• This record comes from PubMed

Endothelial Dysfunction in Diabetes Mellitus: New Insights

. 2023 Jun 27 ; 24 (13) : . [epub] 20230627

Language English Country Switzerland Media electronic

Document type Journal Article, Review

Grant support
LX22NPO5104 National Institute for Research of Metabolic and Cardiovascular Diseases (Programme EXCELES, Project No. LX22NPO5104) - funded by the European Union Next Generation EU.

Endothelial dysfunction (ED) is an important marker of future atherosclerosis and cardiovascular disease, especially in people with diabetes. This article summarizes the evidence on endothelial dysfunction in people with diabetes and adds different perspectives that can affect the presence and severity of ED and its consequences. We highlight that data on ED in type 1 diabetes are lacking and discuss the relationship between ED and arterial stiffness. Several interesting studies have been published showing that ED modulates microRNA, microvesicles, lipid levels, and the endoplasmatic reticulum. A better understanding of ED could provide important insights into the microvascular complications of diabetes, their treatment, and even their prevention.

See more in PubMed

Deanfield J.E., Halcox J.P., Rabelink T.J. Endothelial function and dysfunction: Testing and clinical relevance. Circulation. 2007;115:1285–1295. doi: 10.1161/CIRCULATIONAHA.106.652859. PubMed DOI

Mironov A.A., Mironov A., Sanavio B., Krol S., Beznoussenko G.V. Intracellular Membrane Transport in Vascular Endothelial Cells. Int. J. Mol. Sci. 2023;24:5791. doi: 10.3390/ijms24065791. PubMed DOI PMC

Raju S., Botts S.R., Blaser M., Prajapati K., Ho T.W.W., Ching C., Galant N.J., Fiddes L., Wu R., Clift C.L., et al. Endothelial cells secrete small extracellular vesicles bidirectionally containing distinct cargo to uniquely reprogram vascular cells in the circulation and vessel wall. bioRxiv. 2023 doi: 10.1101/2023.04.28.538787. DOI

Barbacena P., Dominguez-Cejudo M., Fonseca C.G., Gomez-Gonzalez M., Faure L.M., Zarkada G., Pena A., Pezzarossa A., Ramalho D., Giarratano Y., et al. Competition for endothelial cell polarity drives vascular morphogenesis in the mouse retina. Dev. Cell. 2022;57:2321–2333.e2329. doi: 10.1016/j.devcel.2022.09.002. PubMed DOI PMC

Godo S., Shimokawa H. Endothelial Functions. Arter. Thromb. Vasc. Biol. 2017;37:e108–e114. doi: 10.1161/ATVBAHA.117.309813. PubMed DOI

Martinez-Arroyo O., Ortega A., Flores-Chova A., Sanchez-Garcia B., Garcia-Garcia A.B., Chaves F.J., Martin-Escudero J.C., Forner M.J., Redon J., Cortes R. High miR-126-3p levels associated with cardiovascular events in a general population. Eur. J. Intern. Med. 2023;113:49–56. doi: 10.1016/j.ejim.2023.04.013. PubMed DOI PMC

Vera O.D., Wulff H., Braun A.P. Endothelial KCa channels: Novel targets to reduce atherosclerosis-driven vascular dysfunction. Front. Pharm. 2023;14:1151244. doi: 10.3389/fphar.2023.1151244. PubMed DOI PMC

Takeda Y., Matoba K., Sekiguchi K., Nagai Y., Yokota T., Utsunomiya K., Nishimura R. Endothelial Dysfunction in Diabetes. Biomedicines. 2020;8:182. doi: 10.3390/biomedicines8070182. PubMed DOI PMC

Joshua I.G., Zhang Q., Falcone J.C., Bratcher A.P., Rodriguez W.E., Tyagi S.C. Mechanisms of endothelial dysfunction with development of type 1 diabetes mellitus: Role of insulin and C-peptide. J. Cell Biochem. 2005;96:1149–1156. doi: 10.1002/jcb.20620. PubMed DOI

Baum O., Bernd J., Becker S., Odriozola A., Zuber B., Tschanz S.A., Zakrzewicz A., Egginton S., Berkholz J. Structural Microangiopathies in Skeletal Muscle Related to Systemic Vascular Pathologies in Humans. Front. Physiol. 2020;11:28. doi: 10.3389/fphys.2020.00028. PubMed DOI PMC

