Myeloid lineage cells evince distinct steady-state level of certain gene groups in dependence on hereditary angioedema severity
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
37470035
PubMed Central
PMC10352584
DOI
10.3389/fgene.2023.1123914
PII: 1123914
Knihovny.cz E-resources
- Keywords
- FXII, gene expression, hereditary angioedema, immune cell, interferon-gamma,
- Publication type
- Journal Article MeSH
Hereditary angioedema (HAE) is a rare genetic disorder with variable expressivity even in carriers of the same underlying genetic defect, suggesting other genetic and epigenetic factors participate in modifying HAE severity. Recent knowledge indicates the role of immune cells in several aspects of HAE pathogenesis, which makes monocytes and macrophages candidates to mediate these effects. Here we combined a search for HAE phenotype modifying gene variants with the characterization of selected genes' mRNA levels in monocyte and macrophages in a symptom-free period. While no such gene variant was found to be associated with a more severe or milder disease, patients revealed a higher number of dysregulated genes and their expression profile was significantly altered, which was typically manifested by changes in individual gene expression or by strengthened or weakened relations in mutually co-expressed gene groups, depending on HAE severity. SERPING1 showed decreased expression in HAE-C1INH patients, but this effect was significant only in patients carrying mutations supposedly activating nonsense-mediated decay. Pro-inflammatory CXC chemokine superfamily members CXCL8, 10 and 11 were downregulated, while other genes such as FCGR1A, or long non-coding RNA NEAT1 were upregulated in patients. Co-expression within some gene groups (such as an NF-kappaB function related group) was strengthened in patients with a severe and/or mild course compared to controls. All these findings show that transcript levels in myeloid cells achieve different activation or depression levels in HAE-C1INH patients than in healthy controls and/or based on disease severity and could participate in determining the HAE phenotype.
Central European Institute of Technology Masaryk University Brno Czechia
Centre for Cardiovascular Surgery and Transplantation Brno Czechia
Department of Allergology and Clinical Immunology St Anne's University Hospital in Brno Brno Czechia
Department of Experimental Biology Faculty of Science Masaryk University Brno Czechia
Department of Immunology and Allergology University Hospital Pilsen Pilsen Czechia
See more in PubMed
Anderson M. W., deShazo R. D. (1990). Studies of the mechanism of angiotensin-converting enzyme (ACE) inhibitor-associated angioedema: The effect of an ACE inhibitor on cutaneous responses to bradykinin, codeine, and histamine. J. Allergy Clin. Immunol. 85, 856–858. 10.1016/0091-6749(90)90068-f PubMed DOI
Ariano A., D'Apolito M., Bova M., Bellanti F., Loffredo S., D'Andrea G., et al. (2020). A myoferlin gain-of-function variant associates with a new type of hereditary angioedema. Allergy 75, 2989–2992. 10.1111/all.14454 PubMed DOI
