• This record comes from PubMed

Myeloid lineage cells evince distinct steady-state level of certain gene groups in dependence on hereditary angioedema severity

. 2023 ; 14 () : 1123914. [epub] 20230704

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Hereditary angioedema (HAE) is a rare genetic disorder with variable expressivity even in carriers of the same underlying genetic defect, suggesting other genetic and epigenetic factors participate in modifying HAE severity. Recent knowledge indicates the role of immune cells in several aspects of HAE pathogenesis, which makes monocytes and macrophages candidates to mediate these effects. Here we combined a search for HAE phenotype modifying gene variants with the characterization of selected genes' mRNA levels in monocyte and macrophages in a symptom-free period. While no such gene variant was found to be associated with a more severe or milder disease, patients revealed a higher number of dysregulated genes and their expression profile was significantly altered, which was typically manifested by changes in individual gene expression or by strengthened or weakened relations in mutually co-expressed gene groups, depending on HAE severity. SERPING1 showed decreased expression in HAE-C1INH patients, but this effect was significant only in patients carrying mutations supposedly activating nonsense-mediated decay. Pro-inflammatory CXC chemokine superfamily members CXCL8, 10 and 11 were downregulated, while other genes such as FCGR1A, or long non-coding RNA NEAT1 were upregulated in patients. Co-expression within some gene groups (such as an NF-kappaB function related group) was strengthened in patients with a severe and/or mild course compared to controls. All these findings show that transcript levels in myeloid cells achieve different activation or depression levels in HAE-C1INH patients than in healthy controls and/or based on disease severity and could participate in determining the HAE phenotype.

See more in PubMed

Anderson M. W., deShazo R. D. (1990). Studies of the mechanism of angiotensin-converting enzyme (ACE) inhibitor-associated angioedema: The effect of an ACE inhibitor on cutaneous responses to bradykinin, codeine, and histamine. J. Allergy Clin. Immunol. 85, 856–858. 10.1016/0091-6749(90)90068-f PubMed DOI

Ariano A., D'Apolito M., Bova M., Bellanti F., Loffredo S., D'Andrea G., et al. (2020). A myoferlin gain-of-function variant associates with a new type of hereditary angioedema. Allergy 75, 2989–2992. 10.1111/all.14454 PubMed DOI

Ashburner M., Ball C. C., Blake J. A., Botstein D., Butler H., Cherry J. M., et al. (2000). Gene ontology: Tool for the unification of biology. The gene Ontology consortium. Nat. Genet. 25, 25–29. 10.1038/75556 PubMed DOI PMC

Aygören-Pürsün E., Magerl M., Maetzel A., Maurer M. (2018). Epidemiology of bradykinin-mediated angioedema: A systematic investigation of epidemiological studies. Orphanet J. Rare Dis. 13, 73. 10.1186/s13023-018-0815-5 PubMed DOI PMC

Bafunno V., Firinu D., D'Apolito M., Cordisco G., Loffredo S., Leccese A., et al. (2018). Mutation of the angiopoietin-1 gene (ANGPT1) associates with a new type of hereditary angioedema. J. Allergy Clin. Immunol. 141, 1009–1017. 10.1016/j.jaci.2017.05.020 PubMed DOI

Barbasz A., Kozik A. (2009). The assembly and activation of kinin-forming systems on the surface of human U-937 macrophage-like cells. Biol. Chem. 390, 269–275. 10.1515/BC.2009.032 PubMed DOI

Bas M., Hoffmann T. K., Tiemann B., Dao V. T., Bantis C., Balz V., et al. (2010). Potential genetic risk factors in angiotensin-converting enzyme-inhibitor-induced angio-oedema. Br. J. Clin. Pharmacol. 69, 179–186. 10.1111/j.1365-2125.2009.03567.x PubMed DOI PMC

Bertram C. M., Baltic S., Misso N. L., Bhoola K. D., Foster P. S., Thompson P. J., et al. (2007). Expression of kinin B1 and B2 receptors in immature, monocyte-derived dendritic cells and bradykinin-mediated increase in intracellular Ca2+ and cell migration. J. Leukoc. Biol. 81, 1445–1454. 10.1189/jlb.0106055 PubMed DOI

Bo Hansen C., Csuka D., Munthe-Fog L., Varga L., Farkas H., Hansen K. M., et al. (2015). The levels of the lectin pathway serine protease MASP-1 and its complex formation with C1 inhibitor are linked to the severity of hereditary angioedema. J. Immunol. 195, 3596–3604. 10.4049/jimmunol.1402838 PubMed DOI