Cai Z., Yuan S., Zhong Y., Deng L., Li J., Tan X., Feng J. Amelioration of Endothelial Dysfunction in Diabetes: Role of Takeda G Protein-Coupled Receptor 5. Front. Pharm. 2021;12:637051. doi: 10.3389/fphar.2021.637051. PubMed DOI PMC

Jahn L.A., Logan B., Love K.M., Horton W.B., Eichner N.Z., Hartline L.M., Weltman A.L., Barrett E.J. Nitric oxide-dependent micro- and macrovascular dysfunction occurs early in adolescents with type 1 diabetes. Am. J. Physiol. Endocrinol. Metab. 2022;322:E101–E108. doi: 10.1152/ajpendo.00267.2021. PubMed DOI PMC

Creemers E.E., Tijsen A.J., Pinto Y.M. Circulating microRNAs: Novel biomarkers and extracellular communicators in cardiovascular disease? Circ. Res. 2012;110:483–495. doi: 10.1161/CIRCRESAHA.111.247452. PubMed DOI

Fluitt M.B., Mohit N., Gambhir K.K., Nunlee-Bland G. To the Future: The Role of Exosome-Derived microRNAs as Markers, Mediators, and Therapies for Endothelial Dysfunction in Type 2 Diabetes Mellitus. J. Diabetes Res. 2022;2022:5126968. doi: 10.1155/2022/5126968. PubMed DOI PMC

Fish J.E., Srivastava D. MicroRNAs: Opening a new vein in angiogenesis research. Sci. Signal. 2009;2:pe1. doi: 10.1126/scisignal.252pe1. PubMed DOI PMC

Zheng Y., Liu Y., Wang L., Xu H., Lu Z., Xuan Y., Meng W., Ye L., Fang D., Zhou Y., et al. MicroRNA-126 suppresses the proliferation and migration of endothelial cells in experimental diabetic retinopathy by targeting polo-like kinase 4. Int. J. Mol. Med. 2021;47:151–160. doi: 10.3892/ijmm.2020.4775. PubMed DOI PMC

Ray S.L., Coulson D.J., Yeoh M.L.Y., Tamara A., Latief J.S., Bakhashab S., Weaver J.U. The Role of miR-342 in Vascular Health. Study in Subclinical Cardiovascular Disease in Mononuclear Cells, Plasma, Inflammatory Cytokines and PANX2. Int. J. Mol. Sci. 2020;21:7217. doi: 10.3390/ijms21197217. PubMed DOI PMC

Bakhashab S., Yuen Yeoh M.L., Coulson D.J., Steel S.C., Ray S.L., Weaver J.U. Deciphering the Role of miR-200c-3p in Type 1 Diabetes (Subclinical Cardiovascular Disease) and Its Correlation with Inflammation and Vascular Health. Int. J. Mol. Sci. 2022;23:15659. doi: 10.3390/ijms232415659. PubMed DOI PMC

Liu M.H., Tang Z.H., Li G.H., Qu S.L., Zhang Y., Ren Z., Liu L.S., Jiang Z.S. Janus-like role of fibroblast growth factor 2 in arteriosclerotic coronary artery disease: Atherogenesis and angiogenesis. Atherosclerosis. 2013;229:10–17. doi: 10.1016/j.atherosclerosis.2013.03.013. PubMed DOI

Schönborn M., Gregorczyk-Maga I., Batko K., Bogucka K., Maga M., Płotek A., Pasieka P., Słowińska-Solnica K., Maga P. Circulating Angiogenic Factors and Ischemic Diabetic Foot Syndrome Advancement—A Pilot Study. Biomedicines. 2023;11:1559. doi: 10.3390/biomedicines11061559. PubMed DOI PMC

Anderson T.J. Arterial stiffness or endothelial dysfunction as a surrogate marker of vascular risk. Can. J. Cardiol. 2006;22((Suppl. B)):72B–80B. doi: 10.1016/S0828-282X(06)70990-4. PubMed DOI PMC

Haynes W.G. ATVB in focus: Noninvasive assessment of atherosclerosis--from structure to function. Arter. Thromb. Vasc. Biol. 2002;22:1064. doi: 10.1161/01.ATV.0000023170.27139.D7. PubMed DOI

Hayden J., O’Donnell G., deLaunois I., O’Gorman C. Endothelial Peripheral Arterial Tonometry (Endo-PAT 2000) use in paediatric patients: A systematic review. BMJ Open. 2023;13:e062098. doi: 10.1136/bmjopen-2022-062098. PubMed DOI PMC