Ashburner M., Ball C. C., Blake J. A., Botstein D., Butler H., Cherry J. M., et al. (2000). Gene ontology: Tool for the unification of biology. The gene Ontology consortium. Nat. Genet. 25, 25–29. 10.1038/75556 PubMed DOI PMC
Aygören-Pürsün E., Magerl M., Maetzel A., Maurer M. (2018). Epidemiology of bradykinin-mediated angioedema: A systematic investigation of epidemiological studies. Orphanet J. Rare Dis. 13, 73. 10.1186/s13023-018-0815-5 PubMed DOI PMC
Bafunno V., Firinu D., D'Apolito M., Cordisco G., Loffredo S., Leccese A., et al. (2018). Mutation of the angiopoietin-1 gene (ANGPT1) associates with a new type of hereditary angioedema. J. Allergy Clin. Immunol. 141, 1009–1017. 10.1016/j.jaci.2017.05.020 PubMed DOI
Barbasz A., Kozik A. (2009). The assembly and activation of kinin-forming systems on the surface of human U-937 macrophage-like cells. Biol. Chem. 390, 269–275. 10.1515/BC.2009.032 PubMed DOI
Bas M., Hoffmann T. K., Tiemann B., Dao V. T., Bantis C., Balz V., et al. (2010). Potential genetic risk factors in angiotensin-converting enzyme-inhibitor-induced angio-oedema. Br. J. Clin. Pharmacol. 69, 179–186. 10.1111/j.1365-2125.2009.03567.x PubMed DOI PMC
Bertram C. M., Baltic S., Misso N. L., Bhoola K. D., Foster P. S., Thompson P. J., et al. (2007). Expression of kinin B1 and B2 receptors in immature, monocyte-derived dendritic cells and bradykinin-mediated increase in intracellular Ca2+ and cell migration. J. Leukoc. Biol. 81, 1445–1454. 10.1189/jlb.0106055 PubMed DOI
Bo Hansen C., Csuka D., Munthe-Fog L., Varga L., Farkas H., Hansen K. M., et al. (2015). The levels of the lectin pathway serine protease MASP-1 and its complex formation with C1 inhibitor are linked to the severity of hereditary angioedema. J. Immunol. 195, 3596–3604. 10.4049/jimmunol.1402838 PubMed DOI
Bork K., Meng G., Staubach P., Hardt J. (2006). Hereditary angioedema: New findings concerning symptoms, affected organs, and course. Am. J. Med. 119, 267–274. 10.1016/j.amjmed.2005.09.064 PubMed DOI
Bork K., Wulff K., Steinmüller-Magin L., Braenne I., Staubach-Renz P., Witzke G., et al. (2018). Hereditary angioedema with a mutation in the plasminogen gene. Allergy 73, 442–450. 10.1111/all.13270 PubMed DOI
Bork K., Wulff K., Rossmann H., Steinmüller-Magin L., Braenne I., Witzke G., et al. (2019). Hereditary angioedema cosegregating with a novel kininogen 1 gene mutation changing the N-terminal cleavage site of bradykinin. Allergy 74, 2479–2481. 10.1111/all.13869 PubMed DOI
Bork K., Wulff K., Möhl B. S., Steinmüller-Magin L., Witzke G., Hardt J., et al. (2021). Novel hereditary angioedema linked with a heparan sulfate 3-O-sulfotransferase 6 gene mutation. J. Allergy Clin. Immunol. 148, 1041–1048. 10.1016/j.jaci.2021.01.011 PubMed DOI
Bors A., Csuka D., Varga L., Farkas H., Tordai A., Füst G., et al. (2013). Less severe clinical manifestations in patients with hereditary angioedema with missense C1INH gene mutations. J. Allergy Clin. Immunol. 131, 1708–1711. 10.1016/j.jaci.2012.11.015 PubMed DOI
Bourdet B., Pécher C., Minville V., Jaafar A., Allard J., Blaes N., et al. (2010). Distribution and expression of B2-kinin receptor on human leukocyte subsets in young adults and elderly using flow cytometry. Neuropeptides 44, 155–161. 10.1016/j.npep.2009.12.005 PubMed DOI
