• This record comes from PubMed

Diffusion tensor imaging helps identify shunt-responsive normal pressure hydrocephalus patients among probable iNPH cohort

. 2023 Jul 13 ; 46 (1) : 173. [epub] 20230713

Language English Country Germany Media electronic

Document type Journal Article

Grant support
NU23-04-00551 Ministry of Health of the Czech Republic
NU23-04-00551 Ministry of Health of the Czech Republic
NU23-04-00551 Ministry of Health of the Czech Republic
NU23-04-00551 Ministry of Health of the Czech Republic
NU23-04-00551 Ministry of Health of the Czech Republic

Links

PubMed 37442856
PubMed Central PMC10344981
DOI 10.1007/s10143-023-02078-1
PII: 10.1007/s10143-023-02078-1
Knihovny.cz E-resources

The aim of this study was to investigate whether white matter changes as measured by diffusion tensor imaging (DTI) can help differentiate shunt-responsive idiopathic normal pressure hydrocephalus (iNPH) patients from patients with other causes of gait disturbances and/or cognitive decline with ventriculomegaly whose clinical symptoms do not improve significantly after cerebrospinal fluid derivation (non-iNPH). Between 2017 and 2022, 85 patients with probable iNPH underwent prospective preoperative magnetic resonance imaging (MRI) and comprehensive clinical workup. Patients with clinical symptoms of iNPH, positive result on lumbar infusion test, and gait improvement after 120-h lumbar drainage were diagnosed with iNPH and underwent shunt-placement surgery. Fractional anisotropy (FA) and mean diffusivity (MD) values for individual regions of interest were extracted from preoperative MRI, using the TBSS pipeline of FSL toolkit. These FA and MD values were then compared to results of clinical workup and established diagnosis of iNPH. An identical MRI protocol was performed on 13 age- and sex-matched healthy volunteers. Statistically significant differences in FA values of several white matter structures were found not only between iNPH patients and healthy controls but also between iNPH and non-iNPH patients. ROI that showed best diagnostic ability when differentiating iNPH among probable iNPH cohort was uncinate fasciculus, with AUC of 0.74 (p < 0.001). DTI methods of white matter analysis using standardised methods of ROI extraction can help in differentiation of iNPH patients not only from healthy patients but also from patients with other causes of gait disturbances with cognitive decline and ventriculomegaly.

See more in PubMed

Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM (2005) Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery. 57(3 Suppl):S4–16; discussion ii-v. 10.1227/01.neu.0000168185.29659.c5 PubMed

Martín-Láez R, Caballero-Arzapalo H, López-Menéndez LÁ, Arango-Lasprilla JC, Vázquez-Barquero A. Epidemiology of idiopathic normal pressure hydrocephalus: a systematic review of the literature. World Neurosurg. 2015;84(6):2002–2009. doi: 10.1016/j.wneu.2015.07.005. PubMed DOI

Jaraj D, et al. Prevalence of idiopathic normal-pressure hydrocephalus. Neurology. 2014;82(16):1449–1454. doi: 10.1212/wnl.0000000000000342. PubMed DOI PMC

Popal AM, Zhu Z, Guo X, et al. Outcomes of ventriculoperitoneal shunt in patients with idiopathic normal-pressure hydrocephalus 2 years after surgery. Front Surg. 2021;8:641561. doi: 10.3389/fsurg.2021.641561. PubMed DOI PMC

Peterson KA, Savulich G, Jackson D, Killikelly C, Pickard JD, Sahakian BJ. The effect of shunt surgery on neuropsychological performance in normal pressure hydrocephalus: a systematic review and meta-analysis. J Neurol. 2016;263(8):1669–1677. doi: 10.1007/s00415-016-8097-0. PubMed DOI PMC

McGirt MJ, Woodworth G, Coon AL, Thomas G, Williams MA, Rigamonti D (2005) Diagnosis, treatment, and analysis of long-term outcomes in idiopathic normal-pressure hydrocephalus. Neurosurgery. 57(4):699–705; discussion 699–705. 10.1093/neurosurgery/57.4.699 PubMed

Andrén K, Wikkelsø C, Hellström P, Tullberg M, Jaraj D. Early shunt surgery improves survival in idiopathic normal pressure hydrocephalus. Eur J Neurol. 2021;28(4):1153–1159. doi: 10.1111/ene.14671. PubMed DOI PMC

Tullberg M, Persson J, Petersen J, Hellström P, Wikkelsø C, Lundgren-Nilsson Å. Shunt surgery in idiopathic normal pressure hydrocephalus is cost-effective—a cost utility analysis. Acta Neurochir (Wien) 2018;160(3):509–518. doi: 10.1007/s00701-017-3394-7. PubMed DOI PMC

Virhammar J, Laurell K, Cesarini KG, Larsson EM. Preoperative prognostic value of MRI findings in 108 patients with idiopathic normal pressure hydrocephalus. AJNR Am J Neuroradiol. 2014;35(12):2311–2318. doi: 10.3174/ajnr.A4046. PubMed DOI PMC

Vlasák A, Gerla V, Skalický P, et al. Boosting phase-contrast MRI performance in idiopathic normal pressure hydrocephalus diagnostics by means of machine learning approach. Neurosurg Focus. 2022;52(4):E6. doi: 10.3171/2022.1.FOCUS21733. PubMed DOI

