The Comparison of the Effect of Flour Particle Size and Content of Damaged Starch on Rice and Buckwheat Slurry, Dough, and Bread Characteristics
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA/FT/2023/010
Tomas Bata University in Zlín
PubMed
37444342
PubMed Central
PMC10341041
DOI
10.3390/foods12132604
PII: foods12132604
Knihovny.cz E-zdroje
- Klíčová slova
- bread crumb, bread quality, dough extensibility, flour granulation, pasting properties,
- Publikační typ
- časopisecké články MeSH
The effect of botanical origin, the flour particle size, and the content of damaged starch on flour pasting properties, dough behavior during a uniaxial deformation test, and bread characteristics were evaluated on rice and buckwheat flours. The rice flour with a median particle size D(0.5) of 60.2, 70.6, 106.8, and 189.4 μm, and buckwheat flour with a D(0.5) of 56.4, 68.4, and 95.8 μm were prepared using the same milling technology. The botanical origin of the flours was the strongest factor influencing the flour pasting properties, stress accumulated in dough during the uniaxial deformation test, loaf characteristics, texture, and sensory characteristics of breads. The flour particle size significantly influenced mainly the flour pasting properties. The effect of the content of damaged starch was the weakest among the studied factors. The flour particle size and the content of damaged starch were closely related. The flour botanical origin was the strongest factor; therefore, it seems not to be possible to predict the bread-baking potential of gluten-free flours based on the results obtained for flour of a different botanical origin. More research on flours from different plants prepared by the same milling process is required to support this hypothesis.
Faculty of Chemical Technology University of Pardubice Studentská 95 532 10 Pardubice Czech Republic
INRAE Institut Agro IATE University Montpellier 2 place VIALA Bât 31 34060 Montpellier France
Zobrazit více v PubMed
Barak S., Mudgil D., Khatkar B.S. Effect of flour particle size and damaged starch on the quality of cookies. J. Food Sci. Technol. 2014;51:1342–1348. doi: 10.1007/s13197-012-0627-x. PubMed DOI PMC
Ma S., Wang C., Li L., Wang X. Effects of particle size on the quality attributes of wheat flour made by the milling process. Cereal Chem. 2020;97:172–182. doi: 10.1002/cche.10230. DOI
Bourré L., Frohlich P., Young G., Borsuk Y., Sopiwnyk E., Sarkar A., Nickerson M.T., Ai Y., Dyck A., Malcolmson L. Influence of particle size on flour and baking properties of yellow pea, navy bean, and red lentil flours. Cereal Chem. 2019;96:655–667. doi: 10.1002/cche.10161. DOI
Wang Q., Li L., Zheng X. A review of milling damaged starch: Generation, measurement, functionality and its effect on starch-based food systems. Food Chem. 2020;315:126267. doi: 10.1016/j.foodchem.2020.126267. PubMed DOI
Belorio M., Sahagún M., Gómez M. Influence of flour particle size distribution on the quality of maize gluten-free cookies. Foods. 2019;8:83. doi: 10.3390/foods8020083. PubMed DOI PMC
Qin W., Lin Z., Wang A., Chen Z., He Y., Wang L., Liu L., Wang F., Tong L.T. Influence of particle size on the properties of rice flour and quality of gluten-free rice bread. LWT. 2021;151:112236. doi: 10.1016/j.lwt.2021.112236. DOI
Luo S., Yan X., Fu Y., Pang M., Chen R., Liu Y., Chen J., Liu C. The quality of gluten-free bread made of brown rice flour prepared by low temperature impact mill. Food Chem. 2021;348:129032. doi: 10.1016/j.foodchem.2021.129032. PubMed DOI
de la Hera E., Talegón M., Caballero P., Gómez M. Influence of maize flour particle size on gluten-free breadmaking. J. Sci. Food Agric. 2013;93:924–932. doi: 10.1002/jsfa.5826. PubMed DOI
Juliano B.O. Rice in Human Nutrition. FAO; Rome, Italy: 1993. pp. 101–124.