Bonetti P.O., Pumper G.M., Higano S.T., Holmes D.R., Jr., Kuvin J.T., Lerman A. Noninvasive identification of patients with early coronary atherosclerosis by assessment of digital reactive hyperemia. J. Am. Coll. Cardiol. 2004;44:2137–2141. doi: 10.1016/j.jacc.2004.08.062. PubMed DOI

Wilk G., Osmenda G., Matusik P., Nowakowski D., Jasiewicz-Honkisz B., Ignacak A., Czesnikiewicz-Guzik M., Guzik T.J. Endothelial function assessment in atherosclerosis: Comparison of brachial artery flow-mediated vasodilation and peripheral arterial tonometry. Pol. Arch. Med. Wewn. 2013;123:443–452. doi: 10.20452/pamw.1879. PubMed DOI

Babar G., Clements M., Dai H., Raghuveer G. Assessment of biomarkers of inflammation and premature atherosclerosis in adolescents with type-1 diabetes mellitus. J. Pediatr. Endocrinol. Metab. 2019;32:109–113. doi: 10.1515/jpem-2018-0192. PubMed DOI

Scaramuzza A.E., Redaelli F., Giani E., Macedoni M., Giudici V., Gazzarri A., Bosetti A., De Angelis L., Zuccotti G.V. Adolescents and young adults with type 1 diabetes display a high prevalence of endothelial dysfunction. Acta Paediatr. 2015;104:192–197. doi: 10.1111/apa.12877. PubMed DOI

Shah A.S., Urbina E.M. Vascular and Endothelial Function in Youth with Type 2 Diabetes Mellitus. Curr. Diab. Rep. 2017;17:36. doi: 10.1007/s11892-017-0869-0. PubMed DOI PMC

Patoulias D., Papadopoulos C., Stavropoulos K., Zografou I., Doumas M., Karagiannis A. Prognostic value of arterial stiffness measurements in cardiovascular disease, diabetes, and its complications: The potential role of sodium-glucose co-transporter-2 inhibitors. J. Clin. Hypertens. 2020;22:562–571. doi: 10.1111/jch.13831. PubMed DOI PMC

Rahman S., Ismail A.A., Ismail S.B., Naing N.N., Rahman A.R. Early manifestation of macrovasculopathy in newly diagnosed never treated type II diabetic patients with no traditional CVD risk factors. Diabetes Res. Clin. Pract. 2008;80:253–258. doi: 10.1016/j.diabres.2007.12.010. PubMed DOI

Kulecki M., Uruska A., Naskret D., Zozulinska-Ziolkiewicz D. Arterial Stiffness and Type 1 Diabetes: The Current State of Knowledge. Curr. Diabetes Rev. 2022;18:e140621194054. doi: 10.2174/1573399817666210614113827. PubMed DOI

Tamargo J., Agewall S., Borghi C., Ceconi C., Cerbai E., Dan G.A., Ferdinandy P., Grove E.L., Rocca B., Sulzgruber P., et al. New pharmacological agents and novel cardiovascular pharmacotherapy strategies in 2022. Eur. Heart J. Cardiovasc. Pharm. 2023;9:353–370. doi: 10.1093/ehjcvp/pvad034. PubMed DOI PMC

Love K.M., Horton W.B., Patrie J.T., Jahn L.A., Hartline L.M., Barrett E.J. Predictors of arterial stiffness in adolescents and adults with type 1 diabetes: A cross-sectional study. BMJ Open Diabetes Res. Care. 2022;10:e002491. doi: 10.1136/bmjdrc-2021-002491. PubMed DOI PMC

Rawshani A., Sattar N., Franzen S., Rawshani A., Hattersley A.T., Svensson A.M., Eliasson B., Gudbjornsdottir S. Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: A nationwide, register-based cohort study. Lancet. 2018;392:477–486. doi: 10.1016/S0140-6736(18)31506-X. PubMed DOI PMC

Pillay S., Anderson J., Couper J., Maftei O., Gent R., Pena A.S. Children With Type 1 Diabetes Have Delayed Flow-Mediated Dilation. Can. J. Diabetes. 2018;42:276–280. doi: 10.1016/j.jcjd.2017.06.011. PubMed DOI

Yamasaki Y., Kawamori R., Matsushima H., Nishizawa H., Kodama M., Kubota M., Kajimoto Y., Kamada T. Asymptomatic hyperglycaemia is associated with increased intimal plus medial thickness of the carotid artery. Diabetologia. 1995;38:585–591. doi: 10.1007/BF00400728. PubMed DOI