Kockum K, et al. Diagnostic accuracy of the INPH Radscale in idiopathic normal pressure hydrocephalus. PloS One. 2020;15(4):e0232275. doi: 10.1371/journal.pone.0232275. PubMed DOI PMC

Carlsen JF, et al. Can shunt response in patients with idiopathic normal pressure hydrocephalus be predicted from preoperative brain imaging? A retrospective study of the diagnostic use of the Normal Pressure Hydrocephalus Radscale in 119 Patients. AJNR Am J Neuroradiol. 2022;43(2):223–229. doi: 10.3174/ajnr.A7378. PubMed DOI PMC

Laticevschi T, Lingenberg A, Armand S, Griffa A, Assal F, Allali G. Can the radiological scale “iNPH Radscale” predict tap test response in idiopathic normal pressure hydrocephalus? J Neurol Sci. 2021;420(117239):117239. doi: 10.1016/j.jns.2020.117239. PubMed DOI

Carlsen JF, Backlund ADL, Mardal CA, et al. Can shunt response in patients with idiopathic normal pressure hydrocephalus be predicted from preoperative brain imaging? A retrospective study of the diagnostic use of the Normal Pressure Hydrocephalus Radscale in 119 patients. AJNR Am J Neuroradiol. 2022;43(2):223–229. doi: 10.3174/ajnr.A7378. PubMed DOI PMC

Basser PJ, Mattiello J, Lebihan D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 1994;103(3):247–254. doi: 10.1006/jmrb.1994.1037. PubMed DOI

O’Donnell LJ, Westin CF. An introduction to diffusion tensor image analysis. Neurosurg Clin N Am. 2011;22(2):185–196 viii. doi: 10.1016/j.nec.2010.12.004. PubMed DOI PMC

Grazzini I, Venezia D, Cuneo GL. The role of diffusion tensor imaging in idiopathic normal pressure hydrocephalus: a literature review. Neuroradiol J. 2021;34(2):55–69. doi: 10.1177/1971400920975153. PubMed DOI PMC

Koyama T, Marumoto K, Domen K, Miyake H. White matter characteristics of idiopathic normal pressure hydrocephalus: a diffusion tensor tract-based spatial statistic study. Neurol Med Chir (Tokyo) 2013;53(9):601–608. doi: 10.2176/nmc.oa2012-0307. PubMed DOI PMC

Smith SM, Jenkinson M, Woolrich MW, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23(Suppl 1):S208–S219. doi: 10.1016/j.neuroimage.2004.07.051. PubMed DOI

Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL Neuroimage. 2012;62(2):782–790. doi: 10.1016/j.neuroimage.2011.09.015. PubMed DOI

Smith SM, Jenkinson M, Johansen-Berg H, et al. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31(4):1487–1505. doi: 10.1016/j.neuroimage.2006.02.024. PubMed DOI

Smith SM. Fast robust automated brain extraction. Hum Brain Mapp. 2002;17(3):143–155. doi: 10.1002/hbm.10062. PubMed DOI PMC

J.L.R. Andersson, M. Jenkinson and S. Smith. Non-linear optimisation. FMRIB technical report TR07JA1. www.fmrib.ox.ac.uk/analysis/techrep. Accessed 7 May 2023

J.L.R. Andersson, M. Jenkinson and S. Smith. Non-linear registration, aka spatial normalisation FMRIB technical report TR07JA2. www.fmrib.ox.ac.uk/analysis/techrep. Accessed 7 May 2023

Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging. 1999;18(8):712–721. doi: 10.1109/42.796284. PubMed DOI

Mori, et al. MRI atlas of human white matter. Amsterdam, The Netherlands: Elsevier; 2005.

Nakanishi A, Fukunaga I, Hori M, et al. Microstructural changes of the corticospinal tract in idiopathic normal pressure hydrocephalus: a comparison of diffusion tensor and diffusional kurtosis imaging. Neuroradiology. 2013;55(8):971–976. doi: 10.1007/s00234-013-1201-6. PubMed DOI

Metoki A, Alm KH, Wang Y, Ngo CT, Olson IR. Never forget a name: white matter connectivity predicts person memory. Brain Struct Funct. 2017;222(9):4187–4201. doi: 10.1007/s00429-017-1458-3. PubMed DOI PMC

Carter CS, Botvinick MM, Cohen JD. The contribution of the anterior cingulate cortex to executive processes in cognition. Rev Neurosci. 1999;10(1):49–57. doi: 10.1515/revneuro.1999.10.1.49. PubMed DOI

Saito M, Nishio Y, Kanno S, et al. Cognitive profile of idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Dis Extra. 2011;1(1):202–211. doi: 10.1159/000328924. PubMed DOI PMC

Wang Y, Metoki A, Smith DV, et al. Multimodal mapping of the face connectome. Nat Hum Behav. 2020;4(4):397–411. doi: 10.1038/s41562-019-0811-3. PubMed DOI PMC

Kang K, Hwang SK, Lee HW. Shunt-responsive idiopathic normal pressure hydrocephalus patient with delayed improvement after tap test. J Korean Neurosurg Soc. 2013;54(5):437–440. doi: 10.3340/jkns.2013.54.5.437. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...