Cell wall composition and biomass saccharification potential of Sida hermaphrodita differ between genetically distant accessions
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
37457355
PubMed Central
PMC10340120
DOI
10.3389/fpls.2023.1191249
Knihovny.cz E-resources
- Keywords
- OrganoCat, Virginia mallow, cell wall recalcitrance, genotyping by sequencing, lignocellulose characterization,
- Publication type
- Journal Article MeSH
Due to its ample production of lignocellulosic biomass, Sida hermaphrodita (Sida), a perennial forb, is considered a valuable raw material for biorefinery processes. The recalcitrant nature of Sida lignocellulosic biomass towards pretreatment and fractionation processes has previously been studied. However, Sida is a non-domesticated species and here we aimed at expanding the potential of such plants in terms of their processability for downstream processes by making use of the natural variety of Sida. To achieve this goal, we established a collection comprising 16 different Sida accessions obtained from North America and Europe. First, we asked whether their cell wall characteristics are reflected in genetic distance or geographical distribution, respectively. A genotyping-by-sequencing (GBS) analysis resulting in a phylogenic tree based on 751 Single Nucleotide Polymorphisms (SNPs), revealed a high genetic diversity and a clear separation between accessions collected in North America and Europe. Further, all three North American accessions were separated from each other. Of the eleven European accessions, five form individual groups and six others belong to a single group. Clonal plants of seven selected accessions of American and European origin were produced and cultivated under greenhouse conditions and the resulting plant material was used for in-depth wet-chemical and spectroscopic cell wall characterization. Two accessions with contrasting cell wall characteristics were then selected and processed using the OrganoCat technology. Results of the different product yields and chemical compositions are reported. Overall, cell wall analyses revealed contrasting clusters regarding these main components between the accessions that can be related to genetic and, partly, geographical distance. Phenotypically, the accessions clustered into two groups that are not entirely overlapping with geographical origin. These results can be the basis for a targeted selection or cultivation of Sida accessions for biorefinery approaches.
Department of Chemistry and Biochemistry Mendel University in Brno Brno Czechia
Institute of Bio and Geosciences Plant Sciences Forschungszentrum Jülich GmbH Jülich Germany
See more in PubMed
Aguilar J. F., Fryxell P. A., Jansen R. K. (2003). Phylogenetic relationships and classification of the sida generic alliance (Malvaceae) based on nrDNA ITS evidence. Systematic Bot. 28 (2), 352–364. doi: 10.1043/0363-6445-28.2.352 DOI
Bandyukova V. A., Ligai L. V. (1987). Study of the kinetics of the extraction of flavonoids from plant raw material I. Extraction rutin fromSida hermaphrodita. Chem. Nat. Compd. 23, 551–553. doi: 10.1007/BF00598669 DOI
Bar-On Y. M., Phillips R., Milo R. (2018). The biomass distribution on earth. Proc. Natl. Acad. Sci. 115 (25), 6506–6511. doi: 10.1073/pnas.1711842115 PubMed DOI PMC
Bickerton H. J. (2011). Recovery strategy for the Virginia mallow (Sida hermaphrodita) in Ontario (Peterborough, Ontario: Prepared for the Ontario Ministry of Natural Resources; ).
Borkowska H., Molas R. (2012). Two extremely different crops, salix and sida, as sources of renewable bioenergy. Biomass Bioenergy 36, 234–240. doi: 10.1016/j.biombioe.2011.10.025 DOI
Borkowska H., Molas R. (2013). Yield comparison of four lignocellulosic perennial energy crop species. Biomass Bioenergy 51, 145–153. doi: 10.1016/j.biombioe.2013.01.017 DOI
Borkowska H., Molas R., Kupczyk A. (2009). Virginia Fanpetals (Sida hermaphrodita rusby) cultivated on light soil; height of yield and biomass productivity. Polish J. Environ. Stud. 18 (4), 563–568.
Borkowska H., Styk B., Molas R. (2006). Energiepflanze mit hohem potenzial. Erneuerbare Energien 7, 76–77.