Lu J., Ma X., Shen Y., Wu Q., Wang R., Zhang L., Mo Y., Lu W., Zhu W., Bao Y., et al. Time in Range Is Associated with Carotid Intima-Media Thickness in Type 2 Diabetes. Diabetes Technol. 2020;22:72–78. doi: 10.1089/dia.2019.0251. PubMed DOI

Cutruzzola A., Parise M., Scavelli F.B., Barone M., Gnasso A., Irace C. Time in Range Does Not Associate With Carotid Artery Wall Thickness and Endothelial Function in Type 1 Diabetes. J. Diabetes Sci. Technol. 2022;16:904–911. doi: 10.1177/1932296821993178. PubMed DOI PMC

Ras R.T., Streppel M.T., Draijer R., Zock P.L. Flow-mediated dilation and cardiovascular risk prediction: A systematic review with meta-analysis. Int. J. Cardiol. 2013;168:344–351. doi: 10.1016/j.ijcard.2012.09.047. PubMed DOI

Xiao Y., Zheng L., Zou X., Wang J., Zhong J., Zhong T. Extracellular vesicles in type 2 diabetes mellitus: Key roles in pathogenesis, complications, and therapy. J. Extracell. Vesicles. 2019;8:1625677. doi: 10.1080/20013078.2019.1625677. PubMed DOI PMC

Munir J., Yoon J.K., Ryu S. Therapeutic miRNA-Enriched Extracellular Vesicles: Current Approaches and Future Prospects. Cells. 2020;9:2271. doi: 10.3390/cells9102271. PubMed DOI PMC

Rouhiainen A., Imai S., Rauvala H., Parkkinen J. Occurrence of amphoterin (HMG1) as an endogenous protein of human platelets that is exported to the cell surface upon platelet activation. Thromb. Haemost. 2000;84:1087–1094. PubMed

Alkaabi J., Sharma C., Yasin J., Afandi B., Beshyah S.A., Almazrouei R., Alkaabi A., Al Hamad S., Ahmed L.A., Beiram R., et al. Relationship between lipid profile, inflammatory and endothelial dysfunction biomarkers, and type 1 diabetes mellitus: A case-control study. Am. J. Transl. Res. 2022;14:4838–4847. PubMed PMC

Chapman M.J. HDL functionality in type 1 and type 2 diabetes: New insights. Curr. Opin. Endocrinol. Diabetes Obes. 2022;29:112–123. doi: 10.1097/MED.0000000000000705. PubMed DOI PMC

He Y., Ronsein G.E., Tang C., Jarvik G.P., Davidson W.S., Kothari V., Song H.D., Segrest J.P., Bornfeldt K.E., Heinecke J.W. Diabetes Impairs Cellular Cholesterol Efflux From ABCA1 to Small HDL Particles. Circ. Res. 2020;127:1198–1210. doi: 10.1161/CIRCRESAHA.120.317178. PubMed DOI PMC

Lui D.T.W., Cheung C.L., Lee A.C.H., Wong Y., Shiu S.W.M., Tan K.C.B. Carbamylated HDL and Mortality Outcomes in Type 2 Diabetes. Diabetes Care. 2021;44:804–809. doi: 10.2337/dc20-2186. PubMed DOI

Schofield J., Ho J., Soran H. Cardiovascular Risk in Type 1 Diabetes Mellitus. Diabetes. 2019;10:773–789. doi: 10.1007/s13300-019-0612-8. PubMed DOI PMC

Yalcinkaya M., von Eckardstein A. Apolipoprotein M and Sphingosine-1-Phosphate: A Potentially Antidiabetic Tandem Carried by HDL. Diabetes. 2020;69:859–861. doi: 10.2337/dbi20-0005. PubMed DOI PMC

Cheng D., Liu X., Gao Y., Cui L., Wang M., Zheng Y., Lv W., Zhao L., Liu J. alpha-Ketoglutarate attenuates hyperlipidemia-induced endothelial damage by activating the Erk-Nrf2 signaling pathway to inhibit oxidative stress and mitochondrial dysfunction. Antioxid. Redox Signal. 2023 doi: 10.1089/ars.2022.0215. PubMed DOI

Figueroa A., Maharaj A., Kang Y., Dillon K.N., Martinez M.A., Morita M., Nogimura D., Fischer S.M. Combined Citrulline and Glutathione Supplementation Improves Endothelial Function and Blood Pressure Reactivity in Postmenopausal Women. Nutrients. 2023;15:1557. doi: 10.3390/nu15071557. PubMed DOI PMC