Bygum A., Busse P., Caballero T., Maurer M. (2017). Disease severity, activity, impact, and control and how to assess them in patients with hereditary angioedema. Front. Med. 4, 212. 10.3389/fmed.2017.00212 PubMed DOI PMC
Cao D., Saito S., Veiras L. C., Okwan-Duodu D., Bernstein E. A., Giani J. F., et al. (2020). Role of angiotensin-converting enzyme in myeloid cell immune responses. Cell. Mol. Biol. Lett. 25, 31. 10.1186/s11658-020-00225-w PubMed DOI PMC
Castellano G., Divella C., Sallustio F., Montinaro V., Curci C., Zanichelli A., et al. (2018). A transcriptomics study of hereditary angioedema attacks. J. PubMed DOI
Chen B., Yu C., Lei H., Chang M., Hsu M., Huang C., et al. (2004). Bradykinin B2 receptor mediates NF-kappaB activation and cyclooxygenase-2 expression via the Ras/Raf-1/ERK pathway in human airway epithelial cells. J. Immunol. 173, 5219–5228. 10.4049/jimmunol.173.8.5219 PubMed DOI
Cicardi M., Igarashi T., Rosen F. S., Davis A. E. (1987). Molecular basis for the deficiency of complement 1 inhibitor in type I hereditary angioneurotic edema. J. Clin. Invest. 79, 698–702. 10.1172/JCI112873 PubMed DOI PMC
Corvillo F., de la Morena-Barrio M. E., Marcos-Bravo C., López-Trascasa M., Vicente V., Emsley J., et al. (2020). The FXII c.-4t>C polymorphism as a disease modifier in patients with hereditary angioedema due to the FXII p.Thr328Lys variant. Front. Genet. 11, 1033. 10.3389/fgene.2020.01033 PubMed DOI PMC
de la Cruz R. M., López-Lera A., López-Trascasa M. (2012). Analysis of SERPING1 expression on hereditary angioedema patients: Quantitative analysis of full-length and exon 3 splicing variants. Immunol. Lett. 141, 158–164. 10.1016/j.imlet.2011.07.011 PubMed DOI
Demirtürk M., Gelincik A., Cınar S., Kilercik M., Onay-Ucar E., Çolakoğlu B., et al. (2014). Increased eNOS levels in hereditary angioedema. Int. Immunopharmacol. 20, 264–268. 10.1016/j.intimp.2014.03.007 PubMed DOI
Dewald G. (2018). A missense mutation in the plasminogen gene, within the plasminogen kringle 3 domain, in hereditary angioedema with normal C1 inhibitor. Biochem. Biophys. Res. Commun. 498, 193–198. 10.1016/j.bbrc.2017.12.060 PubMed DOI
Dong R., Chen W., Feng W., Xia C., Hu D., Zhang Y., et al. (2015). Exogenous bradykinin inhibits tissue factor induction and deep vein thrombosis via activating the eNOS/phosphoinositide 3-kinase/akt signaling pathway. Cell. Physiol. Biochem. 37, 1592–1606. 10.1159/000438526 PubMed DOI
Drouet C., Désormeaux A., Robillard J., Ponard D., Bouillet L., Martin L., et al. (2008). Metallopeptidase activities in hereditary angioedema: Effect of androgen prophylaxis on plasma aminopeptidase P. J. Allergy Clin. Immunol. 121, 429–433. 10.1016/j.jaci.2007.10.048 PubMed DOI PMC
Farkas H., Máj C., Kenessey I., Sebestyén A., Krencz I., Pápay J., et al. (2022). A novel pathogenetic factor of laryngeal attack in hereditary angioedema? Involvement of protease activated receptor 1. Allergy Asthma Clin. Immunol. 18, 60. 10.1186/s13223-022-00699-7 PubMed DOI PMC
Ferrara A. L., Cristinziano L., Petraroli A., Bova M., Gigliotti M. C., Marcella S., et al. (2021). Roles of immune cells in hereditary angioedema. Clin. Rev. Allergy Immunol. 60, 369–382. 10.1007/s12016-021-08842-9 PubMed DOI PMC