Gujral H.S., Rosell C.M. Improvement of the breadmaking quality of rice flour by glucose oxidase. Food Res. Int. 2004;37:75–81. doi: 10.1016/j.foodres.2003.08.001. DOI
Burešová I., Tokár M., Mareček J., Hřivna L., Faměra O., Šottníková V. The comparison of the effect of added amaranth, buckwheat, chickpea, corn, millet and quinoa flour on rice dough rheological characteristics, textural and sensory quality of bread. J. Cereal Sci. 2017;75:158–164. doi: 10.1016/j.jcs.2017.04.004. DOI
Bonafaccia G., Marocchini M., Kreft I. Composition and technological properties of the flour and bran from common and tartary buckwheat. Food Chem. 2003;80:9–15. doi: 10.1016/S0308-8146(02)00228-5. DOI
Krkošková B., Mrázová Z. Prophylactic components of buckwheat. Food Res. Int. 2005;38:561–568. doi: 10.1016/j.foodres.2004.11.009. DOI
Zhu F. Buckwheat proteins and peptides: Biological functions and food applications. Trends Food Sci. Techol. 2021;110:155–167. doi: 10.1016/j.tifs.2021.01.081. DOI
Heureka. [(accessed on 4 June 2023)]. Available online: https://www.heureka.cz/
Berton B., Scher J., Villieras F., Hardy J. Measurement of hydration capacity of wheat flour: Influence of composition and physical characteristics. Powder Technol. 2002;128:326–331. doi: 10.1016/S0032-5910(02)00168-7. DOI
Food and Feed Products—General Guidelines for the Determination of Nitrogen by the Kjeldahl Method. International Organization for Standardization; Geneva, Switzerland: 2009.
Cereals, Cereals-Based Products and Animal Feeding Stuffs—Determination of Crude Fat and Total Fat Content by the Randall Extraction Method. International Organization for Standardization; Geneva, Switzerland: 2015.
Native Starch—Determination of Starch Content—Ewers Polarimetric Method. International Organization for Standardization; Geneva, Switzerland: 1998.
AACC International . Approved Methods of Analysis. Methods: 76-31.01 (Determination of Damaged Starch—Spectrophotometric Method) 11th ed. American Association of Cereal Chemists International; St. Paul, MN, USA: 2010.
Burešová I., Vaculová K., Zacharová M., Jirsa O., Sedláčková I. The comparison of different methods used for measuring rheological characteristics of barley suspension and dough during heating and cooling; Proceedings of the 12th International Conference on Polycarbohydrates-Glycoscience; Prague, Czechia. 19–21 October 2016; Prague, Czechia: Czech Chemical Society; 2016. pp. 118–121.
Balet S., Guelpa A., Fox G., Manley M. Rapid Visco Analyser (RVA) as a Tool for Measuring Starch-Related Physiochemical Properties in Cereals: A Review. Food Anal. Methods. 2019;12:2344–2360. doi: 10.1007/s12161-019-01581-w. DOI
Burešová I., Kubínek R. The behavior of amaranth, chickpea, millet, corn, quinoa, buckwheat and rice doughs under shear oscillatory and uniaxial elongational tests simulating proving and baking. J. Texture Stud. 2016;47:423–431. doi: 10.1111/jtxs.12176. DOI
Dunnewind B., Sliwinski E.L., Grolle K., Vliet T.V. The Kieffer dough and gluten extensibility rig—An experimental evaluation. J. Texture Stud. 2004;34:537–560. doi: 10.1111/j.1745-4603.2003.tb01080.x. DOI
Burešová I., Masaříková L., Hřivna L., Kulhanová S., Bureš D. The comparison of the effect of sodium caseinate, calcium caseinate, carboxymethyl cellulose and xanthan gum on rice-buckwheat dough rheological characteristics and textural and sensory quality of bread. LWT. 2016;68:659–666. doi: 10.1016/j.lwt.2016.01.010. DOI
Trinh K.T., Glasgow S. On the texture profile analysis test; Proceedings of the Chemeca; Wellington, New Zealand. 23–26 September 2012; Wellington, New Zealand: Chemeca; 2012. pp. 23–26.
