Realization of a Test Tool for Diagnosis of Contact Resistance and Measurement of Selected Types of Conductive Materials
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.01.1.02/0.0/0.0/20_321/0024559
Ministry of Industry and Trade of the Czech Republic
22-11949S
Czech Science Foundation
SP2023/003
Internal funding program SGS of the VSB-Technical University of Ostrava
SP2023/005
Internal funding program SGS of the VSB-Technical University of Ostrava
PubMed
37447717
PubMed Central
PMC10347094
DOI
10.3390/s23135867
PII: s23135867
Knihovny.cz E-zdroje
- Klíčová slova
- constriction resistance, contact resistance, crossed bars, diagnostic, electrical contact, fritting, measurement, specific resistivity,
- MeSH
- čištění zubů MeSH
- elektrická vodivost MeSH
- elektřina * MeSH
- mechanické jevy * MeSH
- reprodukovatelnost výsledků MeSH
- Publikační typ
- časopisecké články MeSH
Contact connections in electrical machines and apparatus are important elements in the whole power supply network and a high level of reliability is expected there. Contact resistance is a fundamental criterion in the design of an electrical contact or contact system. The contact resistance should be as low as possible to minimize losses due to the current passage and the related heating of the contact connection. The value of the contact resistance depends on the material used, the value of the applied force, the type of contact, and, last but not least, the quality of the surface and chemical layers. In this paper, an initial diagnosis of the contact material is performed based on the determination of the sample's specific resistivity by the four-wire method and the evaluation of the measurement uncertainty. The work is followed by the design of a testing device that uses crossed bars to measure the change in contact resistance as a function of the magnitude of the applied force. An analysis of the sample mounting method is performed here using FEM simulations of the current field and shows the interaction between the holder and the sample in terms of current line transfer. The proposed system is then used for experimental measurements of the material-dependent coefficient KC for verification of existing or newly developed materials in electrical engineering, where the values of the KC coefficient are not known. Finally, the paper also deals with the measurement of fritting voltage for individual contact pairs having surface quality corresponding to brushing.
Zobrazit více v PubMed
Brown R.E. Electric Power Distribution Reliability. 2nd ed. CRC Press; Boca Raton, FL, USA: 2008.
Montanari G.C. New Technologies, Grid Resiliency and Sustainable Power: It Is Also a Matter of Electrical Apparatus Reliability; Proceedings of the 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT); Washington, DC, USA. 16–18 February 2021; DOI
Smeets R., Janssen A., van der Sluis L., Peelo D.F., Kapetanovic M. Switching in Electrical Transmission and Distribution Systems. Wiley-Blackwell; Hoboken, NJ, USA: 2014.
Horák A., Prýmek M., Sikora T. Lecture Notes in Computer Science. Springer; Berlin/Heidelberg, Germany: 2012. Power Network Reliability Computations Using Multi-Agent Simulation; pp. 63–81.
Erbrink J.J., Gulski E., Smit J.J., Seitz P.P., Quak B., Leich R., Malewski R. Diagnosis of Onload Tap Changer Contact Degradation by Dynamic Resistance Measurements. IEEE Trans. Power Deliv. 2010;25:2121–2131. doi: 10.1109/TPWRD.2010.2050499. DOI
Faiz J., Siahkolah B. Electronic Tap-Changer for Distribution Transformers. Springer; Berlin, Germany: 2011. DOI
Bul B.K., Butkevich G.V. Fundamentals of the Theory of Electrical Apparatus: Textbook for Electrotechnical Faculties of Institutes of Higher Education. HighSchool-Press; Moscow, Russia: 1970. 600p
Babikov M.A. Electrical Apparatus. Part 1. Fundamentals of Theory. GEI; Moscow, Russia: 1951. 420p
Vinaricky E., editor. Electrical Contacts, Materials and Applications: Fundamentals, Technologies, Test Methods. 2nd ed. Springer; Berlin, Germany: 2012.
Holm R. Electric Contacts: Theory and Application. Springer; Berlin, Germany: 2010.
Slade P.G., editor. Electrical Contacts: Principles and Applications. 2nd ed. CRC Press; Boca Raton, FL, USA: 2017.
