Sympathetic nervous system activity and pain-related response indexed by electrodermal activity during the earliest postnatal life in healthy term neonates
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
37449751
PubMed Central
PMC10668994
DOI
10.33549/physiolres.935061
PII: 935061
Knihovny.cz E-zdroje
- MeSH
- autonomní nervový systém MeSH
- bolest diagnóza MeSH
- galvanická kožní odpověď * MeSH
- lidé MeSH
- novorozenec MeSH
- reakční čas MeSH
- sympatický nervový systém * fyziologie MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
Sympathetic nervous system (SNS) undergoes a prolonged period of fetal and neonatal development and maturation during which is vulnerable to a variety of influences (e.g. painful experiences). Thus, we aimed to evaluate SNS activity at rest and in response to stressful stimulus (pain) within the earliest postnatal life in healthy term neonates using electrodermal activity (EDA) measures. In twenty eutrophic healthy term neonates EDA was recorded within the first two hours after birth (measurement 1 - M1) and 72 h after birth (measurement 2 - M2) at rest and in response to pain (M1 - intramuscular K vitamin administration; M2 - heel stick). Evaluated parameters were skin conductance level (SCL), non-specific skin conductance responses (NS.SCRs), skin SCL 10 s before pain stimulus (SCL_10 before pain), skin conductance response (SCR) peak after pain stimulus, SCL 10 s after pain stimulus (SCL_10 after pain), SCR magnitude, latency, SCR rise/decline time, SCR half recovery time. SCL was significantly decreased at rest during M2 compared to M1 (p=0.010). SCL_10 before pain, SCR peak after pain, and SCL_10 after pain stimulus were significantly decreased in M2 compared to M1 (p=0.014, p=0.020, p=0.011, respectively). SCL was significantly decreased and NS.SCRs were significantly higher in the recovery period after the pain stimulus during M2 compared to M1 (p=0.015, p=0.032, respectively). Our results indicate EDA parameters sensitive to detect sympathetic changes during the earliest postnatal life reflecting its potential in early diagnosis of the autonomic maturation - linked pathological states in neonates.
Zobrazit více v PubMed
Longin E, Gerstner T, Schaible T, Lenz T, König S. Maturation of the autonomic nervous system: Differences in heart rate variability in premature vs term infants. J Perinat Med. 2006;34:303–308. doi: 10.1515/JPM.2006.058. PubMed DOI
De Rogalski Landrot I, Roche F, Pichot V, Teyssier G, Gaspoz J-M, Barthelemy J-C, Patural H. Autonomic nervous system activity in premature and full-term infants from theoretical term to 7 years. Auton Neurosci Basic Clin. 2007;136:105–109. doi: 10.1016/j.autneu.2007.04.008. PubMed DOI
Oliveira V, Von Rosenberg W, Montaldo P, Adjei T, Mendoza J, Shivamurthappa V, Mandic D, Thayyil S. Early postnatal heart rate variability in healthy newborn infants. Front Physiol. 2019;10:1–12. doi: 10.3389/fphys.2019.00922. PubMed DOI PMC
Patural H, Pichot V, Flori S, Giraud A, Franco P, Pladys P, Beuchée A, Frédéric R, Barthelemy JC. Autonomic maturation from birth to 2 years: normative values. Heliyon. 2019;5:e01300. doi: 10.1016/j.heliyon.2019.e01300. PubMed DOI PMC
Clairambault J, Curzi-Dascalova L, Kauffmann F, Médigue C, Leffler C. Heart rate variability in normal sleeping full-term and preterm neonates. Early Hum Dev. 1992;28:169–183. doi: 10.1016/0378-3782(92)90111-S. PubMed DOI
Fyfe KL, Odoi A, Yiallourou SR, Wong FY, Walker AM, Horne RSC. Preterm infants exhibit greater variability in cerebrovascular control than term infants. Sleep. 2015;38:1411–1421. doi: 10.5665/sleep.4980. PubMed DOI PMC
Javorka K, Lehotska Z, Kozar M, Uhrikova Z, Kolarovszki B, Javorka M, Zibolen M. Heart rate variability in newborns. Physiol Res. 2017;66(Suppl 2):S203–S214. doi: 10.33549/physiolres.933676. PubMed DOI
Aldosky HYY, Bari DS. Electrodermal activity: Simultaneous recordings. In: EL-AZAZY M, MIN M, ANNUS P, editors. Electrochemical Impedance Spectroscopy. IntechOpen; London: 2019. pp. 1–16.