Chifman J., Kubatko L. (2014). Quartet inference from SNP data under the coalescent model. Bioinformatics 30, 3317–3324. doi: 10.1093/bioinformatics/btu530 PubMed DOI PMC
Clifton-Brown J., Hastings A., von Cossel M., Murphy-Bokern D., McCalmont J., Whittaker J., et al. . (2023). Perennial biomass cropping and use: shaping the policy ecosystem in European countries. GCB Bioenergy. 15 (5), 538–558. doi: 10.1111/gcbb.13038 PubMed DOI PMC
Cumplido-Marin L., Burgess P. J., Facciotto G., Coaloa D., Morhart C., Bury M., et al. . (2022). Comparative economics of sida hermaphrodita (L.) rusby and silphium perfoliatum l. as bioenergy crops in Europe. Energy Nexus 6, 100084. doi: 10.1016/j.nexus.2022.10008 DOI
Cumplido-Marin L., Graves A. R., Burgess P. J., Morhart C., Paris P., Jablonowski N. D., et al. . (2020). Two novel energy crops: sida hermaphrodita (L.) rusby and silphium perfoliatum l.–state of knowledge. Agronomy 10 (7), 928. doi: 10.3390/agronomy10070928 DOI
Damm T., Grande P. M., Jablonowski N. D., Thiele B., Disko U., Mann U., et al. . (2017. a). OrganoCat pretreatment of perennial plants: synergies between a biogenic fractionation and valuable feedstocks. Bioresource Technol. 244, 889–896. doi: 10.1016/j.biortech.2017.08.027 PubMed DOI
Damm T., Pattathil S., Günl M., Jablonowski N. D., O'Neill M., Grün K. S., et al. . (2017. b). Insights into cell wall structure of sida hermaphrodita and its influence on recalcitrance. Carbohydr. polymers 168, 94–102. doi: 10.1016/j.carbpol.2017.03.062 PubMed DOI
Davies K. (2004). Plant pigments and their manipulation (Oxford, UK: Blackwell publishing; ), ISBN: ISBN1405117370.
Donaldson L. (2020). Autofluorescence in plants. Molecules 25 (10), 2393. doi: 10.3390/molecules25102393 PubMed DOI PMC
Ehleringer J. R., Björkman O. (1978). Pubescence and leaf spectral characteristics in a desert shrub, encelia farinosa. Oecologia 36, 151–162. doi: 10.1007/BF00349805 PubMed DOI
Ehleringer J. R., Mooney H. A. (1978). Leaf hairs: effects on physiological activity and adaptive value to a desert shrub. Oecologia 37, 183–200. doi: 10.1007/BF00344990 PubMed DOI
Emmerling C. (2014). Impact of land-use change towards perennial energy crops on earthworm population. Appl. Soil Ecol. 84, 12–15. doi: 10.1016/j.apsoil.2014.06.006 DOI
Foster C. E., Martin T. M., Pauly M. (2010. a). Comprehensive compositional analysis of plant cell walls (lignocellulosic biomass) part II: carbohydrates. J. Vis. Exp. 37, 1837. doi: 10.3791/1837 PubMed DOI PMC
Foster C. E., Martin T. M., Pauly M. (2010. b). Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) part I: lignin. J. Vis. Exp. 37, 1745. doi: 10.3791/1745 PubMed DOI PMC
Franzaring J., Schmid I., Bäuerle L., Gensheimer G., Fangmeier A. (2014). Investigations on plant functional traits, epidermal structures and the ecophysiology of the novel bioenergy species sida hermaphrodita rusby and silphium perfoliatum l. J. Appl. Bot. Food Qual. 87, 36–45. doi: 10.5073/JABFQ.2014.087.006 DOI
Gärtner H., Nievergelt D. (2010). The core-microtome: a new tool for surface preparation on cores and time series analysis of varying cell parameters. Dendrochronologia 28 (2), 85–92. doi: 10.1016/j.dendro.2009.09.002 DOI
Grande P. M., Viell J., Theyssen N., Marquardt W., Domínguez de María P., Leitner W. (2015). Fractionation of lignocellulosic biomass using the OrganoCat process. Green Chem. 17, 3533–3539. doi: 10.1039/C4GC02534B DOI
Grande P. M., Weidener D., Dietrich S., Dama M., Bellof M., Maas R., et al. . (2019). OrganoCat fractionation of empty fruit bunches from palm trees into lignin, sugars, and cellulose-enriched pulp. ACS Omega 4, 14451–14457. doi: 10.1021/acsomega.9b01371 PubMed DOI PMC
Groffman D. J. (2020). Leveraging herbarium records for a niche analysis of ripariosida hermaphrodita (L.) weakley & b. d. poind. (Virginia mallow) Vol. 72 (Internship Program Reports; ). Available at: https://repository.upenn.edu/morrisarboretum_internreports/72.