Forjaz M. J., Ayala A., Caminoa M., Prior N., Pérez-Fernández E., Caballero T., et al. (2021). HAE-AS: A specific disease activity scale for hereditary angioedema with C1-inhibitor deficiency. J. Investig. Allergol. Clin. Immunol. 31, 246–252. 10.18176/jiaci.0479 PubMed DOI
Freiberger T., Grombiříková H., Ravčuková B., Jarkovský J., Kuklínek P., Kryštůfková O., et al. (2011). No evidence for linkage between the hereditary angiooedema clinical phenotype and the BDKR1, BDKR2, ACE or MBL2 gene. Scand. J. Immunol. 74, 100–106. 10.1111/j.1365-3083.2011.02547.x PubMed DOI
Germenis A. E., Speletas M. (2016). Genetics of hereditary angioedema revisited. Clin. Rev. Allergy Immunol. 51, 170–182. 10.1007/s12016-016-8543-x PubMed DOI
Gianni P., Loules G., Zamanakou M., Kompoti M., Csuka D., Psarros F., et al. (2017). Genetic determinants of C1 inhibitor deficiency angioedema age of onset. Int. Arch. Allergy Immunol. 174, 200–204. 10.1159/000481987 PubMed DOI
Granata F., Frattini A., Loffredo S., Staiano R. I., Petraroli A., Ribatti D., et al. (2010). Production of vascular endothelial growth factors from human lung macrophages induced by group IIA and group X secreted phospholipases A2. J. Immunol. 184, 5232–5241. 10.4049/jimmunol.0902501 PubMed DOI PMC
Grimm M. C., Elsbury S. K., Pavli P., Doe W. F. (1996). Interleukin 8: Cells of origin in inflammatory bowel disease. Gut 38, 90–98. 10.1136/gut.38.1.90 PubMed DOI PMC
Grymová T., Vlková M., Souček P., Hakl R., Nechvátalová J., Slanina P., et al. (2019). Neutrophils are dysregulated in patients with hereditary angioedema types I and II in a symptom-free period. Mediat. Inflamm. 2019, 9515628. 10.1155/2019/9515628 PubMed DOI PMC
Guevara-Lora I., Florkowska M., Kozik A. (2009). Bradykinin-related peptides up-regulate the expression of kinin B1 and B2 receptor genes in human promonocytic cell line U937. Acta Biochim. Pol. 56, 515–522. 10.18388/abp.2009_2488 PubMed DOI
Hanaoka R., Kasama T., Muramatsu M., Yajima N., Shiozawa F., Miwa Y., et al. (2003). A novel mechanism for the regulation of IFN-gamma inducible protein-10 expression in rheumatoid arthritis. Arthritis Res. Ther. 5, R74–R81. 10.1186/ar616 PubMed DOI PMC
Haslund D., Ryø L. B., Majidi S. S., Rose I., Skipper K. A., Fryland T., et al. (2019). Dominant-negative SERPING1 variants cause intracellular retention of C1 inhibitor in hereditary angioedema. J. Clin. Invest. 129, 388–405. 10.1172/JCI98869 PubMed DOI PMC
Hillmeister P., Gatzke N., Dülsner A., Bader M., Schadock I., Hoefer I., et al. (2011). Arteriogenesis is modulated by bradykinin receptor signaling. Circ. Res. 109, 524–533. 10.1161/CIRCRESAHA.111.240986 PubMed DOI
Honda D., Ohsawa I., Mano S., Rinno H., Tomino Y., Suzuki Y. (2021). Cut-off value of C1-inhibitor function for the diagnosis of hereditary angioedema due to C1-inhibitor deficiency. Intractable Rare Dis. Res. 10, 42–47. 10.5582/irdr.2020.03099 PubMed DOI PMC
Hujová P., Souček P., Grodecká L., Grombiříková H., Ravčuková B., Kuklínek P., et al. (2020). Deep intronic mutation in SERPING1 caused hereditary angioedema through pseudoexon activation. J. Clin. Immunol. 40, 435–446. 10.1007/s10875-020-00753-2 PubMed DOI
