.3389/fmicb.2021.808938

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...