Harris P. J., Stone B. A. (2009). Chemistry and molecular organization of plant cell walls. Biomass recalcitrance: deconstructing Plant Cell wall Bioenergy 9, 61–93. doi: 10.1002/9781444305418.ch4 DOI
Hunter J. D. (2007). Matplotlib: a 2D graphics environment, comput. Sci. Eng. 9, 90–95. doi: 10.1109/MCSE.2007.55 DOI
Jablonowski N. D., Kollmann T., Meiller M., Dohrn M., Müller M., Nabel M., et al. . (2020). Full assessment of sida (Sida hermaphrodita) biomass as a solid fuel. Gcb Bioenergy 12 (8), 618–635. doi: 10.1111/gcbb.12694 DOI
Jablonowski N. D., Kollmann T., Nabel M., Damm T., Klose H., Müller M., et al. . (2017). Valorization of sida (Sida hermaphrodita) biomass for multiple energy purposes. Gcb Bioenergy 9 (1), 202–214. doi: 10.1111/gcbb.12346 DOI
Jacquet N., Maniet G., Vanderghem C., Delvigne F., Richel A. (2015). Application of steam explosion as pretreatment on lignocellulosic material: a review. Ind. Eng. Chem. Res. 54 (10), 2593–2598. doi: 10.1021/ie503151g DOI
Jäger G., Büchs J. (2012). Biocatalytic conversion of lignocellulose to platform chemicals. Biotechnol. J. 7 (9), 1122–1136. doi: 10.1002/biot.201200033 PubMed DOI
Kim M. H., Cho J. S., Bae E. K., Choi Y. I., Eom S. H., Lim Y. J., et al. . (2021). PtrMYB120 functions as a positive regulator of both anthocyanin and lignin biosynthetic pathway in a hybrid poplar. Tree Physiol. 41 (12), 2409–2423. doi: 10.1093/treephys/tpab082 PubMed DOI
Kim J. S., Lee Y. Y., Kim T. H. (2016). A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass. Bioresource Technol. 199, 42–48. doi: 10.1016/j.biortech.2015.08.085 PubMed DOI
Li T., Takkellapati S. (2018). The current and emerging sources of technical lignins and their applications. Biofuels Bioproducts Biorefining 12 (5), 756–787. doi: 10.1002/bbb.1913 PubMed DOI PMC
Martinez Diaz J., Grande P. M., Klose H. (2023). Small-scale OrganoCat processing to screen rapeseed straw for efficient fractionation into cellulose, sugars, and lignin. Front. Chem. Eng. 5, 1. doi: 10.3389/fceng.2023.1098411 DOI
McCann M. C., Carpita N. C. (2015). Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property. J. Exp. Bot. 66 (14), 4109–4118. doi: 10.1093/jxb/erv267 PubMed DOI
Nabel M., Schrey S. D., Poorter H., Koller R., Jablonowski N. D. E. (2017). Effects of digestate fertilization on sida hermaphrodita: boosting biomass yields on marginal soils by increasing soil fertility. Biomass Bioenergy 107, 207–213. doi: 10.1016/j.biombioe.2017.10.009 DOI
Nabel M., Schrey S. D., Poorter H., Koller R., Nagel K. A., Temperton V. M., et al. . (2018). Coming late for dinner: localized digestate depot fertilization for extensive cultivation of marginal soil with sida hermaphrodita. Front. Plant Sci. 9, 1095. doi: 10.3389/fpls.2018.01095 PubMed DOI PMC
Nahm M., Morhart C. (2018). Virginia Mallow (Sida hermaphrodita (L.) rusby) as perennial multipurpose crop: biomass yields, energetic valorization, utilization potentials, and management perspectives. Gcb Bioenergy 10 (6), 393–404. doi: 10.1111/gcbb.12501 DOI