Kajdácsi E., Veszeli N., Mező B., Jandrasics Z., Kőhalmi K. V., Ferrara A. L., et al. (2021). Pathways of neutrophil granulocyte activation in hereditary angioedema with C1 inhibitor deficiency. Clin. Rev. Allergy Immunol. 60, 383–395. 10.1007/s12016-021-08847-4 PubMed DOI PMC
Kang H. R., Yim E. Y., Oh S. Y., Chang Y. S., Kim Y. K., Cho S. H., et al. (2006). Normal C1 inhibitor mRNA expression level in type I hereditary angioedema patients: Newly found C1 inhibitor gene mutations. Allergy 61, 260–264. 10.1111/j.1398-9995.2006.01010.x PubMed DOI
Kaplan A. P., Pawaskar D., Chiao J. (2020). C1 inhibitor activity and angioedema attacks in patients with hereditary angioedema. J. Allergy Clin. Immunol. Pract. 8, 892–900. 10.1016/j.jaip.2019.10.003 PubMed DOI
Kecse-Nagy C., Szittner Z., Papp K., Hegyi Z., Rovero P., Migliorini P., et al. (2016). Characterization of NF-κB reporter U937 cells and their application for the detection of inflammatory immune-complexes. PLoS One 11, e0156328. 10.1371/journal.pone.0156328 PubMed DOI PMC
Kelemen Z., Moldovan D., Mihály E., Visy B., Széplaki G., Csuka D., et al. (2010). Baseline level of functional C1-inhibitor correlates with disease severity scores in hereditary angioedema. Clin. Immunol. 134, 354–358. 10.1016/j.clim.2009.11.002 PubMed DOI
Khan M. M., Bradford H. N., Isordia-Salas I., Liu Y., Wu Y., Espinola R. G., et al. (2006). High-molecular-weight kininogen fragments stimulate the secretion of cytokines and chemokines through uPAR, Mac-1, and gC1qR in monocytes. Arterioscler. Thromb. Vasc. Biol. 26, 2260–2266. 10.1161/01.ATV.0000240290.70852.c0 PubMed DOI PMC
Koyama S., Sato E., Numanami H., Kubo K., Nagai S., Izumi T. (2000). Bradykinin stimulates lung fibroblasts to release neutrophil and monocyte chemotactic activity. Am. J. Respir. Cell. Mol. Biol. 22, 75–84. 10.1165/ajrcmb.22.1.3752 PubMed DOI
Kramer J., Rosen F. S., Colten H. R., Rajczy K., Strunk R. C. (1993). Transinhibition of C1 inhibitor synthesis in type I hereditary angioneurotic edema. J. Clin. Invest. 91, 1258–1262. 10.1172/JCI116290 PubMed DOI PMC
Lappin D. F., McPhaden A. R., Yap P. L., Carter P. E., Birnie G. D., Fothergill J. E., et al. (1989). Monocyte C1-inhibitor synthesis in patients with C1-inhibitor deficiency. Eur. J. Clin. Invest. 19, 45–52. 10.1111/j.1365-2362.1989.tb00194.x PubMed DOI
Lappin D. F., Guc D., Hill A., McShane T., Whaley K. (1992). Effect of interferon-gamma on complement gene expression in different cell types. Biochem. J. 281, 437–442. 10.1042/bj2810437 PubMed DOI PMC
Lee E. Y., Lee Z., Song Y. W. (2009). CXCL10 and autoimmune diseases. Autoimmun. Rev. 8, 379–383. 10.1016/j.autrev.2008.12.002 PubMed DOI
Loffredo S., Bova M., Suffritti C., Borriello F., Zanichelli A., Petraroli A., et al. (2016). Elevated plasma levels of vascular permeability factors in C1 inhibitor-deficient hereditary angioedema. Allergy 71, 989–996. 10.1111/all.12862 PubMed DOI
Loffredo S., Ferrara A. L., Bova M., Borriello F., Suffritti C., Veszeli N., et al. (2018). Secreted phospholipases A2 in hereditary angioedema with C1-inhibitor deficiency. Front. Immunol. 9, 1721. 10.3389/fimmu.2018.01721 PubMed DOI PMC
