Neutrophils Are Dysregulated in Patients with Hereditary Angioedema Types I and II in a Symptom-Free Period
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31236065
PubMed Central
PMC6545807
DOI
10.1155/2019/9515628
Knihovny.cz E-zdroje
- MeSH
- antagonista receptoru pro interleukin 1 metabolismus MeSH
- antigeny CD11b metabolismus MeSH
- antigeny CD274 metabolismus MeSH
- dítě MeSH
- dospělí MeSH
- ELISA MeSH
- hereditární angioedém, typy I a II metabolismus MeSH
- interleukin-1beta metabolismus MeSH
- interleukin-8 metabolismus MeSH
- kultivované buňky MeSH
- leukocyty mononukleární metabolismus MeSH
- lidé MeSH
- matrixová metaloproteinasa 9 metabolismus MeSH
- messenger RNA MeSH
- mladiství MeSH
- mladý dospělý MeSH
- neutrofily metabolismus MeSH
- pankreatická elastasa krev MeSH
- peroxidasa krev MeSH
- průtoková cytometrie MeSH
- receptory IgG metabolismus MeSH
- receptory urokinázového aktivátoru plazminogenu metabolismus MeSH
- toll-like receptor 4 metabolismus MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antagonista receptoru pro interleukin 1 MeSH
- antigeny CD11b MeSH
- antigeny CD274 MeSH
- IL1B protein, human MeSH Prohlížeč
- IL1RN protein, human MeSH Prohlížeč
- interleukin-1beta MeSH
- interleukin-8 MeSH
- matrixová metaloproteinasa 9 MeSH
- messenger RNA MeSH
- pankreatická elastasa MeSH
- peroxidasa MeSH
- receptory IgG MeSH
- receptory urokinázového aktivátoru plazminogenu MeSH
- toll-like receptor 4 MeSH
Neutrophils impact on processes preceding the formation of bradykinin, a major swelling mediator in hereditary angioedema (HAE), yet their potential role in HAE pathogenesis has not been sufficiently studied. We assessed the relative mRNA expression of 10 genes related to neutrophil activation using RNA extracted from the peripheral blood neutrophils of 23 HAE patients in a symptom-free period and 39 healthy donors. Increased relative mRNA expression levels of CD274, IL1B, IL1RN, IL8, MMP9, and TLR4, together with a lack in their mutual correlations detected in HAE patients compared to healthy controls, suggested a preactivated state and dysregulation of patients' neutrophils. Patients' neutrophil-alerted state was further supported by increased CD11b, decreased CD16 plasma membrane deposition, and increased relative CD274+ and CD87+ neutrophil counts, but not by increased neutrophil elastase or myeloperoxidase plasma levels. As CD274 mediates inhibitory signals to different immune cells, neutrophils were cocultured with T-cells/PBMC. The decrease in CD25+ and IFN-γ + T-cell/PBMC ratio in patients indicated the patients' neutrophil suppressive functions. In summary, the results showed neutrophils' alerted state and dysregulation at the transcript level in patients with HAE types I and II even in a symptom-free period, which might make them more susceptible to edema formation. Neutrophils' T-cell suppressive capacity in HAE patients needs to be further investigated.
