Grey mold, caused by Botrytis cinerea, is a widespread and harmful disease of tomato. Biocontrol agents derived from endophytic bacteria are known to hold great potential for inhibition of phytopathogen. We conducted this study to explore the tomato endophytic strains with inhibition activity against B. cinerea. Endophytic strain Bacillus velezensis FQ-G3 exhibited excellent inhibition activity against B. cinerea. Inhibitory effects against B. cinerea were investigated both in vitro and in vivo. The in vitro assays displayed that FQ-G3 could significantly inhibit mycelia growth with inhibition rate of 85.93%, and delay conidia germination of B. cinerea. Tomato fruit inoculated with B. velezensis FQ-G3 revealed lower grey mold during treatment. The antifungal activity was attributed to activation of defense-related enzymes, as evidenced by the higher levels of peroxidase, polyphenol oxidase, and phenylalanine ammonia lyase in tomatoes after inoculation. In addition, scanning electron microscope was applied to elucidate the interaction between endophytes and pathogen, and bacterial colonization and antibiosis appeared to be the underlying mechanisms that FQ-G3 could suppress growth of B. cinerea. Collectively, our present results suggested that FQ-G3 may potentially be useful as a biocontrol agent in postharvest tomatoes.
- MeSH
- Bacillus * MeSH
- Botrytis * MeSH
- Endophytes MeSH
- Plant Diseases prevention & control microbiology MeSH
- Solanum lycopersicum * MeSH
- Publication type
- Journal Article MeSH
Decolorization and degradation of textile dye by endophytic fungi stand to be a profitable and viable alternative over conventional methods with respect to eco-friendliness, cost-effectiveness, and non-hazardous nature. One of the active fungal endophytes Colletotrichum gloeosporioides isolated from plant Thevetia peruviana (Pers.) K. Schum. was screened for laccase production and Congo red dye decolorization. Various physicochemical parameters like dye concentration, carbon sources, nitrogen sources, temperature, and pH were optimized, and the maximum decolorization (%) was achieved at 100 mg/L of dye concentration (82%), yeast extract (80%), 30 °C temp (80%), glucose (79%), and 7 pH (78%), respectively. SEM image and fungal biomass changes represent that fungus actively participated in the dye decolorization and had less significant effect on biomass. The regenerative ability of fungus C. gloeosporioides after dye decolorization indicated tolerance against the dye and was found to be more advantageous over previous reports of dye decolorization by other endophytic fungi. UV-Vis spectra, TLC, FTIR, and HPLC results confirmed the decolorization and degradation process due to absorption and biodegradation. Phytotoxicity assay depicted that degraded products are less toxic to Phaseolus mungo compared to Congo red. The overall findings showed that C. gloeosporioides possesses a good decolorization and degradation potential against Congo red and this endophyte can be profitably used for dye-containing wastewater treatment.
AIMS: To identify bacteria with high selenium tolerance and reduction capacity for bioremediation of wastewater and nanoselenium particle production. METHODS AND RESULTS: A bacterial endophyte was isolated from the selenium hyperaccumulator Stanleya pinnata (Brassicaceae) growing on seleniferous soils in Colorado, USA. Based on fatty acid methyl ester analysis and multi-locus sequence analysis (MLSA) using 16S rRNA, gyrB, rpoB and rpoD genes, the isolate was identified as a subspecies of Pseudomonas moraviensis (97.3% nucleotide identity) and named P. moraviensis stanleyae. The isolate exhibited extreme tolerance to SeO3(2-) (up to 120 mmol l(-1)) and SeO4(2-) (>150 mmol l(-1)). Selenium oxyanion removal from growth medium was measured by microchip capillary electrophoresis (detection limit 95 nmol l(-1) for SeO3(2-) and 13 nmol l(-1) for SeO4(2-)). Within 48 h, P. moraviensis stanleyae aerobically reduced SeO3(2-) to red Se(0) from 10 mmol l(-1) to below the detection limit (removal rate 0.27 mmol h(-1) at 30 °C); anaerobic SeO3(2-) removal was slower. No SeO4(2-) removal was observed. Pseudomonas moraviensis stanleyae stimulated the growth of crop species Brassica juncea by 70% with no significant effect on Se accumulation. CONCLUSIONS: Pseudomonas moraviensis stanleyae can tolerate extreme levels of selenate and selenite and can deplete high levels of selenite under aerobic and anaerobic conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: Pseudomonas moraviensis subsp. stanleyae may be useful for stimulating plant growth and for the treatment of Se-laden wastewater.
