Inhibition activity of tomato endophyte Bacillus velezensis FQ-G3 against postharvest Botrytis cinerea
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
20210302123087
Natural Science Foundation of Shanxi Province
20210302123084
Natural Science Foundation of Shanxi Province
YCKJ-2021029
Science and Technology Program of Yuncheng
YCKJ-2021030
Science and Technology Program of Yuncheng
SKX-202205
Jiangsu Key Laboratory of Regional Resource Exploitation and Medicinal Research
PubMed
37436591
DOI
10.1007/s12223-023-01075-7
PII: 10.1007/s12223-023-01075-7
Knihovny.cz E-zdroje
- Klíčová slova
- Bacillus velezensis, Botrytis cinerea, Antifungal activity, Endophyte, Postharvest,
- MeSH
- Bacillus * MeSH
- Botrytis * MeSH
- endofyty MeSH
- nemoci rostlin prevence a kontrola mikrobiologie MeSH
- Solanum lycopersicum * MeSH
- Publikační typ
- časopisecké články MeSH
Grey mold, caused by Botrytis cinerea, is a widespread and harmful disease of tomato. Biocontrol agents derived from endophytic bacteria are known to hold great potential for inhibition of phytopathogen. We conducted this study to explore the tomato endophytic strains with inhibition activity against B. cinerea. Endophytic strain Bacillus velezensis FQ-G3 exhibited excellent inhibition activity against B. cinerea. Inhibitory effects against B. cinerea were investigated both in vitro and in vivo. The in vitro assays displayed that FQ-G3 could significantly inhibit mycelia growth with inhibition rate of 85.93%, and delay conidia germination of B. cinerea. Tomato fruit inoculated with B. velezensis FQ-G3 revealed lower grey mold during treatment. The antifungal activity was attributed to activation of defense-related enzymes, as evidenced by the higher levels of peroxidase, polyphenol oxidase, and phenylalanine ammonia lyase in tomatoes after inoculation. In addition, scanning electron microscope was applied to elucidate the interaction between endophytes and pathogen, and bacterial colonization and antibiosis appeared to be the underlying mechanisms that FQ-G3 could suppress growth of B. cinerea. Collectively, our present results suggested that FQ-G3 may potentially be useful as a biocontrol agent in postharvest tomatoes.
Zobrazit více v PubMed
Ahmad T, Bashir A, Farooq S, Riyaz-UI-Hassan S (2022) Burkholderia gladioli E39CS3, an endophyte of Crocus sativus Linn., induces host resistance against corm-rot caused by Fusarium oxysporum. J Appl Microbiol 132:495–508. https://doi.org/10.1111/jam.15190 DOI
Aiello D, Restuccia C, Stefani E, Vitale A, Cirvilleri G (2019) Postharvest biocontrol ability of Pseudomonas synxantha against Monilinia fructicola and Monilinia fructigena on stone fruit. Postharvest Biol Technol 149:83–89. https://doi.org/10.1016/j.postharvbio.2018.11.020 DOI
Ali MA, Luo J, Ahmed T, Zhang J, Xie T, Dai D, Jiang J, Zhu J, Hassan S, Alorabi JA, Li B, An Q (2022) Pseudomonas bijieensis strain XL17 within the P. corrugata subgroup producing 2,4- diacetylphloroglucinol and lipopeptides controls bacterial canker and grey mold pathogens of kiwifruit. Microorganisms 10:425. https://doi.org/10.3390/microorganisms10020425
Bastias DA, Martínez-Ghersa MA, Ballaré CL, Gundel PE (2017) Epichloë fungal endophytes and plant defenses: not just alkaloids. Trends Plant Sci 22:939–948. https://doi.org/10.1016/j.tplants.2017.08.005 DOI
Bokka R, Ramos AP, Fiume I, Manno M, Raccosta S, Turiák L, Sugár S, Adamo G, Csizmadia T, Pocsfalvi G (2020) Biomanufacturing of Tomato-Derived Nanovesicles Foods. 9:1852. https://doi.org/10.3390/foods9121852 DOI
Bolívar-Anillo HJ, Garrido C, Collado IG (2020) Endophytic microorganisms for biocontrol of the phytopathogenic fungus Botrytis cinerea. Phytochem Rev 19:721–740. https://doi.org/10.1007/s11101-019-09603-5
Bruisson S, Zufferey M, Floriane L, Eva T, Abhishek A, Agnès D, Vrieze M, Weisskopf L (2019) Endophytes and epiphytes from the grapevine leaf microbiome as potential biocontrol agents against phytopathogens. Front Microbiol 10:2726. https://doi.org/10.3389/fmicb.2019.02726 DOI
Calvo H, Mendiara I, Arias E, Gracia AP, Blanco D, Venturini ME (2020) Antifungal activity of the volatile organic compounds produced by Bacillus velezensis strains against postharvest fungal pathogens. Postharvest Biol Technol 166:111208. https://doi.org/10.1016/j.postharvbio.2020.111208