Bork K., Meng G., Staubach P., Hardt J. (2006). Hereditary angioedema: New findings concerning symptoms, affected organs, and course. Am. J. Med. 119, 267–274. 10.1016/j.amjmed.2005.09.064 PubMed DOI

Bork K., Wulff K., Steinmüller-Magin L., Braenne I., Staubach-Renz P., Witzke G., et al. (2018). Hereditary angioedema with a mutation in the plasminogen gene. Allergy 73, 442–450. 10.1111/all.13270 PubMed DOI

Bork K., Wulff K., Rossmann H., Steinmüller-Magin L., Braenne I., Witzke G., et al. (2019). Hereditary angioedema cosegregating with a novel kininogen 1 gene mutation changing the N-terminal cleavage site of bradykinin. Allergy 74, 2479–2481. 10.1111/all.13869 PubMed DOI

Bork K., Wulff K., Möhl B. S., Steinmüller-Magin L., Witzke G., Hardt J., et al. (2021). Novel hereditary angioedema linked with a heparan sulfate 3-O-sulfotransferase 6 gene mutation. J. Allergy Clin. Immunol. 148, 1041–1048. 10.1016/j.jaci.2021.01.011 PubMed DOI

Bors A., Csuka D., Varga L., Farkas H., Tordai A., Füst G., et al. (2013). Less severe clinical manifestations in patients with hereditary angioedema with missense C1INH gene mutations. J. Allergy Clin. Immunol. 131, 1708–1711. 10.1016/j.jaci.2012.11.015 PubMed DOI

Bourdet B., Pécher C., Minville V., Jaafar A., Allard J., Blaes N., et al. (2010). Distribution and expression of B2-kinin receptor on human leukocyte subsets in young adults and elderly using flow cytometry. Neuropeptides 44, 155–161. 10.1016/j.npep.2009.12.005 PubMed DOI

Bygum A., Busse P., Caballero T., Maurer M. (2017). Disease severity, activity, impact, and control and how to assess them in patients with hereditary angioedema. Front. Med. 4, 212. 10.3389/fmed.2017.00212 PubMed DOI PMC

Cao D., Saito S., Veiras L. C., Okwan-Duodu D., Bernstein E. A., Giani J. F., et al. (2020). Role of angiotensin-converting enzyme in myeloid cell immune responses. Cell. Mol. Biol. Lett. 25, 31. 10.1186/s11658-020-00225-w PubMed DOI PMC

Castellano G., Divella C., Sallustio F., Montinaro V., Curci C., Zanichelli A., et al. (2018). A transcriptomics study of hereditary angioedema attacks. J. PubMed DOI

Chen B., Yu C., Lei H., Chang M., Hsu M., Huang C., et al. (2004). Bradykinin B2 receptor mediates NF-kappaB activation and cyclooxygenase-2 expression via the Ras/Raf-1/ERK pathway in human airway epithelial cells. J. Immunol. 173, 5219–5228. 10.4049/jimmunol.173.8.5219 PubMed DOI

Cicardi M., Igarashi T., Rosen F. S., Davis A. E. (1987). Molecular basis for the deficiency of complement 1 inhibitor in type I hereditary angioneurotic edema. J. Clin. Invest. 79, 698–702. 10.1172/JCI112873 PubMed DOI PMC

Corvillo F., de la Morena-Barrio M. E., Marcos-Bravo C., López-Trascasa M., Vicente V., Emsley J., et al. (2020). The FXII c.-4t>C polymorphism as a disease modifier in patients with hereditary angioedema due to the FXII p.Thr328Lys variant. Front. Genet. 11, 1033. 10.3389/fgene.2020.01033 PubMed DOI PMC

de la Cruz R. M., López-Lera A., López-Trascasa M. (2012). Analysis of SERPING1 expression on hereditary angioedema patients: Quantitative analysis of full-length and exon 3 splicing variants. Immunol. Lett. 141, 158–164. 10.1016/j.imlet.2011.07.011 PubMed DOI

Demirtürk M., Gelincik A., Cınar S., Kilercik M., Onay-Ucar E., Çolakoğlu B., et al. (2014). Increased eNOS levels in hereditary angioedema. Int. Immunopharmacol. 20, 264–268. 10.1016/j.intimp.2014.03.007 PubMed DOI