- MeSH
- Aerobiosis MeSH
- Biodegradation, Environmental MeSH
- Brassicaceae metabolism microbiology MeSH
- Endophytes classification genetics isolation & purification metabolism MeSH
- Selenious Acid metabolism MeSH
- Pseudomonas classification genetics isolation & purification metabolism MeSH
- Selenium metabolism MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Seagrasses, a small group of submerged marine macrophytes, were reported to lack mycorrhizae, i.e., the root-fungus symbioses most terrestrial plants use for nutrient uptake. On the other hand, several authors detected fungal endophytes in seagrass leaves, shoots, rhizomes, and roots, and an anatomically and morphologically unique dark septate endophytic (DSE) association has been recently described in the roots of the Mediterranean seagrass Posidonia oceanica. Nevertheless, the global diversity of seagrass mycobionts is not well understood, and it remains unclear what fungus forms the DSE association in P. oceanica roots. We isolated and determined P. oceanica root mycobionts from 11 localities in the northwest Mediterranean Sea with documented presence of the DSE association and compared our results with recent literature. The mycobiont communities were low in diversity (only three species), were dominated by a single yet unreported marine fungal species (ca. 90 % of the total 177 isolates), and lacked common terrestrial and freshwater root mycobionts. Our phylogenetic analysis suggests that the dominating species represents a new monotypic lineage within the recently described Aigialaceae family (Pleosporales, Ascomycota), probably representing a new genus. Most of its examined colonies developed from intracellular microsclerotia occupying host hypodermis and resembling microsclerotia of terrestrial DSE fungi. Biological significance of this hitherto overlooked seagrass root mycobiont remains obscure, but its presence across the NW Mediterranean Sea and apparent root intracellular lifestyle indicate an intriguing symbiotic relationship with the dominant Mediterranean seagrass. Our microscopic observations suggest that it may form the DSE association recently described in P. oceanica roots.
- MeSH
- Alismatales microbiology MeSH
- Ascomycota classification genetics growth & development isolation & purification MeSH
- Endophytes classification genetics growth & development isolation & purification MeSH
- Phylogeny MeSH
- Plant Roots microbiology MeSH
- Molecular Sequence Data MeSH
- Spores, Fungal classification genetics growth & development isolation & purification MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Mediterranean Sea MeSH
Endophytic fungi are rich sources of structurally complex chemical scaffolds with interesting biological activities. However, their metabolome is still unknown, making them appealing for novel compound discovery. To maximize the number of secondary metabolites produced from a single microbial source, we used the "OSMAC (one strain-many compounds) approach." In potato dextrose medium, M. phaseolina produced phomeolic acid (1), ergosterol peroxide (2), and a volatile compound 1,4-benzene-diol. Incorporating an epigenetic modifier, sodium valproate, affected the metabolite profile of the fungus. It produced 3-acetyl-3-methyl dihydro-furan-2(3H)-one (3) and methyl-2-(methyl-thio)-butyrate (4), plus volatile chemicals: butylated hydroxy toluene (BHT), di-methyl-formamide, 3-amino-1-propanol, and 1,4-benzenediol, 2-amino-1-(O-methoxyphenyl) propane. The structure of compounds 1-4 was established with the help of spectroscopic data. This study revealed first-time compounds 1-4 in the fungus M. phaseolina using a classical and epigenetic manipulation approach.