Chaouachi M, Marzouk T, Jallouli S, Elkahoui S, Gentzbittel L, Ben C, Djébali N (2021) Activity assessment of tomato endophytic bacteria bioactive compounds for the postharvest biocontrol of Botrytis cinerea. Postharvest Biol Technol 172:111389. https://doi.org/10.1016/j.postharvbio.2020.111389
Dhouib H, Zouaria I, Ben Abdallaha D, Belbahri L, Taktaka W, Triki MA, Tounsi S (2019) Potential of a novel endophytic Bacillus velezensis in tomato growth promotion and protection against Verticillium wilt disease. Biol Control 139:104092. https://doi.org/10.1016/j.biocontrol.2019.104092
Dokoozlian N, Ebisuda N, Neja R (1998) Surfactants improve the response of grapevines to hydrogen cyanamide. HortScience 33:857–859. https://doi.org/10.21273/HORTSCI.33.5.857
Feng B, Chen D, Jin R, Li E, Li P (2022) Bioactivities evaluation of an endophytic bacterial strain Bacillus velezensis JRX-YG39 inhabiting wild grape. BMC Microbiol 22:170. https://doi.org/10.1186/s12866-022-02584-0 DOI
Fira D, Dimkic I, Beric T, Lozo J, Stankovic S (2018) Biological control of plant pathogens by Bacillus species. J Biotech 285:44–55. https://doi.org/10.1016/j.jbiotec.2018.07.044 DOI
Gao Z, Zhang B, Liu H, Han J, Zhang Y (2017) Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biol Control 105:27–39. https://doi.org/10.1016/j.biocontrol.2016.11.007 DOI
Haidar R, Fermaud M, Calvo-garrido C, Roudet J, Deschamps A (2017) Modes of action for biological control of Botrytis cinerea by antagonistic bacteria. Phytopathol Mediterr 55:301–322. https://doi.org/10.14601/PHYTOPATHOL_MEDITERR-18079
Hassan EA, Mostafa YS, Alamri S, Hashem M, Nafady NA (2021) Biosafe management of Botrytis grey mold of strawberry fruit by novel bioagents. Plants (Basel) 10:2737. https://doi.org/10.3390/plants10122737
Kong P, Hong C (2020) A potent Burkholderia endophyte against boxwood blight caused by Calonectria pseudonaviculata. Microorganisms 8:310. https://doi.org/10.3390/microorganisms8020310
Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–9. https://doi.org/10.1093/molbev/msy096
Lastochkina O, Baymiev A, Shayahmetova A, Garshina D, Koryakov I, Shpirnaya I, Pusenkova L, Mardanshin I, Kasnak C, Palamutoglu R (2020) Effects of endophytic Bacillus subtilis and salicylic acid on postharvest diseases (Phytophthora infestans, Fusarium oxysporum) development in stored potato tubers. Plants (Basel) 9:76. https://doi.org/10.3390/plants9010076
Lastochkina O, Seifikalhor M, Aliniaeifard S, Baymiev A, Pusenkova L, Garipova S (2019) Bacillus spp.: efficient biotic strategy to control postharvest diseases of fruits and vegetables. Plants 8:97. https://doi.org/10.3390/plants8040097
Li P, Feng B, Yao Z, Wei B, Zhao Y, Shi S (2022) Antifungal activity of endophytic Bacillus K1 against Botrytis cinerea. Front Microbiol 13:935675. https://doi.org/10.3389/fmicb.2022.935675
Ling L, Luo H, Yang C, Wang Y, Cheng W, Pang M, Jiang K (2022) Volatile organic compounds produced by Bacillus velezensis L1 as a potential biocontrol agent against postharvest diseases of wolfberry. Front Microbiol 13:987844. https://doi.org/10.3389/fmicb.2022.987844
Mohammadi M, Kazemi H (2002) Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Sci 162:491–498. https://doi.org/10.1016/S0168-9452(01)00538-6 DOI
Morales-Cedeño LR, Orozco-Mosqueda M, Loeza-Lara PD, Parra-Cota FI, Santos-Villalobos S, Santoyo G (2021) Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: fundamentals, methods of application and future perspectives. Microb Res 242:126612. https://doi.org/10.1016/j.micres.2020.126612
Mousa WK, Shearer CR, Limay-Rios V, Ettinger CL, Eisen JA, Raizada MN (2016) Root-hair endophyte stacking in finger millet creates a physicochemical barrier to trap the fungal pathogen Fusarium graminearum. Nature Microbiol 1:16167. https://doi.org/10.1038/nmicrobiol.2016.167 DOI
Müller DB, Vogel C, Bai Y, Vorholt JA (2016) The plant microbiota: systems-level insights and perspectives. Annu Rev Genet 50:211–234. https://doi.org/10.1146/annurev-genet-120215-034952 DOI
Nifakos K, Tsalgatidou PC, Thomloudi EE, Skagia A, Kotopoulis D, Baira E, Delis C, Papadimitriou K, Markellou E, Venieraki A, Katinakis P (2021) Genomic analysis, and secondary metabolites production of the endophytic Bacillus velezensis Bvel1: a biocontrol agent against botrytis cinerea causing bunch rot in postharvest table grapes. Plants (basel) 10(8):1716. https://doi.org/10.3390/plants10081716 DOI
Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16:115–125. https://doi.org/10.1016/j.tim.2007.12.009 DOI
Pang L, Xia B, Liu X, Yi Y, Jiang L, Chen C, Li P, Zhang M, Deng X, Wang R (2021) Improvement of antifungal activity of a culture filtrate of endophytic Bacillus amyloliquefaciens isolated from kiwifruit and its effect on postharvest quality of kiwifruit. J Food Biochem 45:e13551. https://doi.org/10.1111/jfbc.13551
Parafati L, Vitale A, Restuccia C, Cirvilleri G (2015) Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Food Microbiol 47:85–92. https://doi.org/10.1016/j.fm.2014.11.013 DOI
Pirttilä AM, Mohammad Parast Tabas H, Baruah N, Koskimäki JJ (2021) Biofertilizers and biocontrol agents for agriculture: how to identify and develop new potent microbial strains and traits. Microorganisms 9:817. https://doi.org/10.3390/microorganisms9040817
Prasannath K, Shivas RG, Galea VJ, Akinsanmi OA (2021) Novel Botrytis and Cladosporium species associated with flower diseases of macadamia in Australia. J Fungi (basel) 7:898. https://doi.org/10.3390/jof7110898 DOI
Romanazzi G, Feliziani E, Baños SB, Sivakumar D (2017) Shelflife extension of fresh fruit and vegetables by chitosan treatment. Crit. Rev. Food Sci Nutr 57:579–601. https://doi.org/10.1080/10408398.2014.900474
Sarwar A, Brader G, Corretto E, Aleti G, Abaidullah M, Sessitsch A, Hafeez FY (2018) Qualitative analysis of biosurfactants from Bacillus species exhibiting antifungal activity. PLoS One 13:1–15. https://doi.org/10.1371/journal.pone.0198107
Sharma R, Sindhu S, Sindhu SS (2018) Suppression of Alternaria blight disease and plant growth promotion of mustard (Brassica juncea L.) by antagonistic rhizosphere bacteria. Appl Soil Ecol 129:145–150. https://doi.org/10.1016/j.apsoil.2018.05.013 DOI
Tian SP, Torres R, Ballester AR, Li BQ, Vilanov L, González-Candelas L (2016) Molecular aspects in pathogen-fruit interactions: virulence and resistance. Postharvest Biol Technol 122:11–21. https://doi.org/10.1016/j.postharvbio.2016.04.018 DOI
Wallace RL, Hirkala DL, Nelson LM (2018) Mechanisms of action of three isolates of Pseudomonas fluorescens active against postharvest grey mold decay of apple during commercial storage. Biol Control 117:13–20. https://doi.org/10.1016/j.biocontrol.2017.08.019 DOI
Wang F, Xiao J, Zhang Y, Li R, Liu L, Deng J (2021) Biocontrol ability and action mechanism of Bacillus halotolerans against Botrytis cinerea causing grey mold in postharvest strawberry fruit. Postharvest Biol Technol 174:11456. https://doi.org/10.1016/j.postharvbio.2020.111456 DOI
Wang GF, Meng JF, Tian T, Xiao XQ, Zhang B, Xiao YN (2020) Endophytic Bacillus velezensis strain B-36 is a potential biocontrol agent against lotus rot caused by Fusarium oxysporum. J Appl Microbiol 128:1153–1162. https://doi.org/10.1111/jam.14542
White JF, Kingsley KL, Zhang Q, Verma R, Obi N, Dvinskikh S, Elmore MT, Verma SK, Gond SK, Kowalski KP (2019) Review: endophytic microbes and their potential applications in crop management. Pest Manag Sci 75:2558–2565. https://doi.org/10.1002/ps.5527
Wilson CL, Wisniewski ME (1989) Biological control of postharvest diseases of fruit and vegetables: an emerging technology. Ann Rev Phytopathol 27:425–441. https://doi.org/10.1146/annurev.py.27.090189.002233 DOI
Yalage Don SM, Schmidtke LM, Gambetta JM, Steel CC (2020) Aureobasidium pullulans volatilome identified by a novel, quantitative approach employing SPME-GC-MS, suppressed Botrytis cinerea and Alternaria alternata in vitro. Sci Rep 110:4498. https://doi.org/10.1038/s41598-020-61471-8 DOI
Ye W, Sun Y, Tang Y, Zhou W (2021) Biocontrol potential of a broad-spectrum antifungal strain Bacillus amyloliquefaciens B4 for postharvest loquat fruit storage. Postharvest Biol Technol 174:111439. https://doi.org/10.1016/j.postharvbio.2020.111439
Yuan H, Shi B, Wang L, Huang T, Zhou Z, Hou H, Tu H (2022) Isolation and characterization of Bacillus velezensis strain P2–1 for biocontrol of apple postharvest decay caused by Botryosphaeria dothidea. Front Microbiol 12:808938. https://doi.org/10.3389/fmicb.2021.808938