Dewald G. (2018). A missense mutation in the plasminogen gene, within the plasminogen kringle 3 domain, in hereditary angioedema with normal C1 inhibitor. Biochem. Biophys. Res. Commun. 498, 193–198. 10.1016/j.bbrc.2017.12.060 PubMed DOI

Dong R., Chen W., Feng W., Xia C., Hu D., Zhang Y., et al. (2015). Exogenous bradykinin inhibits tissue factor induction and deep vein thrombosis via activating the eNOS/phosphoinositide 3-kinase/akt signaling pathway. Cell. Physiol. Biochem. 37, 1592–1606. 10.1159/000438526 PubMed DOI

Drouet C., Désormeaux A., Robillard J., Ponard D., Bouillet L., Martin L., et al. (2008). Metallopeptidase activities in hereditary angioedema: Effect of androgen prophylaxis on plasma aminopeptidase P. J. Allergy Clin. Immunol. 121, 429–433. 10.1016/j.jaci.2007.10.048 PubMed DOI PMC

Farkas H., Máj C., Kenessey I., Sebestyén A., Krencz I., Pápay J., et al. (2022). A novel pathogenetic factor of laryngeal attack in hereditary angioedema? Involvement of protease activated receptor 1. Allergy Asthma Clin. Immunol. 18, 60. 10.1186/s13223-022-00699-7 PubMed DOI PMC

Ferrara A. L., Cristinziano L., Petraroli A., Bova M., Gigliotti M. C., Marcella S., et al. (2021). Roles of immune cells in hereditary angioedema. Clin. Rev. Allergy Immunol. 60, 369–382. 10.1007/s12016-021-08842-9 PubMed DOI PMC

Forjaz M. J., Ayala A., Caminoa M., Prior N., Pérez-Fernández E., Caballero T., et al. (2021). HAE-AS: A specific disease activity scale for hereditary angioedema with C1-inhibitor deficiency. J. Investig. Allergol. Clin. Immunol. 31, 246–252. 10.18176/jiaci.0479 PubMed DOI

Freiberger T., Grombiříková H., Ravčuková B., Jarkovský J., Kuklínek P., Kryštůfková O., et al. (2011). No evidence for linkage between the hereditary angiooedema clinical phenotype and the BDKR1, BDKR2, ACE or MBL2 gene. Scand. J. Immunol. 74, 100–106. 10.1111/j.1365-3083.2011.02547.x PubMed DOI

Germenis A. E., Speletas M. (2016). Genetics of hereditary angioedema revisited. Clin. Rev. Allergy Immunol. 51, 170–182. 10.1007/s12016-016-8543-x PubMed DOI

Gianni P., Loules G., Zamanakou M., Kompoti M., Csuka D., Psarros F., et al. (2017). Genetic determinants of C1 inhibitor deficiency angioedema age of onset. Int. Arch. Allergy Immunol. 174, 200–204. 10.1159/000481987 PubMed DOI

Granata F., Frattini A., Loffredo S., Staiano R. I., Petraroli A., Ribatti D., et al. (2010). Production of vascular endothelial growth factors from human lung macrophages induced by group IIA and group X secreted phospholipases A2. J. Immunol. 184, 5232–5241. 10.4049/jimmunol.0902501 PubMed DOI PMC

Grimm M. C., Elsbury S. K., Pavli P., Doe W. F. (1996). Interleukin 8: Cells of origin in inflammatory bowel disease. Gut 38, 90–98. 10.1136/gut.38.1.90 PubMed DOI PMC

Grymová T., Vlková M., Souček P., Hakl R., Nechvátalová J., Slanina P., et al. (2019). Neutrophils are dysregulated in patients with hereditary angioedema types I and II in a symptom-free period. Mediat. Inflamm. 2019, 9515628. 10.1155/2019/9515628 PubMed DOI PMC

Guevara-Lora I., Florkowska M., Kozik A. (2009). Bradykinin-related peptides up-regulate the expression of kinin B1 and B2 receptor genes in human promonocytic cell line U937. Acta Biochim. Pol. 56, 515–522. 10.18388/abp.2009_2488 PubMed DOI

Hanaoka R., Kasama T., Muramatsu M., Yajima N., Shiozawa F., Miwa Y., et al. (2003). A novel mechanism for the regulation of IFN-gamma inducible protein-10 expression in rheumatoid arthritis. Arthritis Res. Ther. 5, R74–R81. 10.1186/ar616 PubMed DOI PMC