Dawson ME, Schell AM, Filion DL. The electrodermal system. In: CACIOPPO JT, TASSINARY LG, BERNTSON GG, editors. Handbook of Psychophysiology. Fourth Edition. Cambridge University Press; Cambridge: 2016. pp. 217–243. DOI
Critchley H, Nagai Y. Electrodermal Activity (EDA) In: GELLMAN MD, TURNER JR, editors. Encyclopedia of Behavioral Medicine. Springer; New York: 2013. pp. 666–669.
Simons SHP, van Dijk M, Anand KS, Roofthooft D, van Lingen RA, Tibboel D. Do we still hurt newborn babies? Arch Pediatr Adolesc Med. 2003;157:1058. doi: 10.1001/archpedi.157.11.1058. PubMed DOI
Ohlsson A, Shah PS. Paracetamol (acetaminophen) for prevention or treatment of pain in newborns. Cochrane Database Syst Rev. 2016;10:CD011219. doi: 10.1002/14651858.CD011219.pub3. PubMed DOI PMC
Vinall J, Grunau RE. Impact of repeated procedural pain-related stress in infants born very preterm. Pediatr Res. 2014;75:584–587. doi: 10.1038/pr.2014.16. PubMed DOI PMC
Brewer CL, Baccei ML. The development of pain circuits and unique effects of neonatal injury. J Neural Transm. 2020;127:467–479. doi: 10.1007/s00702-019-02059-z. PubMed DOI PMC
Roué JM, Rioualen S, Gendras J, Misery L, Gouillou M, Sizun J. Multi-modal pain assessment: Are near-infrared spectroscopy, skin conductance, salivary cortisol, physiologic parameters, and Neonatal Facial Coding System interrelated during venepuncture in healthy, term neonates? J Pain Res. 2018;11:2257–2267. doi: 10.2147/JPR.S165810. PubMed DOI PMC
Eriksson M, Storm H, Fremming A, Schollin J. Skin conductance compared to a combined behavioural and physiological pain measure in newborn infants. Acta Paediatr. 2008;97:27–30. doi: 10.1111/j.1651-2227.2007.00586.x. PubMed DOI
Harrison D, Boyce S, Loughnan P, Dargaville P, Storm H, Johnston L. Skin conductance as a measure of pain and stress in hospitalised infants. Early Hum Dev. 2006;82:603–608. doi: 10.1016/j.earlhumdev.2005.12.008. PubMed DOI
Fowles DC. The measurement of electrodermal activity in children. In: SCHMIDT LA, SEGALOWITZ SJ, editors. Developmental Psychophysiology: Theory, Systems, and Methods. Cambridge University Press; Cambridge: 2007. pp. 286–316. DOI
Posada-Quintero HF, Florian JP, Orjuela-Cañón AD, Aljama-Corrales T, Charleston-Villalobos S, Chon KH. Power spectral density analysis of electrodermal activity for sympathetic function assessment. Ann Biomed Eng. 2016;44:3124–3135. doi: 10.1007/s10439-016-1606-6. PubMed DOI
Boucsein W, Fowles DC, Grimnes S, Ben-Shakhar G, Roth WT, Dawson ME, Filion DL. Publication recommendations for electrodermal measurements. Psychophysiology. 2012;49:1017–1034. doi: 10.1111/j.1469-8986.2012.01384.x. PubMed DOI
Cerritelli F, Frasch MG, Antonelli MC, Viglione C, Vecchi S, Chiera M, Manzotti A. A review on the vagus nerve and autonomic nervous system during fetal development: searching for critical windows. Front Neurosci. 2021;15:721605. doi: 10.3389/fnins.2021.721605. PubMed DOI PMC
Mulkey SB, du Plessis A. The critical role of the central autonomic nervous system in fetal-neonatal transition. Semin Pediatr Neurol. 2018;28:29–37. doi: 10.1016/j.spen.2018.05.004. PubMed DOI PMC
Porges SW, Furman SA. The early development of the autonomic nervous system provides a neural platform for social behaviour: a polyvagal perspective. Infant Child Dev. 2011;20:106–118. doi: 10.1002/icd.688. PubMed DOI PMC
Schneider U, Schleussner E, Fiedler A, Jaekel S, Liehr M, Haueisen J, Hoyer D. Fetal heart rate variability reveals differential dynamics in the intrauterine development of the sympathetic and parasympathetic branches of the autonomic nervous system. Physiol Meas. 2009;30:215–226. doi: 10.1088/0967-3334/30/2/008. PubMed DOI