Central European Institute of Technology Masaryk University Brno Czech Republic
Centre for Cardiovascular Surgery and Transplantation Brno Czech Republic
Zobrazit více v PubMed
Agostoni A., Aygorenpursun E., Binkley K., et al. Hereditary and acquired angioedema: problems and progress: proceedings of the third C1 esterase inhibitor deficiency workshop and beyond. Journal of Allergy and Clinical Immunology. 2004;114(3):S51–131. doi: 10.1016/j.jaci.2004.06.047. PubMed DOI PMC
Bissler J. J., Aulak K. S., Donaldson V. H., et al. Molecular defects in hereditary angioneurotic edema. Proceedings of the Association of American Physicians. 1997;109(2):164–173. PubMed
Cichon S., Martin L., Hennies H. C., et al. Increased activity of coagulation factor XII (Hageman factor) causes hereditary angioedema type III. American Journal of Human Genetics. 2006;79(6):1098–1104. doi: 10.1086/509899. PubMed DOI PMC
Winnewisser J., Rossi M., Späth P., Bürgi H. Type I hereditary angio-oedema. Variability of clinical presentation and course within two large kindreds. Journal of Internal Medicine. 1997;241(1):39–46. doi: 10.1046/j.1365-2796.1997.76893000.x. PubMed DOI
Zuraw B. L., Herschbach J. Detection of C1 inhibitor mutations in patients with hereditary angioedema. Journal of Allergy and Clinical Immunology. 2000;105(3):541–546. doi: 10.1067/mai.2000.104780. PubMed DOI
Bork K., Wulff K., Steinmüller-Magin L., et al. Hereditary angioedema with a mutation in the plasminogen gene. Allergy. 2018;73(2):442–450. doi: 10.1111/all.13270. PubMed DOI
Joseph K., Tuscano T. B., Kaplan A. P. Studies of the mechanisms of bradykinin generation in hereditary angioedema plasma. Annals of Allergy, Asthma & Immunology. 2008;101(3):279–286. doi: 10.1016/S1081-1206(10)60493-0. PubMed DOI
Nussberger J., Cugno M., Amstutz C., Cicardi M., Pellacani A., Agostoni A. Plasma bradykinin in angio-oedema. The Lancet. 1998;351(9117):1693–1697. doi: 10.1016/S0140-6736(97)09137-X. PubMed DOI
Bafunno V., Firinu D., D'Apolito M., et al. Mutation of the angiopoietin-1 gene (ANGPT1) associates with a new type of hereditary angioedema. Journal of Allergy and Clinical Immunology. 2018;141(3):1009–1017. doi: 10.1016/j.jaci.2017.05.020. PubMed DOI
Amulic B., Cazalet C., Hayes G. L., Metzler K. D., Zychlinsky A. Neutrophil function: from mechanisms to disease. Annual Review of Immunology. 2012;30(1):459–489. doi: 10.1146/annurev-immunol-020711-074942. PubMed DOI
Mayadas T. N., Cullere X., Lowell C. A. The multifaceted functions of neutrophils. Annual Review of Pathology. 2014;9(1):181–218. doi: 10.1146/annurev-pathol-020712-164023. PubMed DOI PMC
Timár C. I., Lőrincz A. M., Ligeti E. Changing world of neutrophils. Pflügers Archiv. 2013;465(11):1521–1533. doi: 10.1007/s00424-013-1285-1. PubMed DOI
Nauseef W. M., Borregaard N. Neutrophils at work. Nature Immunology. 2014;15(7):602–611. doi: 10.1038/ni.2921. PubMed DOI
Henderson L. M., Figueroa C. D., Müller-Esterl W., Bhoola K. D. Assembly of contact-phase factors on the surface of the human neutrophil membrane. Blood. 1994;84(2):474–482. PubMed
Araújo R. C., Kettritz R., Fichtner I., Paiva A. C., Pesquero J. B., Bader M. Altered neutrophil homeostasis in kinin B1 receptor-deficient mice. Biological Chemistry. 2001;382(1):91–95. doi: 10.1515/BC.2001.014. PubMed DOI
Wachtfogel Y. T., Pixley R. A., Kucich U., et al. Purified plasma factor XIIa aggregates human neutrophils and causes degranulation. Blood. 1986;67(6):1731–1737. PubMed
Veszeli N., Csuka D., Zotter Z., et al. Neutrophil activation during attacks in patients with hereditary angioedema due to C1-inhibitor deficiency. Orphanet Journal of Rare Diseases. 2015;10(1):p. 156. doi: 10.1186/s13023-015-0374-y. PubMed DOI PMC