Haslund D., Ryø L. B., Majidi S. S., Rose I., Skipper K. A., Fryland T., et al. (2019). Dominant-negative SERPING1 variants cause intracellular retention of C1 inhibitor in hereditary angioedema. J. Clin. Invest. 129, 388–405. 10.1172/JCI98869 PubMed DOI PMC

Hillmeister P., Gatzke N., Dülsner A., Bader M., Schadock I., Hoefer I., et al. (2011). Arteriogenesis is modulated by bradykinin receptor signaling. Circ. Res. 109, 524–533. 10.1161/CIRCRESAHA.111.240986 PubMed DOI

Honda D., Ohsawa I., Mano S., Rinno H., Tomino Y., Suzuki Y. (2021). Cut-off value of C1-inhibitor function for the diagnosis of hereditary angioedema due to C1-inhibitor deficiency. Intractable Rare Dis. Res. 10, 42–47. 10.5582/irdr.2020.03099 PubMed DOI PMC

Hujová P., Souček P., Grodecká L., Grombiříková H., Ravčuková B., Kuklínek P., et al. (2020). Deep intronic mutation in SERPING1 caused hereditary angioedema through pseudoexon activation. J. Clin. Immunol. 40, 435–446. 10.1007/s10875-020-00753-2 PubMed DOI

Kajdácsi E., Veszeli N., Mező B., Jandrasics Z., Kőhalmi K. V., Ferrara A. L., et al. (2021). Pathways of neutrophil granulocyte activation in hereditary angioedema with C1 inhibitor deficiency. Clin. Rev. Allergy Immunol. 60, 383–395. 10.1007/s12016-021-08847-4 PubMed DOI PMC

Kang H. R., Yim E. Y., Oh S. Y., Chang Y. S., Kim Y. K., Cho S. H., et al. (2006). Normal C1 inhibitor mRNA expression level in type I hereditary angioedema patients: Newly found C1 inhibitor gene mutations. Allergy 61, 260–264. 10.1111/j.1398-9995.2006.01010.x PubMed DOI

Kaplan A. P., Pawaskar D., Chiao J. (2020). C1 inhibitor activity and angioedema attacks in patients with hereditary angioedema. J. Allergy Clin. Immunol. Pract. 8, 892–900. 10.1016/j.jaip.2019.10.003 PubMed DOI

Kecse-Nagy C., Szittner Z., Papp K., Hegyi Z., Rovero P., Migliorini P., et al. (2016). Characterization of NF-κB reporter U937 cells and their application for the detection of inflammatory immune-complexes. PLoS One 11, e0156328. 10.1371/journal.pone.0156328 PubMed DOI PMC

Kelemen Z., Moldovan D., Mihály E., Visy B., Széplaki G., Csuka D., et al. (2010). Baseline level of functional C1-inhibitor correlates with disease severity scores in hereditary angioedema. Clin. Immunol. 134, 354–358. 10.1016/j.clim.2009.11.002 PubMed DOI

Khan M. M., Bradford H. N., Isordia-Salas I., Liu Y., Wu Y., Espinola R. G., et al. (2006). High-molecular-weight kininogen fragments stimulate the secretion of cytokines and chemokines through uPAR, Mac-1, and gC1qR in monocytes. Arterioscler. Thromb. Vasc. Biol. 26, 2260–2266. 10.1161/01.ATV.0000240290.70852.c0 PubMed DOI PMC

Koyama S., Sato E., Numanami H., Kubo K., Nagai S., Izumi T. (2000). Bradykinin stimulates lung fibroblasts to release neutrophil and monocyte chemotactic activity. Am. J. Respir. Cell. Mol. Biol. 22, 75–84. 10.1165/ajrcmb.22.1.3752 PubMed DOI

Kramer J., Rosen F. S., Colten H. R., Rajczy K., Strunk R. C. (1993). Transinhibition of C1 inhibitor synthesis in type I hereditary angioneurotic edema. J. Clin. Invest. 91, 1258–1262. 10.1172/JCI116290 PubMed DOI PMC

Lappin D. F., McPhaden A. R., Yap P. L., Carter P. E., Birnie G. D., Fothergill J. E., et al. (1989). Monocyte C1-inhibitor synthesis in patients with C1-inhibitor deficiency. Eur. J. Clin. Invest. 19, 45–52. 10.1111/j.1365-2362.1989.tb00194.x PubMed DOI