Fyfe KL, Yiallourou SR, Wong FY, Odoi A, Walker AM, Horne RSC. The effect of gestational age at birth on post-term maturation of heart rate variability. Sleep. 2015;38:1635–1644. doi: 10.5665/sleep.5064. PubMed DOI PMC
Benarroch EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc. 1993;68:988–1001. doi: 10.1016/S0025-6196(12)62272-1. PubMed DOI
Mulkey SB, Hitchings L, Persaud R, Kota S, Maxwell GL, Baker R, du Plessis A, Govindan R. Cerebral cortical autonomic connectivity in low-risk term newborns. Clin Auton Res. 2021;31:415–424. doi: 10.1007/s10286-021-00793-7. PubMed DOI PMC
Schneider U, Bode F, Schmidt A, Nowack S, Rudolph A, Dölker EM, Schlattmann P, Götz T, Hoyer D. Developmental milestones of the autonomic nervous system revealed via longitudinal monitoring of fetal heart rate variability. PLoS One. 2018;13:e0200799. doi: 10.1371/journal.pone.0200799. PubMed DOI PMC
Boucsein W. Electrodermal Activity, Second edition. Springer; London: 2012. p. 636. DOI
Hernes KG. Skin conductance changes during the first year of life in full-term infants. Pediatr Res. 2002;52:837–843. doi: 10.1203/00006450-200212000-00005. PubMed DOI
Harpin VA, Rutter N. Development of emotional sweating in the newborn infant. Arch Dis Child. 1982;57:691–695. doi: 10.1136/adc.57.9.691. PubMed DOI PMC
Jorgenson RJ, Salinas CF, Dowben JS, St John DL. A population study on the density of palmar sweat pores. Birth Defects Orig Artic Ser. 1988;24:51–63. PubMed
Knaepen L, Pawluski JL, Patijn J, van Kleef M, Tibboel D, Joosten EA. Perinatal maternal stress and serotonin signaling: Effects on pain sensitivity in offspring. Dev Psychobiol. 2014;56:885–896. doi: 10.1002/dev.21184. PubMed DOI
Verriotis M, Chang P, Fitzgerald M, Fabrizi L. The development of the nociceptive brain. Neuroscience. 2016;338:207–219. doi: 10.1016/j.neuroscience.2016.07.026. PubMed DOI
Legrain V, Iannetti GD, Plaghki L, Mouraux A. The pain matrix reloaded: A salience detection system for the body. Prog Neurobiol. 2011;93:111–124. doi: 10.1016/j.pneurobio.2010.10.005. PubMed DOI
Goksan S, Hartley C, Emery F, Cockrill N, Poorun R, Moultrie F, Rogers R, et al. fMRI reveals neural activity overlap between adult and infant pain. Elife. 2015;4:1–13. doi: 10.7554/eLife.06356. PubMed DOI PMC
Bird CM, Burgess N. The hippocampus and memory: Insights from spatial processing. Nat Rev Neurosci. 2008;9:182–194. doi: 10.1038/nrn2335. PubMed DOI
Grahn JA, Parkinson JA, Owen AM. The cognitive functions of the caudate nucleus. Prog Neurobiol. 2008;86:141–155. doi: 10.1016/j.pneurobio.2008.09.004. PubMed DOI
Fitzgerald M. Development of pain mechanisms. Br Med Bull. 1991;47:667–675. doi: 10.1093/oxfordjournals.bmb.a072499. PubMed DOI
Koch SC, Fitzgerald M. Activity-dependent development of tactile and nociceptive spinal cord circuits. Ann N Y Acad Sci. 2013;1279:97–102. doi: 10.1111/nyas.12033. PubMed DOI
Bardin L. The complex role of serotonin and 5-HT receptors in chronic pain. Behav Pharmacol. 2011;22:390–404. doi: 10.1097/FBP.0b013e328349aae4. PubMed DOI
Schwaller F, Kanellopoulos AH, Fitzgerald M. The developmental emergence of differential brainstem serotonergic control of the sensory spinal cord. Sci Rep. 2017;7:1–12. doi: 10.1038/s41598-017-02509-2. PubMed DOI PMC
Hu J, Modanloo S, Squires JE, Harrold JA, Harrison D. The validity of skin conductance for assessing acute pain in infants: a scoping review. Clin J Pain. 2019;35:713–724. doi: 10.1097/AJP.0000000000000721. PubMed DOI
Kusumaningrum A, Rustina Y, Abuzairi T, Ibrahim N. The skin conductance-based non-invasive pain assessment instrument for infants. Sri Lanka J Child Heal. 2022;51:448–455. doi: 10.4038/sljch.v51i3.10249. DOI
Storm H. Development of emotional sweating in preterms measured by skin conductance changes. Early Hum Dev. 2001;62:149–158. doi: 10.1016/S0378-3782(01)00129-3. PubMed DOI