Braunovic M., Myshkin N.K., Konchits V.V. Electrical Contacts: Fundamentals, Applications and Technology. CRC Press; Boca Raton, FL, USA: 2006.
Leung C.H., Lee A., Wang B.-J. Thermal Modeling of Electrical Contacts in Switches and Relays; Proceedings of the Electrical Contacts—1995, the Forty-First IEEE Holm Conference on Electrical Contacts; Montreal, QC, Canada. 2–4 October 1995; DOI
McGowan D. Power Connector Evaluation for Thermal Performance; Proceedings of the 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition; Austin, TX, USA. 24–28 February 2008; DOI
Liu M., Proudhon H. Finite Element Analysis of Contact Deformation Regimes of an Elastic-Power Plastic Hardening Sinusoidal Asperity. Mech. Mater. 2016;103:78–86. doi: 10.1016/j.mechmat.2016.08.015. DOI
Park S.W., Cho H. A Practical Study on Electrical Contact Resistance and Temperature Rise at at the Connections of the Copper Busbars in Switchgears; Proceedings of the 2014 IEEE 60th Holm Conference on Electrical Contacts (Holm); New Orleans, LA, USA. 12–15 October 2014; DOI
Sawada S., Shimizu K., Hattori Y., Tamai T., Iida K. Analysis of Contact Resistance Behavior for Electric Contacts with Plating Layer; Proceedings of the 2010 56th IEEE Holm Conference on Electrical Contacts; Charleston, SC, USA. 4–7 October 2010; DOI
Li B., Hong J., Shao G., Du F. An Integrated Mechanical–Electrical Predictive Model of Electrical Contact Resistance between Two Rough Surfaces. Tribol. Trans. 2015;58:537–548. doi: 10.1080/10402004.2014.993781. DOI
Qu J., Li X., Wang Q. Experimental Study on Electric Resistance of Tilted Contact in Air Circuit Breaker; Proceedings of the 2016 IEEE 62nd Holm Conference on Electrical Contacts (Holm); Clearwater Beach, FL, USA. 9–12 October 2016; DOI
Monnier A., Froidurot B., Jarrige C., Meyer R., Test P. A Mechanical, Electrical, Thermal Coupled-Field Simulation of a Sphere-Plane Electrical Contact; Proceedings of the Fifty-First IEEE Holm Conference on Electrical Contacts; Chicago, IL, USA. 26–28 September 2005; DOI
Napieralska-Juszczak E., Komeza K., Morganti F., Sykulski J.K.B., Vega G., Zeroukhi Y. Measurement of Contact Resistance for Copper and Aluminium Conductors. Int. J. Appl. Electromagn. Mech. 2017;54:1–13. doi: 10.3233/JAE-160025. DOI
Iatcheva I., Darzhanova D., Manilova M. Modeling of Electric and Heat Processes in Spot Resistance Welding of Cross-Wire Steel Bars. Open Phys. 2018;16:1–8. doi: 10.1515/phys-2018-0001. DOI
Mercier D., Mandrillon V., Holtz A., Volpi F., Verdier M., Bréchet Y. Quantitative Evolution of Electrical Contact Resistance between Aluminum Thin Films; Proceedings of the 2012 IEEE 58th Holm Conference on Electrical Contacts (Holm); Portland, OR, USA. 23–26 September 2012; DOI
Hatakeyama T., Kibushi R., Ishizuka M., Tomimura T. Fundamental Study of Surface Roughness Dependence of Thermal and Electrical Contact Resistance; Proceedings of the 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm); Las Vegas, NV, USA. 31 May–3 June 2016; DOI
Landry M., Mercier A., Ouellet G., Rajotte C., Caron J., Roy M., Brikci F. A New Measurement Method of the Dynamic Contact Resistance of HV Circuit Breakers; Proceedings of the 2006 IEEE/PES Transmission & Distribution Conference and Exposition: Latin America; Caracas, Venezuela. 15–18 August 2006; DOI
Kulkarni S., Doiphode B., Kulkarni Y. An Overview of Dynamic Contact Resistance Measurement of HV Circuit Breakers; Proceedings of the 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D); Denver, CO, USA. 16–19 April 2018; DOI