Lappin D. F., Guc D., Hill A., McShane T., Whaley K. (1992). Effect of interferon-gamma on complement gene expression in different cell types. Biochem. J. 281, 437–442. 10.1042/bj2810437 PubMed DOI PMC

Lee E. Y., Lee Z., Song Y. W. (2009). CXCL10 and autoimmune diseases. Autoimmun. Rev. 8, 379–383. 10.1016/j.autrev.2008.12.002 PubMed DOI

Loffredo S., Bova M., Suffritti C., Borriello F., Zanichelli A., Petraroli A., et al. (2016). Elevated plasma levels of vascular permeability factors in C1 inhibitor-deficient hereditary angioedema. Allergy 71, 989–996. 10.1111/all.12862 PubMed DOI

Loffredo S., Ferrara A. L., Bova M., Borriello F., Suffritti C., Veszeli N., et al. (2018). Secreted phospholipases A2 in hereditary angioedema with C1-inhibitor deficiency. Front. Immunol. 9, 1721. 10.3389/fimmu.2018.01721 PubMed DOI PMC

López-Lera A., Cabo F. S., Garrido S., Dopazo A., López-Trascasa M. (2013). Disease-modifying factors in hereditary angioedema: An RNA expression-based screening. Orphanet J. Rare Dis. 8, 77. 10.1186/1750-1172-8-77 PubMed DOI PMC

Mazanet M. M., Neote K., Hughes C. C. (2000). Expression of IFN-inducible T cell alpha chemoattractant by human endothelial cells is cyclosporin A-resistant and promotes T cell adhesion: Implications for cyclosporin A-resistant immune inflammation. J. Immunol. 164, 5383–5388. 10.4049/jimmunol.164.10.5383 PubMed DOI

Neville L. F., Mathiak G., Bagasra O. (1997). The immunobiology of interferon-gamma inducible protein 10 kD (IP-10): A novel, pleiotropic member of the C-X-C chemokine superfamily. Cytokine Growth Factor Rev. 8, 207–219. 10.1016/s1359-6101(97)00015-4 PubMed DOI

Papoutsopoulou S., Burkitt M. D., Bergey F., England H., Hough R., Schmidt L., et al. (2019). Macrophage-specific NF-κB activation dynamics can segregate inflammatory bowel disease patients. Front. Immunol. 10, 2168. 10.3389/fimmu.2019.02168 PubMed DOI PMC

Pappalardo E., Zingale L. C., Cicardi M. (2004). C1 inhibitor gene expression in patients with, hereditary angioedema: Quantitative evaluation by means of real-time RT-PCR. J. Allergy Clin. Immunol. 114, 638–644. 10.1016/j.jaci.2004.06.021 PubMed DOI

Parsopoulou F., Loules G., Zamanakou M., Csuka D., Szilagyi A., Kompoti M., et al. (2022). Searching for genetic biomarkers for hereditary angioedema due to C1-inhibitor deficiency (C1-INH-HAE). F PubMed DOI PMC

Rigat B., Hubert C., Alhenc-Gelas F., Cambien F., Corvol P., Soubrier F. (1990). An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 86, 1343–1346. 10.1172/JCI114844 PubMed DOI PMC

Rijavec M., Korošec P., Šilar M., Zidarn M., Miljković J., Košnik M. (2013). Hereditary angioedema nationwide study in Slovenia reveals four novel mutations in SERPING1 gene. PLoS One 8, e56712. 10.1371/journal.pone.0056712 PubMed DOI PMC

Rodrigues S. F., Granger D. N. (2015). Blood cells and endothelial barrier function. Tissue Barriers 3, e978720. 10.4161/21688370.2014.978720 PubMed DOI PMC

Sabharwal G., Craig T. (2017). Pediatric hereditary angioedema: An update. F1000Res 6, F1000. Faculty Rev-1205. 10.12688/f1000research.11320.1 PubMed DOI PMC

Schröder J. M., Gregory H., Young J., Christophers E. (1992). Neutrophil-activating proteins in psoriasis. J. Invest. Dermatol 98, 241–247. 10.1111/1523-1747.ep12556058 PubMed DOI

Sehnert B., Burkhardt H., Wessels J. T., Schröder A., May M. J., Vestweber D., et al. (2013). NF-κB inhibitor targeted to activated endothelium demonstrates a critical role of endothelial NF-κB in immune-mediated diseases. Proc. Natl. Acad. Sci. U. S. A. 110, 16556–16561. 10.1073/pnas.1218219110 PubMed DOI PMC

