-
Je něco špatně v tomto záznamu ?
Pseudomonas moraviensis subsp. stanleyae, a bacterial endophyte of hyperaccumulator Stanleya pinnata, is capable of efficient selenite reduction to elemental selenium under aerobic conditions
LC. Staicu, CJ. Ackerson, P. Cornelis, L. Ye, RL. Berendsen, WJ. Hunter, SD. Noblitt, CS. Henry, JJ. Cappa, RL. Montenieri, AO. Wong, L. Musilova, M. Sura-de Jong, ED. van Hullebusch, PN. Lens, RJ. Reynolds, EA. Pilon-Smits,
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25968181
DOI
10.1111/jam.12842
Knihovny.cz E-zdroje
- MeSH
- aerobióza MeSH
- biodegradace MeSH
- Brassicaceae metabolismus mikrobiologie MeSH
- endofyty klasifikace genetika izolace a purifikace metabolismus MeSH
- kyselina seleničitá metabolismus MeSH
- Pseudomonas klasifikace genetika izolace a purifikace metabolismus MeSH
- selen metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
AIMS: To identify bacteria with high selenium tolerance and reduction capacity for bioremediation of wastewater and nanoselenium particle production. METHODS AND RESULTS: A bacterial endophyte was isolated from the selenium hyperaccumulator Stanleya pinnata (Brassicaceae) growing on seleniferous soils in Colorado, USA. Based on fatty acid methyl ester analysis and multi-locus sequence analysis (MLSA) using 16S rRNA, gyrB, rpoB and rpoD genes, the isolate was identified as a subspecies of Pseudomonas moraviensis (97.3% nucleotide identity) and named P. moraviensis stanleyae. The isolate exhibited extreme tolerance to SeO3(2-) (up to 120 mmol l(-1)) and SeO4(2-) (>150 mmol l(-1)). Selenium oxyanion removal from growth medium was measured by microchip capillary electrophoresis (detection limit 95 nmol l(-1) for SeO3(2-) and 13 nmol l(-1) for SeO4(2-)). Within 48 h, P. moraviensis stanleyae aerobically reduced SeO3(2-) to red Se(0) from 10 mmol l(-1) to below the detection limit (removal rate 0.27 mmol h(-1) at 30 °C); anaerobic SeO3(2-) removal was slower. No SeO4(2-) removal was observed. Pseudomonas moraviensis stanleyae stimulated the growth of crop species Brassica juncea by 70% with no significant effect on Se accumulation. CONCLUSIONS: Pseudomonas moraviensis stanleyae can tolerate extreme levels of selenate and selenite and can deplete high levels of selenite under aerobic and anaerobic conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: Pseudomonas moraviensis subsp. stanleyae may be useful for stimulating plant growth and for the treatment of Se-laden wastewater.
Biology Department Colorado State University Fort Collins CO USA
Chemistry Department Colorado State University Fort Collins CO USA
UNESCO IHE Institute for Water Education Delft The Netherlands
Université Paris Est Laboratoire Géomatériaux et Environnement UPEM Marne la Vallée Cedex 2 France
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc16020813
- 003
- CZ-PrNML
- 005
- 20160728114230.0
- 007
- ta
- 008
- 160722s2015 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/jam.12842 $2 doi
- 024 7_
- $a 10.1111/jam.12842 $2 doi
- 035 __
- $a (PubMed)25968181
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Staicu, L C $u Biology Department, Colorado State University, Fort Collins, CO, USA. UNESCO-IHE Institute for Water Education, Delft, The Netherlands. Université Paris-Est, Laboratoire Géomatériaux et Environnement, UPEM, Marne-la-Vallée, Cedex 2, France.