Runde M., Lillevik O., Larsen V., Skyberg B., Mjelve A., Tonstad A. Condition Assessment of Contacts in Gas-Insulated Substations. IEEE Trans. Power Deliv. 2004;19:609–617. doi: 10.1109/TPWRD.2003.822942. DOI
Stanisic Z., Neimanis R. A New Ultra Lightweight Method for Static and Dynamic Resistance Measurements; Proceedings of the 2010 IEEE International Symposium on Electrical Insulation; San Diego, CA, USA. 6–9 June 2010; DOI
Abdollah M., Razi-Kazemi A.A. Intelligent Failure Diagnosis for Gas Circuit Breakers Based on Dynamic Resistance Measurements. IEEE Trans. Instrum. Meas. 2019;68:3066–3077. doi: 10.1109/TIM.2018.2876778. DOI
Gheorghita C.M., Adam M., Andrusca M., Munteanu A., Dragomir A. About Contact Resistance of the Electrical Equipment; Proceedings of the 2017 International Conference on Modern Power Systems (MPS); Cluj-Napoca, Romania. 6–9 June 2017; DOI
Adam M., Andrusca M., Munteanu A., Dragomir A. About the Dynamic Contact Resistance of the Circuit Breakers; Proceedings of the 2016 International Conference and Exposition on Electrical and Power Engineering (EPE); Iasi, Romania. 20–22 October 2016; DOI
Chen Z.-K. Impact Wear of Electric Contact; Proceedings of the Electrical Contacts—1991, the Thirty-Seventh IEEE HOLM Conference on Electrical Contacts; Chicago, IL, USA. 6–9 October 1991; DOI
Taheri P., Hsieh S., Bahrami M. Investigating Electrical Contact Resistance Losses in Lithium-Ion Battery Assemblies for Hybrid and Electric Vehicles. J. Power Sources. 2011;196:6525–6533. doi: 10.1016/j.jpowsour.2011.03.056. DOI
Jemaa N.B., Queffelec J.L., Travers D. Apparatus and Methods for Electrical Contact Resistance Study of Cleaned and Corroded Materials. Meas. Sci. Technol. 1990;1:282–286. doi: 10.1088/0957-0233/1/3/014. DOI
Queffelec J.L., Ben Jemaa N., Travers D., Pethieu G. Materials and Contact Shape Studies for Automobile Connectors Development. IEEE Trans. Compon. Hybrids Manuf. Technol. 1991;14:90–94. doi: 10.1109/33.76515. DOI
Puyol R., Suarez S. A Contact Resistance Measurement Setup for the Study of Novel Contacts; Proceedings of the 2017 IEEE URUCON; Montevideo, Uruguay. 23–25 October 2017; DOI
McBride J.W. The Relationship between Surface Wear and Contact Resistance during the Fretting of In-Vivo Electrical Contacts. IEEE Trans. Compon. Packag. Technol. 2008;31:592–600. doi: 10.1109/TCAPT.2008.2001162. DOI
Ren W., He Y., Jin J., Man S. Investigations of the Contact Bounce Behaviors and Relative Dynamic Welding Phenomena for Electromechanical Relay. Rev. Sci. Instrum. 2016;87:065111. doi: 10.1063/1.4953838. PubMed DOI
Li L., Deng G., Zhai W., Li S., Gao X., Wang T. The Growth of Intermetallic Compounds and Its Effect on Bonding Properties of Cu/Al Clad Plates by CFR. Metals. 2022;12:1995. doi: 10.3390/met12111995. DOI
Kocich R., Kunčická L. Optimizing Structure and Properties of Al/Cu Laminated Conductors via Severe Shear Strain. J. Alloys Compd. 2023;953:170124. doi: 10.1016/j.jallcom.2023.170124. DOI
Yu S., Zhang Y., Chen C., Zhang F., Nian H. Loss Estimation of Brushless Doubly-Fed Generator with Hybrid Rotor Considering Multiple Influence Factors. IEEE Access. 2020;8:60043–60051. doi: 10.1109/ACCESS.2020.2983076. DOI
Hsu J.S., Franco-Ferreira E.A., Coomer C.L., Jenkins S.M. SAE Technical Paper Series. SAE International; Warrendale, PA, USA: 2002. A New Manufacturing Technology for Induction Machine Copper Rotors.