- MeSH
- Ascomycota * metabolism MeSH
- Benzene metabolism MeSH
- Brugmansia * MeSH
- Butylated Hydroxytoluene metabolism MeSH
- Butyrates metabolism MeSH
- Endophytes chemistry MeSH
- Epigenesis, Genetic MeSH
- Formamides metabolism MeSH
- Furans metabolism MeSH
- Glucose metabolism MeSH
- Valproic Acid metabolism MeSH
- Propane metabolism MeSH
- Toluene metabolism MeSH
- Publication type
- Journal Article MeSH
Endophytic bacteria often promote plant growth and protect their host plant against pathogens, herbivores, and abiotic stresses including drought, increased salinity or pollution. Current agricultural practices are being challenged in terms of climate change and the ever-increasing demand for food. Therefore, the rational exploitation of bacterial endophytes to increase the productivity and resistance of crops appears to be very promising. However, the efficient and larger-scale use of bacterial endophytes for more effective and sustainable agriculture is hindered by very little knowledge on molecular aspects of plant-endophyte interactions and mechanisms driving bacterial communities in planta. In addition, since most of the information on bacterial endophytes has been obtained through culture-dependent techniques, endophytic bacterial diversity and its full biotechnological potential still remain highly unexplored. In this study, we discuss the diversity and role of endophytic populations as well as complex interactions that the endophytes have with the plant and vice versa, including the interactions leading to plant colonization. A description of biotic and abiotic factors influencing endophytic bacterial communities is provided, along with a summary of different methodologies suitable for determining the diversity of bacterial endophytes, mechanisms governing the assembly and structure of bacterial communities in the endosphere, and potential biotechnological applications of endophytes in the future.
Endophytic microbes are plant-associated microorganisms that reside in the interior tissue of plants without causing damage to the host plant. Endophytic microbes can boost the availability of nutrient for plant by using a variety of mechanisms such as fixing nitrogen, solubilizing phosphorus, potassium, and zinc, and producing siderophores, ammonia, hydrogen cyanide, and phytohormones that help plant for growth and protection against various abiotic and biotic stresses. The microbial endophytes have attained the mechanism of producing various hydrolytic enzymes such as cellulase, pectinase, xylanase, amylase, gelatinase, and bioactive compounds for plant growth promotion and protection. The efficient plant growth promoting endophytic microbes could be used as an alternative of chemical fertilizers for agro-environmental sustainability. Endophytic microbes belong to different phyla including Euryarchaeota, Ascomycota, Basidiomycota, Mucoromycota, Firmicutes, Proteobacteria, and Actinobacteria. The most pre-dominant group of bacteria belongs to Proteobacteria including α-, β-, γ-, and δ-Proteobacteria. The least diversity of the endophytic microbes have been revealed from Bacteroidetes, Deinococcus-Thermus, and Acidobacteria. Among reported genera, Achromobacter, Burkholderia, Bacillus, Enterobacter, Herbaspirillum, Pseudomonas, Pantoea, Rhizobium, and Streptomyces were dominant in most host plants. The present review deals with plant endophytic diversity, mechanisms of plant growth promotion, protection, and their role for agro-environmental sustainability. In the future, application of endophytic microbes have potential role in enhancement of crop productivity and maintaining the soil health in sustainable manner.
- MeSH
- Ascomycota * MeSH
- Bacillus * MeSH
- Bacteria genetics MeSH
- Basidiomycota * MeSH
- Endophytes MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
International trade in plants and climate change are two of the main factors causing damaging tree pests (i.e. fungi and insects) to spread into new areas. To mitigate these risks, a large-scale assessment of tree-associated fungi and insects is needed. We present records of endophytic fungi and insects in twigs of 17 angiosperm and gymnosperm genera, from 51 locations in 32 countries worldwide. Endophytic fungi were characterized by high-throughput sequencing of 352 samples from 145 tree species in 28 countries. Insects were reared from 227 samples of 109 tree species in 18 countries and sorted into taxonomic orders and feeding guilds. Herbivorous insects were grouped into morphospecies and were identified using molecular and morphological approaches. This dataset reveals the diversity of tree-associated taxa, as it contains 12,721 fungal Amplicon Sequence Variants and 208 herbivorous insect morphospecies, sampled across broad geographic and climatic gradients and for many tree species. This dataset will facilitate applied and fundamental studies on the distribution of fungal endophytes and insects in trees.