Schwingshackl L., Christoph M., Hoffmann G. Effects of Olive Oil on Markers of Inflammation and Endothelial Function-A Systematic Review and Meta-Analysis. Nutrients. 2015;7:7651–7675. doi: 10.3390/nu7095356. PubMed DOI PMC

Serreli G., Deiana M. Biological Relevance of Extra Virgin Olive Oil Polyphenols Metabolites. Antioxidants. 2018;7:170. doi: 10.3390/antiox7120170. PubMed DOI PMC

Kim F., Tysseling K.A., Rice J., Pham M., Haji L., Gallis B.M., Baas A.S., Paramsothy P., Giachelli C.M., Corson M.A., et al. Free fatty acid impairment of nitric oxide production in endothelial cells is mediated by IKKbeta. Arter. Thromb. Vasc. Biol. 2005;25:989–994. doi: 10.1161/01.ATV.0000160549.60980.a8. PubMed DOI

Li H., Li H., Bao Y., Zhang X., Yu Y. Free fatty acids induce endothelial dysfunction and activate protein kinase C and nuclear factor-kappaB pathway in rat aorta. Int. J. Cardiol. 2011;152:218–224. doi: 10.1016/j.ijcard.2010.07.019. PubMed DOI

Cutruzzola A., Parise M., Vallelunga R., Lamanna F., Gnasso A., Irace C. Effect of Extra Virgin Olive Oil and Butter on Endothelial Function in Type 1 Diabetes. Nutrients. 2021;13:2436. doi: 10.3390/nu13072436. PubMed DOI PMC

Siddiqui R.A., Shaikh S.R., Sech L.A., Yount H.R., Stillwell W., Zaloga G.P. Omega 3-fatty acids: Health benefits and cellular mechanisms of action. Mini Rev. Med. Chem. 2004;4:859–871. doi: 10.2174/1389557043403431. PubMed DOI

Wu J.H., Micha R., Imamura F., Pan A., Biggs M.L., Ajaz O., Djousse L., Hu F.B., Mozaffarian D. Omega-3 fatty acids and incident type 2 diabetes: A systematic review and meta-analysis. Br. J. Nutr. 2012;107((Suppl. 2)):S214–S227. doi: 10.1017/S0007114512001602. PubMed DOI PMC

Abeywardena M.Y., Head R.J. Longchain n-3 polyunsaturated fatty acids and blood vessel function. Cardiovasc. Res. 2001;52:361–371. doi: 10.1016/S0008-6363(01)00406-0. PubMed DOI

Du Y., Taylor C.G., Aukema H.M., Zahradka P. Role of oxylipins generated from dietary PUFAs in the modulation of endothelial cell function. Prostaglandins Leukot Essent. Fat. Acids. 2020;160:102160. doi: 10.1016/j.plefa.2020.102160. PubMed DOI

Khorshidi M., Sayyari A., Aryaeian N., Olang B., Alaei M., Khalili M., Hosseini A., Salehi M. Effects of omega-3 supplementation on endothelial function, vascular structure, and metabolic parameters in adolescents with type 1 diabetes mellitus: A randomized clinical trial. Front. Nutr. 2022;9:962773. doi: 10.3389/fnut.2022.962773. PubMed DOI PMC

Sankrityayan H., Kale A., Gaikwad A.B. Inhibition of endoplasmic reticulum stress combined with activation of angiotensin-converting enzyme 2: Novel approach for the prevention of endothelial dysfunction in type 1 diabetic rats. Can. J. Physiol. Pharm. 2022;100:234–239. doi: 10.1139/cjpp-2021-0170. PubMed DOI

Lau Y.S., Mustafa M.R., Choy K.W., Chan S.M.H., Potocnik S., Herbert T.P., Woodman O.L. 3′,4′-dihydroxyflavonol ameliorates endoplasmic reticulum stress-induced apoptosis and endothelial dysfunction in mice. Sci. Rep. 2018;8:1818. doi: 10.1038/s41598-018-19584-8. PubMed DOI PMC

Bronczek G.A., Vettorazzi J.F., Soares G.M., Kurauti M.A., Santos C., Bonfim M.F., Carneiro E.M., Balbo S.L., Boschero A.C., Costa Junior J.M. The Bile Acid TUDCA Improves Beta-Cell Mass and Reduces Insulin Degradation in Mice With Early-Stage of Type-1 Diabetes. Front. Physiol. 2019;10:561. doi: 10.3389/fphys.2019.00561. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...