Bowers N. L., Helton E. S., Huijbregts R. P. H., Goepfert P. A., Heath S. L., Hel Z. Immune suppression by neutrophils in HIV-1 infection: role of PD-L1/PD-1 pathway. PLoS Pathogens. 2014;10(3, article e1003993) doi: 10.1371/journal.ppat.1003993. PubMed DOI PMC
Cohen N., Sharon A., Golik A., Zaidenstein R., Modai D. Hereditary angioneurotic edema with severe hypovolemic shock. Journal of Clinical Gastroenterology. 1993;16(3):237–239. doi: 10.1097/00004836-199304000-00016. PubMed DOI
Owen C. A., Campbell M. A., Sannes P. L., Boukedes S. S., Campbell E. J. Cell surface-bound elastase and cathepsin G on human neutrophils: a novel, non-oxidative mechanism by which neutrophils focus and preserve catalytic activity of serine proteinases. The Journal of Cell Biology. 1995;131(3):775–789. doi: 10.1083/jcb.131.3.775. PubMed DOI PMC
Edwards S. W., Nurcombe H. L., Hart C. A. Oxidative inactivation of myeloperoxidase released from human neutrophils. The Biochemical Journal. 1987;245(3):925–928. doi: 10.1042/bj2450925. PubMed DOI PMC
Leliefeld P. H. C., Koenderman L., Pillay J. How neutrophils shape adaptive immune responses. Frontiers in Immunology. 2015;6:p. 471. doi: 10.3389/fimmu.2015.00471. PubMed DOI PMC
Pillay J., Kamp V. M., van Hoffen E., et al. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. The Journal of Clinical Investigation. 2012;122(1):327–336. doi: 10.1172/JCI57990. PubMed DOI PMC
Arcoleo F., Salemi M., La Porta A., et al. Upregulation of cytokines and IL-17 in patients with hereditary angioedema. Clinical Chemistry and Laboratory Medicine. 2014;52(5):e91–e93. doi: 10.1515/cclm-2013-1008. PubMed DOI
Demirtürk M., Gelincik A., Çınar S., et al. Increased eNOS levels in hereditary angioedema. International Immunopharmacology. 2014;20(1):264–268. doi: 10.1016/j.intimp.2014.03.007. PubMed DOI
López-Lera A., Cabo F. S., Garrido S., Dopazo A., López-Trascasa M. Disease-modifying factors in hereditary angioedema: an RNA expression-based screening. Orphanet Journal of Rare Diseases. 2013;8(1):p. 77. doi: 10.1186/1750-1172-8-77. PubMed DOI PMC
Van den Steen P. E., Proost P., Wuyts A., Van Damme J., Opdenakker G. Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-α and leaves RANTES and MCP-2 intact. Blood. 2000;96(8):2673–2681. PubMed
Ito A., Mukaiyama A., Itoh Y., et al. Degradation of interleukin 1β by matrix metalloproteinases. Journal of Biological Chemistry. 1996;271(25):14657–14660. doi: 10.1074/jbc.271.25.14657. PubMed DOI
Schönbeck U., Mach F., Libby P. Generation of biologically active IL-1β by matrix metalloproteinases: a novel caspase-1-independent pathway of IL-1β processing. The Journal of Immunology. 1998;161(7):3340–3346. PubMed
McIntyre K. W., Stepan G. J., Kolinsky K. D., et al. Inhibition of interleukin 1 (IL-1) binding and bioactivity in vitro and modulation of acute inflammation in vivo by IL-1 receptor antagonist and anti-IL-1 receptor monoclonal antibody. The Journal of Experimental Medicine. 1991;173(4):931–939. doi: 10.1084/jem.173.4.931. PubMed DOI PMC
Liebler J. M., Kunkel S. L., Burdick M. D., Standiford T. J., Rolfe M. W., Strieter R. M. Production of IL-8 and monocyte chemotactic peptide-1 by peripheral blood monocytes. Disparate responses to phytohemagglutinin and lipopolysaccharide. The Journal of Immunology. 1994;152(1):241–249. PubMed
Schröder J. M., Christophers E. Secretion of novel and homologous neutrophil-activating peptides by LPS-stimulated human endothelial cells. The Journal of Immunology. 1989;142(1):244–251. PubMed