- MeSH
- Biodiversity MeSH
- Endophytes * MeSH
- Insecta * MeSH
- Fungi * MeSH
- Trees MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Dataset MeSH
- Research Support, Non-U.S. Gov't MeSH
Endophytic fungal communities have attracted a great attention to chemists, ecologists, and microbiologists as a treasure trove of biological resource. Endophytic fungi play incredible roles in the ecosystem including abiotic and biotic stress tolerance, eco-adaptation, enhancing growth and development, and maintaining the health of their host. In recent times, endophytic fungi have drawn a special focus owing to their indispensable diversity, unique distribution, and unparalleled metabolic pathways. The endophytic fungal communities belong to three phyla, namely Mucoromycota, Basidiomycota, and Ascomycota with seven predominant classes Agaricomycetes, Dothideomycetes, Eurotiomycetes, Mortierellomycotina, Mucoromycotina, Saccharomycetes, and Sordariomycetes. In a review of a huge number of research finding, it was found that endophytic fungal communities of genera Aspergillus, Chaetomium, Fusarium, Gaeumannomyces, Metarhizium, Microsphaeropsis, Paecilomyces, Penicillium, Piriformospora, Talaromyces, Trichoderma, Verticillium, and Xylaria have been sorted out and well characterized for diverse biotechnological applications for future development. Furthermore, these communities are remarkable source of novel bioactive compounds with amazing biological activity for use in agriculture, food, and pharmaceutical industry. Endophytes are endowed with a broad range of structurally unique bioactive natural products, including alkaloids, benzopyranones, chinones, flavonoids, phenolic acids, and quinines. Subsequently, there is still an excellent opportunity to explore novel compounds from endophytic fungi among numerous plants inhabiting different niches. Furthermore, high-throughput sequencing could be a tool to study interaction between plants and endophytic fungi which may provide further opportunities to reveal unknown functions of endophytic fungal communities. The present review deals with the biodiversity of endophytic fungal communities and their biotechnological implications for agro-environmental sustainability.
- MeSH
- Ascomycota * metabolism MeSH
- Biodiversity MeSH
- Ecosystem MeSH
- Endophytes MeSH
- Fungi metabolism MeSH
- Mycobiome * MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
In the present study, potentiality of endophytic microorganisms such as Rigidiporus vinctus AAU EF, Trichoderma reesei UH EF, and Sphingobacterium tabacisoli UH EB in the management of panama wilt and growth promotion of banana was assessed through artificial inoculation. During the study, a total of 220 bacterial and 110 fungal endophytes were isolated from root, pseudostem, and leaf samples of banana, and they were evaluated against Fusarium oxysporum f. sp cubense causing panama wilt. Out of total 330 bacterial and fungal endophytes, only five endophytes exhibited antagonism against Fusarium oxysporum f. sp cubense, out of which only three isolates, namely Trichoderma reesei UH EF, Rigidiporus vinctus AAU EF, and Sphingobacterium tabacisoli UH EB, produced indole acetic acid, siderophore, and hydrogen cyanide, except one bacterial strain Sphingobacterium tabacisoli UH EB which does not produce hydrogen cyanide. Furthermore, these three endophytes were identified through cultural and morphological characteristics as well as by the sequencing internal transcribed spacer (ITS) and 16S rRNA gene sequences analysis for bacteria, respectively. The response of host plant to endophyte inoculation was assessed by measuring the change in four growth parameters; plant height, pseudo stem girth (diameter), number of roots, and total number of leaves. The application of endophytes, irrespective of isolate and treatment type promoted the overall growth of the plant growth when compared with diseased plants with significant higher values recorded for all parameters assessed. The endophytes reported as growth promoters were found to have significant inhibition effect on Foc which can evidenced with lowest AUDPC values and epidemic rate at 99.09 units2 and 0.02 unit/day, respectively.
- MeSH
- Musa * microbiology MeSH
- Endophytes * physiology MeSH
- Fusarium * physiology MeSH
- Hypocreales physiology MeSH
- Microbial Interactions physiology MeSH
- Plant Diseases * microbiology prevention & control MeSH
- Polyporales physiology MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Sphingobacterium physiology MeSH
- Publication type
- Journal Article MeSH