López-Lera A., Cabo F. S., Garrido S., Dopazo A., López-Trascasa M. (2013). Disease-modifying factors in hereditary angioedema: An RNA expression-based screening. Orphanet J. Rare Dis. 8, 77. 10.1186/1750-1172-8-77 PubMed DOI PMC
Mazanet M. M., Neote K., Hughes C. C. (2000). Expression of IFN-inducible T cell alpha chemoattractant by human endothelial cells is cyclosporin A-resistant and promotes T cell adhesion: Implications for cyclosporin A-resistant immune inflammation. J. Immunol. 164, 5383–5388. 10.4049/jimmunol.164.10.5383 PubMed DOI
Neville L. F., Mathiak G., Bagasra O. (1997). The immunobiology of interferon-gamma inducible protein 10 kD (IP-10): A novel, pleiotropic member of the C-X-C chemokine superfamily. Cytokine Growth Factor Rev. 8, 207–219. 10.1016/s1359-6101(97)00015-4 PubMed DOI
Papoutsopoulou S., Burkitt M. D., Bergey F., England H., Hough R., Schmidt L., et al. (2019). Macrophage-specific NF-κB activation dynamics can segregate inflammatory bowel disease patients. Front. Immunol. 10, 2168. 10.3389/fimmu.2019.02168 PubMed DOI PMC
Pappalardo E., Zingale L. C., Cicardi M. (2004). C1 inhibitor gene expression in patients with, hereditary angioedema: Quantitative evaluation by means of real-time RT-PCR. J. Allergy Clin. Immunol. 114, 638–644. 10.1016/j.jaci.2004.06.021 PubMed DOI
Parsopoulou F., Loules G., Zamanakou M., Csuka D., Szilagyi A., Kompoti M., et al. (2022). Searching for genetic biomarkers for hereditary angioedema due to C1-inhibitor deficiency (C1-INH-HAE). F PubMed DOI PMC
Rigat B., Hubert C., Alhenc-Gelas F., Cambien F., Corvol P., Soubrier F. (1990). An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 86, 1343–1346. 10.1172/JCI114844 PubMed DOI PMC
Rijavec M., Korošec P., Šilar M., Zidarn M., Miljković J., Košnik M. (2013). Hereditary angioedema nationwide study in Slovenia reveals four novel mutations in SERPING1 gene. PLoS One 8, e56712. 10.1371/journal.pone.0056712 PubMed DOI PMC
Rodrigues S. F., Granger D. N. (2015). Blood cells and endothelial barrier function. Tissue Barriers 3, e978720. 10.4161/21688370.2014.978720 PubMed DOI PMC
Sabharwal G., Craig T. (2017). Pediatric hereditary angioedema: An update. F1000Res 6, F1000. Faculty Rev-1205. 10.12688/f1000research.11320.1 PubMed DOI PMC
Schröder J. M., Gregory H., Young J., Christophers E. (1992). Neutrophil-activating proteins in psoriasis. J. Invest. Dermatol 98, 241–247. 10.1111/1523-1747.ep12556058 PubMed DOI
Sehnert B., Burkhardt H., Wessels J. T., Schröder A., May M. J., Vestweber D., et al. (2013). NF-κB inhibitor targeted to activated endothelium demonstrates a critical role of endothelial NF-κB in immune-mediated diseases. Proc. Natl. Acad. Sci. U. S. A. 110, 16556–16561. 10.1073/pnas.1218219110 PubMed DOI PMC
Seitz M., Dewald B., Gerber N., Baggiolini M. (1991). Enhanced production of neutrophil-activating peptide-1/interleukin-8 in rheumatoid arthritis. J. Clin. Invest. 87, 463–469. 10.1172/JCI115018 PubMed DOI PMC
Sharma J. N. (2009). Hypertension and the bradykinin system. Curr. Hypertens. Rep. 11, 178–181. 10.1007/s11906-009-0032-7 PubMed DOI