- 245 10
- $a Pseudomonas moraviensis subsp. stanleyae, a bacterial endophyte of hyperaccumulator Stanleya pinnata, is capable of efficient selenite reduction to elemental selenium under aerobic conditions / $c LC. Staicu, CJ. Ackerson, P. Cornelis, L. Ye, RL. Berendsen, WJ. Hunter, SD. Noblitt, CS. Henry, JJ. Cappa, RL. Montenieri, AO. Wong, L. Musilova, M. Sura-de Jong, ED. van Hullebusch, PN. Lens, RJ. Reynolds, EA. Pilon-Smits,
- 520 9_
- $a AIMS: To identify bacteria with high selenium tolerance and reduction capacity for bioremediation of wastewater and nanoselenium particle production. METHODS AND RESULTS: A bacterial endophyte was isolated from the selenium hyperaccumulator Stanleya pinnata (Brassicaceae) growing on seleniferous soils in Colorado, USA. Based on fatty acid methyl ester analysis and multi-locus sequence analysis (MLSA) using 16S rRNA, gyrB, rpoB and rpoD genes, the isolate was identified as a subspecies of Pseudomonas moraviensis (97.3% nucleotide identity) and named P. moraviensis stanleyae. The isolate exhibited extreme tolerance to SeO3(2-) (up to 120 mmol l(-1)) and SeO4(2-) (>150 mmol l(-1)). Selenium oxyanion removal from growth medium was measured by microchip capillary electrophoresis (detection limit 95 nmol l(-1) for SeO3(2-) and 13 nmol l(-1) for SeO4(2-)). Within 48 h, P. moraviensis stanleyae aerobically reduced SeO3(2-) to red Se(0) from 10 mmol l(-1) to below the detection limit (removal rate 0.27 mmol h(-1) at 30 °C); anaerobic SeO3(2-) removal was slower. No SeO4(2-) removal was observed. Pseudomonas moraviensis stanleyae stimulated the growth of crop species Brassica juncea by 70% with no significant effect on Se accumulation. CONCLUSIONS: Pseudomonas moraviensis stanleyae can tolerate extreme levels of selenate and selenite and can deplete high levels of selenite under aerobic and anaerobic conditions. SIGNIFICANCE AND IMPACT OF THE STUDY: Pseudomonas moraviensis subsp. stanleyae may be useful for stimulating plant growth and for the treatment of Se-laden wastewater.
- 650 _2
- $a aerobióza $7 D000332
- 650 _2
- $a biodegradace $7 D001673
- 650 _2
- $a Brassicaceae $x metabolismus $x mikrobiologie $7 D019607
- 650 _2
- $a endofyty $x klasifikace $x genetika $x izolace a purifikace $x metabolismus $7 D060026
- 650 _2
- $a Pseudomonas $x klasifikace $x genetika $x izolace a purifikace $x metabolismus $7 D011549
- 650 _2
- $a kyselina seleničitá $x metabolismus $7 D020887
- 650 _2
- $a selen $x metabolismus $7 D012643
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Ackerson, C J $u Chemistry Department, Colorado State University, Fort Collins, CO, USA. $7 gn_A_00001028
- 700 1_
- $a Cornelis, P $u VIB Department of Structural Biology, Department of Bioengineering Sciences, Research Group Microbiology, Vrije Universiteit, Brussels, Belgium.
- 700 1_
- $a Ye, L $u VIB Department of Structural Biology, Department of Bioengineering Sciences, Research Group Microbiology, Vrije Universiteit, Brussels, Belgium.
- 700 1_
- $a Berendsen, R L $u Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
- 700 1_
- $a Hunter, W J $u USDA-ARS, Fort Collins, CO, USA.
- 700 1_
- $a Noblitt, S D $u Chemistry Department, Colorado State University, Fort Collins, CO, USA.
- 700 1_
- $a Henry, C S $u Chemistry Department, Colorado State University, Fort Collins, CO, USA.
- 700 1_
- $a Cappa, J J $u UNESCO-IHE Institute for Water Education, Delft, The Netherlands.
- 700 1_
- $a Montenieri, R L $u USDA-ARS, Fort Collins, CO, USA.
- 700 1_
- $a Wong, A O $u Chemistry Department, Colorado State University, Fort Collins, CO, USA.
- 700 1_
- $a Musilova, L $u Biochemistry and Microbiology Department, Institute of Chemical Technology in Prague, Prague, Czech Republic.
- 700 1_
- $a Sura-de Jong, M $u Biochemistry and Microbiology Department, Institute of Chemical Technology in Prague, Prague, Czech Republic.
- 700 1_
- $a van Hullebusch, E D $u Université Paris-Est, Laboratoire Géomatériaux et Environnement, UPEM, Marne-la-Vallée, Cedex 2, France.
- 700 1_
- $a Lens, P N L $u UNESCO-IHE Institute for Water Education, Delft, The Netherlands.
- 700 1_
- $a Reynolds, R J B $u Biology Department, Colorado State University, Fort Collins, CO, USA.
- 700 1_
- $a Pilon-Smits, E A H $u Biology Department, Colorado State University, Fort Collins, CO, USA.
- 773 0_
- $w MED00002525 $t Journal of applied microbiology $x 1365-2672 $g Roč. 119, č. 2 (2015), s. 400-10
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/25968181 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y a $z 0
- 990 __
- $a 20160722 $b ABA008
- 991 __
- $a 20160728114452 $b ABA008
- 999 __
- $a ok $b bmc $g 1155483 $s 945341
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2015 $b 119 $c 2 $d 400-10 $e 20150624 $i 1365-2672 $m Journal of applied microbiology $n J Appl Microbiol $x MED00002525
- LZP __
- $a Pubmed-20160722