Seitz M., Dewald B., Gerber N., Baggiolini M. (1991). Enhanced production of neutrophil-activating peptide-1/interleukin-8 in rheumatoid arthritis. J. Clin. Invest. 87, 463–469. 10.1172/JCI115018 PubMed DOI PMC

Sharma J. N. (2009). Hypertension and the bradykinin system. Curr. Hypertens. Rep. 11, 178–181. 10.1007/s11906-009-0032-7 PubMed DOI

Sheikh I. A., Kaplan A. P. (1986). Studies of the digestion of bradykinin, Lys-bradykinin, and des-Arg9-bradykinin by angiotensin converting enzyme. Biochem. Pharmacol. 35, 1951–1956. 10.1016/0006-2952(86)90726-4 PubMed DOI

Speletas M., Szilágyi Á., Csuka D., Koutsostathis N., Psarros F., Moldovan D., et al. (2015). F12-46C/T polymorphism as modifier of the clinical phenotype of hereditary angioedema. Allergy 70, 1661–1664. 10.1111/all.12714 PubMed DOI

Suffritti C., Zanichelli A., Maggioni L., Bonanni E., Cugno M., Cicardi M. (2014). High-molecular-weight kininogen cleavage correlates with disease states in the bradykinin-mediated angioedema due to hereditary C1-inhibitor deficiency. Clin. Exp. Allergy 44, 1503–1514. 10.1111/cea.12293 PubMed DOI

Takashiba S., Van Dyke T. E., Amar S., Murayama Y., Soskolne A. W., Shapira L. (1999). Differentiation of monocytes to macrophages primes cells for lipopolysaccharide stimulation via accumulation of cytoplasmic nuclear factor kappaB. Infect. Immun. 67, 5573–5578. 10.1128/IAI.67.11.5573-5578.1999 PubMed DOI PMC

Terzuoli E., Meini S., Cucchi P., Catalani C., Cialdai C., Maggi C. A., et al. (2014). Antagonism of bradykinin B2 receptor prevents inflammatory responses in human endothelial cells by quenching the NF-kB pathway activation. PLoS One 9, e84358. 10.1371/journal.pone.0084358 PubMed DOI PMC

Veronez C. L., Aabom A., Martin R. P., Filippelli-Silva R., Gonçalves R. F., Nicolicht P., et al. (2019). Neutrophil activation during attacks in patients with hereditary angioedema due to C1-inhibitor deficiency. Front. Med. 6, 28. 10.1186/s13023-015-0374-y PubMed DOI PMC

Veszeli N., Csuka D., Zotter Z., Imreh É., Józsi M., Benedek S., et al. (2015). Neutrophil activation during attacks in patients with hereditary angioedema due to C1-inhibitor deficiency. Orphanet J. Rare Dis. 10, 156. 10.1186/s13023-015-0374-y PubMed DOI PMC

Wu M. A., Bova M., Berra S., Senter R., Parolin D., Caccia S., et al. (2020). The central role of endothelium in hereditary angioedema due to C1 inhibitor deficiency. Int. Immunopharmacol. 82, 106304. 10.1016/j.intimp.2020.106304 PubMed DOI

Yang A., Zhou J., Wang B., Dai J., Colman R. W., Song W., et al. (2017). A critical role for plasma kallikrein in the pathogenesis of autoantibody-induced arthritis. FASEB J. 31, 5419–5431. 10.1096/fj.201700018R PubMed DOI PMC

Yang C., Hsiao L., Shih Y., Yu Z., Yang C. (2022). Anti-inflammatory effects of rhamnetin on bradykinin induced matrix metalloproteinase-9 expression and cell migration in rat brain astrocytes. Int. J. Mol. Sci. 23, 609. 10.3390/ijms23020609 PubMed DOI PMC

Zhang W., Chen H. (2002). The study on the interleukin-8 (IL-8). Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 19, 697–702. PubMed

Zhang H., Li L., Liu L. (2018). FcγRI (CD64) contributes to the severity of immune inflammation through regulating NF-κB/NLRP3 inflammasome pathway. Life Sci. 207, 296–303. 10.1016/j.lfs.2018.06.015 PubMed DOI

Zuraw B. L., Lotz M. (1990). Regulation of the hepatic synthesis of C1 inhibitor by the hepatocyte stimulating factors interleukin 6 and interferon gamma. J. Biol. Chem. 265, 12664–12670. 10.1016/s0021-9258(19)38395-4 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...