Sensory Analysis—General Guidelines for the Selection, Training and Monitoring of Selected Assessors and Expert Sensory Asses. International Organization for Standardization; Geneva, Switzerland: 2012.
Sensory Analysis—General Guidance for the Design of Test Rooms. International Organization for Standardization; Geneva, Switzerland: 2007.
Callejo M.J. Present situation on the descriptive sensory analysis of bread. J. Sens. Stud. 2011;26:255–268. doi: 10.1111/j.1745-459X.2011.00341.x. DOI
Wang B., Wang J. Mechanical properties of maize kernel horny endosperm, floury endosperm and germ. Int. J. Food Prop. 2019;22:863–877. doi: 10.1080/10942912.2019.1614050. DOI
de la Hera E., Gomez M., Rosell C.M. Particle size distribution of rice flour affecting the starch enzymatic hydrolysis and hydration properties. Carbohydr. Polym. 2013;98:421–427. doi: 10.1016/j.carbpol.2013.06.002. PubMed DOI
Torbica A., Hadnađev M., Hadnađev T.D. Rice and buckwheat flour characterisation and its relation to cookie quality. Food Res. Int. 2012;48:277–283. doi: 10.1016/j.foodres.2012.05.001. DOI
Bressiani J., Oro T., Santetti G.S., Almeida J.L., Bertolin T.E., Gómez M., Gutkoski L.C. Properties of whole grain wheat flour and performance in bakery products as a function of particle size. J. Cereal Sci. 2017;75:269–277. doi: 10.1016/j.jcs.2017.05.001. DOI
Barrera G.N., Bustos M.C., Iturriaga L., Flores S.K., León A.E., Ribotta P.D. Effect of damaged starch on the rheological properties of wheat starch suspensions. J. Food Eng. 2013;116:233–239. doi: 10.1016/j.jfoodeng.2012.11.020. DOI
Brandner S., Becker T., Jekle M. Gluten–starch interface characteristics and wheat dough rheology—Insights from hybrid artificial systems. J. Food Sci. 2022;87:1375–1385. doi: 10.1111/1750-3841.16115. PubMed DOI
Watanabe A., Larsson H., Eliasson A.C. Effect of physical state of nonpolar lipids on rheology and microstructure of gluten-starch and wheat flour doughs. Cereal Chem. 2002;79:203–209. doi: 10.1094/CCHEM.2002.79.2.203. DOI
Peighambardoust S.H., Van der Goot A.J., Van Vliet T., Hamer R.J., Boom R.M. Microstructure formation and rheological behaviour of dough under simple shear flow. J. Cereal Sci. 2006;43:183–197. doi: 10.1016/j.jcs.2005.10.004. DOI
de la Hera E., Rosell C.M., Gómez M. Effect of water content and flour particle size on gluten-free bread quality and digestibility. Food Chem. 2014;151:526–531. doi: 10.1016/j.foodchem.2013.11.115. PubMed DOI
Zhang W., Zhu Y., Liu Q., Bao J., Liu Q. Identification and quantification of polyphenols in hull, bran and endosperm of common buckwheat (Fagopyrum esculentum) seeds. J. Funct. Foods. 2017;38:363–369. doi: 10.1016/j.jff.2017.09.024. DOI
Klepacka J., Najda A. Effect of commercial processing on polyphenols and antioxidant activity of buckwheat seeds. Int. J. Food Sci. Technol. 2021;56:661–670. doi: 10.1111/ijfs.14714. DOI
Baldino N., Laitano F., Lupi F.R., Curcio S., Gabriele D. Effect of HPMC and CMC on rheological behavior at different temperatures of gluten-free bread formulations based on rice and buckwheat flours. Eur. Food Res. Technol. 2018;244:1829–1842. doi: 10.1007/s00217-018-3096-2. DOI
Coronel E.B., Guiotto E.N., Aspiroz M.C., Tomás M.C., Nolasco S.M., Capitani M.I. Development of gluten-free premixes with buckwheat and chia flours: Application in a bread product. LWT. 2021;141:110916. doi: 10.1016/j.lwt.2021.110916. DOI