Nozzolillo C., McNeill J. (1985). Anthocyanin pigmentation in seedlings of selected species of phaseolus and vigna (Fabaceae). Can. J. Bot. 63 (6), 1066–1071. doi: 10.1139/b85-146 DOI
Peterson A. A., Vogel F., Lachance R. P., Fröling M., Antal M. J., Jr., Tester J. W. (2008). Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies. Energy Environ. Sci. 1 (1), 32–65. doi: 10.1039/b810100k DOI
Picotte J. J., Rosenthal D. M., Rhode J. M., Cruzan M. B. (2007). P lastic responses to temporal variation in moisture availability: consequences for water use efficiency and plant performance. Oecologia 153, 821–832. doi: 10.1007/s00442-007-0794-z PubMed DOI
Pshenichnikova T. A., Doroshkov A. V., Osipova S. V., Permyakov A. V., Permyakova M. D., Efimov V. M., et al. . (2019). Quantitative characteristics of pubescence in wheat (Triticum aestivum l.) are associated with photosynthetic parameters under conditions of normal and limited water supply. Planta 249, 839–847. doi: 10.1007/s00425-018-3049-9 PubMed DOI
Qing Q., Wyman C. E. (2011). Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover. Biotechnol. Biofuels 4, 1–12. doi: 10.1186/1754-6834-4-18 PubMed DOI PMC
Rambaut A. (2012). FigTree V. 1.4.0 Available at: http://tree.bio.ed.ac.uk/software/figtree/ (Accessed 1 March 2018).
Reaz R., Bayzid M. S., Rahman M. S. (2014). Accurate phylogenetic tree reconstruction from quartets: a heuristic approach. PloS One 9, e104008. doi: 10.1371/journal.pone.0104008 PubMed DOI PMC
Royer D. L., McElwain J. C., Adams J. M., Wilf P. (2008). Sensitivity of leaf size and shape to climate within acer rubrum and quercus kelloggii. New Phytol. 179 (3), 808–817. doi: 10.1111/j.1469-8137.2008.02496.x PubMed DOI
Royer D. L., Meyerson L. A., Robertson K. M., Adams J. M. (2009). Phenotypic plasticity of leaf shape along a temperature gradient in acer rubrum. PloS One 4 (10), e7653. doi: 10.1371/journal.pone.0007653 PubMed DOI PMC
Ruf T., Emmerling C. (2021). Different life-form strategies of perennial energy crops and related nutrient exports require a differentiating view specifically concerning a sustainable cultivation on marginal land. GCB Bioenergy 13 (6), 893–904. doi: 10.1111/gcbb.12830 DOI
Sharifi-Rad J., Melgar-Lalanne G., Hernández-Álvarez A. J., Taheri Y., Shaheen S., Kregiel D., et al. . (2020). Malva species: insights on its chemical composition towards pharmacological applications. Phytotherapy Res. 34 (3), 546–567. doi: 10.1002/ptr.6550 PubMed DOI
Spooner D. M., Cusick A. W., Hall G. F., Baskin J. M. (1985). Observations on the distribution and ecology of sida hermaphrodita (L.) rusby (Malvaceae) sida. Contributions to Bot. 11 (2), 215–225.
Suzuki T., Honda Y., Mukasa Y. (2005). Effects of UV-b radiation, cold and desiccation stress on rutin concentration and rutin glucosidase activity in tartary buckwheat (Fagopyrum tataricum) leaves. Plant Sci. 168 (5), 1303–1307. doi: 10.1016/j.plantsci.2005.01.007 DOI
Swofford D. L. (2002). PAUP*: phylogenetic analysis using parsimony (* and other methods), version 4.0b10 (Sinauer Associates; ). Available at: http://paup.csit.fsu.edu/.