Sheikh I. A., Kaplan A. P. (1986). Studies of the digestion of bradykinin, Lys-bradykinin, and des-Arg9-bradykinin by angiotensin converting enzyme. Biochem. Pharmacol. 35, 1951–1956. 10.1016/0006-2952(86)90726-4 PubMed DOI
Speletas M., Szilágyi Á., Csuka D., Koutsostathis N., Psarros F., Moldovan D., et al. (2015). F12-46C/T polymorphism as modifier of the clinical phenotype of hereditary angioedema. Allergy 70, 1661–1664. 10.1111/all.12714 PubMed DOI
Suffritti C., Zanichelli A., Maggioni L., Bonanni E., Cugno M., Cicardi M. (2014). High-molecular-weight kininogen cleavage correlates with disease states in the bradykinin-mediated angioedema due to hereditary C1-inhibitor deficiency. Clin. Exp. Allergy 44, 1503–1514. 10.1111/cea.12293 PubMed DOI
Takashiba S., Van Dyke T. E., Amar S., Murayama Y., Soskolne A. W., Shapira L. (1999). Differentiation of monocytes to macrophages primes cells for lipopolysaccharide stimulation via accumulation of cytoplasmic nuclear factor kappaB. Infect. Immun. 67, 5573–5578. 10.1128/IAI.67.11.5573-5578.1999 PubMed DOI PMC
Terzuoli E., Meini S., Cucchi P., Catalani C., Cialdai C., Maggi C. A., et al. (2014). Antagonism of bradykinin B2 receptor prevents inflammatory responses in human endothelial cells by quenching the NF-kB pathway activation. PLoS One 9, e84358. 10.1371/journal.pone.0084358 PubMed DOI PMC
Veronez C. L., Aabom A., Martin R. P., Filippelli-Silva R., Gonçalves R. F., Nicolicht P., et al. (2019). Neutrophil activation during attacks in patients with hereditary angioedema due to C1-inhibitor deficiency. Front. Med. 6, 28. 10.1186/s13023-015-0374-y PubMed DOI PMC
Veszeli N., Csuka D., Zotter Z., Imreh É., Józsi M., Benedek S., et al. (2015). Neutrophil activation during attacks in patients with hereditary angioedema due to C1-inhibitor deficiency. Orphanet J. Rare Dis. 10, 156. 10.1186/s13023-015-0374-y PubMed DOI PMC
Wu M. A., Bova M., Berra S., Senter R., Parolin D., Caccia S., et al. (2020). The central role of endothelium in hereditary angioedema due to C1 inhibitor deficiency. Int. Immunopharmacol. 82, 106304. 10.1016/j.intimp.2020.106304 PubMed DOI
Yang A., Zhou J., Wang B., Dai J., Colman R. W., Song W., et al. (2017). A critical role for plasma kallikrein in the pathogenesis of autoantibody-induced arthritis. FASEB J. 31, 5419–5431. 10.1096/fj.201700018R PubMed DOI PMC
Yang C., Hsiao L., Shih Y., Yu Z., Yang C. (2022). Anti-inflammatory effects of rhamnetin on bradykinin induced matrix metalloproteinase-9 expression and cell migration in rat brain astrocytes. Int. J. Mol. Sci. 23, 609. 10.3390/ijms23020609 PubMed DOI PMC
Zhang W., Chen H. (2002). The study on the interleukin-8 (IL-8). Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 19, 697–702. PubMed
Zhang H., Li L., Liu L. (2018). FcγRI (CD64) contributes to the severity of immune inflammation through regulating NF-κB/NLRP3 inflammasome pathway. Life Sci. 207, 296–303. 10.1016/j.lfs.2018.06.015 PubMed DOI
Zuraw B. L., Lotz M. (1990). Regulation of the hepatic synthesis of C1 inhibitor by the hepatocyte stimulating factors interleukin 6 and interferon gamma. J. Biol. Chem. 265, 12664–12670. 10.1016/s0021-9258(19)38395-4 PubMed DOI