Pragana J.P.M., Baptista R.J.S., Bragança I.M.F., Silva C.M.A., Alves L.M., Martins P.A.F. Manufacturing Hybrid Busbars through Joining by Forming. J. Mater. Process. Technol. 2020;279:116574. doi: 10.1016/j.jmatprotec.2019.116574. DOI
Sampaio R.F.V., Pragana J.P.M., Bragança I.M.F., Silva C.M.A., Fernandes J.C.S., Martins P.A.F. Influence of Corrosion on the Electrical and Mechanical Performance of Hybrid Busbars. Int. J. Lightweight Mater. Manuf. 2022;5:510–519. doi: 10.1016/j.ijlmm.2022.06.005. DOI
Wang C., Qu C., Chen J., Li B., Liu K., Han Q. Performance of Aging-Treated Heat-Resistant Al–Cu–Sc Wires. Mater. Lett. 2022;315:132008. doi: 10.1016/j.matlet.2022.132008. DOI
Dashti A., Keller C., Vieille B., Guillet A. Novel Approach to Optimize the Mechanical Properties of Cu-Al Composite Wires. Int. J. Mater. Form. 2022;15:10p. doi: 10.1007/s12289-022-01697-1. DOI
Windred G. Electrical Contact Resistance. J. Franklin Inst. 1941;231:547–585. doi: 10.1016/S0016-0032(41)90159-X. DOI
Jemaa N.B. Contacts Conduction and Switching in DC Levels; Proceedings of the Forty-Eighth IEEE Holm Conference on Electrical Contacts; Orlando, FL, USA. 23 October 2002; DOI
Medved D., Beňa L., Kolcun M., Pavlík M. Influence of Impurities in Electrical Contacts on Increasing the Efficiency of Energy Transmission. Energies. 2022;15:2339. doi: 10.3390/en15072339. DOI
Kurbatov P.A. Fundamentals of the Theory of Electrical Apparatus. 5th ed. Lan-Press; St Petersburg, Russia: 2015. 592p.
Meaden G.T. IElectrical Resistance of Metals. Springer; New York, NY, USA: 2013.
Purkait P., Biswas B., Das S., Koley C. Electrical and Electronics Measurements and Instrumentation. McGraw-Hill Education; Maidenhead, UK: 2013.
Bartiromo R., De Vincenzi M. Electrical Measurements in the Laboratory Practice. 1st ed. Springer International Publishing; Cham, Switzerland: 2016.
Pleština V., Boras V., Turić H. The Measurement Uncertainty in Determining of Electrical Resistance Value by Applying Direct-Comparison Method. Energies. 2022;15:2115. doi: 10.3390/en15062115. DOI
Shapiro-Wilk Test Calculator. [(accessed on 19 May 2023)]. Available online: www.statskingdom.comshapiro-wilk-test-calculator.
AALCO Copper and Copper Alloys, CW004A Sheet, Plate and Bar. [(accessed on 19 May 2023)]. Available online: https://www.aalco.co.uk/datasheets/Copper-and-Copper-Alloys-CW004A-Sheet-Plate-and-Bar_32.ashx.
Impol Group Aluminium Alloy AA 2030/EN AW 2030. [(accessed on 19 May 2023)]. Available online: https://www.impol.com/app/uploads/2020/07/Aluminium-alloy-AA-2030EN-AW-2030-1.pdf.
ASBW Material Datasheet: CuZn39Pb3 MACHINING. [(accessed on 19 May 2023)]. Available online: https://www.asbw.pt/xms/files/02_Produtos/B14_e_B12_-_CuZn39Pb3_EN.pdf.
Thyssenkrupp Material Data Sheet S235Jxx/MX/TIS_11. 2016. [(accessed on 12 June 2023)]. Available online: https://ucpcdn.thyssenkrupp.com/_legacy/UCPthyssenkruppBAMXFrance/assets.files/product_pdf/carbon_flat_steel_/plates_and_slabs_carbon_steel/s235jr_1_0038_11_2016_engl.pdf.
Sensors and Fault Diagnostics in Power System