Tate J. A., Fuertes Aguilar J., Wagstaff S. J., Duke J. C. La, Bodo Slotta T. A., Simpson B. B. (2005). Phylogenetic relationships within the tribe malveae (Malvaceae, subfamily malvoideae) as inferred from ITS sequence data. Am. J. Bot. 92 (4), 584–602. doi: 10.3732/ajb.92.4.584 PubMed DOI
Tenhaken R. (2015). Cell wall remodeling under abiotic stress. Front. Plant Sci. 5, 771. doi: 10.3389/fpls.2014.00771 PubMed DOI PMC
Thomas L. K. (1979). Distribution and ecology of sida hermaphrodita. Bartonia 46 (1979), 51–59
von Gehren P., Gansberger M., Pichler W., Weigl M., Feldmeier S., Wopienka E., et al. . (2019). A practical field trial to assess the potential of sida hermaphrodita as a versatile, perennial bioenergy crop for central Europe. Biomass Bioenergy 122, 99–108. doi: 10.1016/j.biombioe.2019.01.004 DOI
Weakley A. S., Poindexter D. B., LeBlond R. J., Sorrie B. A., Karlsson C. H., J. Williams P., et al. . (2017). New combinations, rank changes, and nomenclatural and taxonomic comments in the vascular flora of the southeastern united states. II. J. Botanical Res. Institute Texas, 11 (2), 291–325. doi: 10.17348/jbrit.v11.i2.1071 DOI
Weidener D., Dama M., Dietrich S. K., Ohrem B., Pauly M., Leitner W., et al. . (2020). Multiscale analysis of lignocellulose recalcitrance towards OrganoCat pretreatment and fractionation. Biotechnol. Biofuels 13 (1), 1–13. doi: 10.1186/s13068-020-01796-8 PubMed DOI PMC
Weidener D., Klose H., Leitner W., Schurr U., Usadel B., Domínguez de María P., et al. . (2018). One-step lignocellulose fractionation by using 2, 5-furandicarboxylic acid as a biogenic and recyclable catalyst. ChemSusChem 11 (13), 2051–2056. doi: 10.1002/cssc.201800653 PubMed DOI
Weidener D., Leitner W., Dominguez de Maria P., Klose H., Grande P. M. (2021). Lignocellulose fractionation using recyclable phosphoric acid: lignin, cellulose, and furfural production. ChemSusChem 14 (3), 909–916. doi: 10.1002/cssc.202002383 PubMed DOI PMC
Wheldale M. (1916). The anthocyanin pigments of plants (Cambridge: Cambridge University Press; ).
Yao L., Yang H., Yoo C. G., Pu Y., Meng X., Muchero W., et al. . (2018). Understanding the influences of different pretreatments on recalcitrance of populus natural variants. Bioresource Technol. 265, 75–81. doi: 10.1016/j.biortech.2018.05.057 PubMed DOI
Yoo C. G., Meng X., Pu Y., Ragauskas A. J. (2020). The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: a comprehensive review. Bioresource Technol. 301, 122784. doi: 10.1016/j.biortech.2020.122784 PubMed DOI
Zhang Z., Harrison M. D., Rackemann D. W., Doherty W. O., O'Hara I. M. (2016). Organosolv pretreatment of plant biomass for enhanced enzymatic saccharification. Green Chem. 18 (2), 360–381. doi: 10.1039/C5GC02034D DOI
Zhang S., Yang J., Li H., Chiang V. L., Fu Y. (2021). Cooperative regulation of flavonoid and lignin biosynthesis in plants. Crit. Rev. Plant Sci. 40 (2), 109–126. doi: 10.1080/07352689.2021.1898083 DOI
Zheng X., Levine D., Shen J., Gogarten S. M., Laurie C., Weir B. S. (2012). A high-performance computing toolset for relatedness and principal component analysis of SNP. Bioinformatics 28 (24), 3326–3328. doi: 10.1093/bioinformatics/bts606 PubMed DOI PMC