Soell M., Diab M., Haan-Archipoff G., et al. Capsular polysaccharide types 5 and 8 of Staphylococcus aureus bind specifically to human epithelial (KB) cells, endothelial cells, and monocytes and induce release of cytokines. Infection and Immunity. 1995;63(4):1380–1386. PubMed PMC
Marie C., Fitting C., Cheval C., et al. Presence of high levels of leukocyte-associated interleukin-8 upon cell activation and in patients with sepsis syndrome. Infection and Immunity. 1997;65(3):865–871. PubMed PMC
Bazzoni F., Cassatella M. A., Rossi F., Ceska M., Dewald B., Baggiolini M. Phagocytosing neutrophils produce and release high amounts of the neutrophil-activating peptide 1/interleukin 8. The Journal of Experimental Medicine. 1991;173(3):771–774. doi: 10.1084/jem.173.3.771. PubMed DOI PMC
Cassatella M. A. Neutrophil-derived proteins: selling cytokines by the pound. Advances in Immunology. 1999;73:369–509. doi: 10.1016/S0065-2776(08)60791-9. PubMed DOI
Kearley J., Barker J. E., Robinson D. S., Lloyd C. M. Resolution of airway inflammation and hyperreactivity after in vivo transfer of CD4+CD25+ regulatory T cells is interleukin 10 dependent. The Journal of Experimental Medicine. 2005;202(11):1539–1547. doi: 10.1084/jem.20051166. PubMed DOI PMC
Marie C., Muret J., Fitting C., Losser M. R., Payen D., Cavaillon J. M. Reduced ex vivo interleukin-8 production by neutrophils in septic and nonseptic systemic inflammatory response syndrome. Blood. 1998;91(9):3439–3446. PubMed
Renckens R., Weijer S., de Vos A. F., et al. Inhibition of plasmin activity by tranexamic acid does not influence inflammatory pathways during human endotoxemia. Arteriosclerosis, Thrombosis, and Vascular Biology. 2004;24(3):483–488. doi: 10.1161/01.ATV.0000118280.95422.48. PubMed DOI
Hanson A. J., Quinn M. T. Effect of fibrin sealant composition on human neutrophil chemotaxis. Journal of Biomedical Materials Research. 2002;61(3):474–481. doi: 10.1002/jbm.10196. PubMed DOI
Li Y., Xie H., Deng Z., et al. Tranexamic acid ameliorates rosacea symptoms through regulating immune response and angiogenesis. International Immunopharmacology. 2019;67:326–334. doi: 10.1016/j.intimp.2018.12.031. PubMed DOI
Matsuse H., Yanagihara K., Mukae H., Tanaka K., Nakazato M., Kohno S. Association of plasma neutrophil elastase levels with other inflammatory mediators and clinical features in adult patients with moderate and severe pneumonia. Respiratory Medicine. 2007;101(7):1521–1528. doi: 10.1016/j.rmed.2007.01.001. PubMed DOI
Tagami T., Kushimoto S., Tosa R., et al. Plasma neutrophil elastase correlates with pulmonary vascular permeability: a prospective observational study in patients with pneumonia. Respirology. 2011;16(6):953–958. doi: 10.1111/j.1440-1843.2011.01997.x. PubMed DOI
Ciećko-Michalska I., Wierzbicka-Tutka I., Szczepanek M., et al. TGF-β1 and granulocyte elastase in the evaluation of activity of inflammatory bowel disease. A pilot study. Postȩpy Higieny i Medycyny Doświadczalnej. 2014;68:66–72. doi: 10.5604/17322693.1086361. PubMed DOI
Gouni-Berthold I., Baumeister B., Wegel E., Berthold H. K., Vetter H., Schmidt C. Neutrophil-elastase in chronic inflammatory bowel disease: a marker of disease activity? Hepato-Gastroenterology. 1999;46(28):2315–2320. PubMed
Lee S.-A., Wang P.-H., Chiou H.-L., Chou M.-C., Tsai H.-T., Yang S.-F. Markedly elevated plasma myeloperoxidase protein in patients with pelvic inflammatory disease who have A allele myeloperoxidase gene polymorphism. Fertility and Sterility. 2010;93(4):1260–1266. doi: 10.1016/j.fertnstert.2008.11.024. PubMed DOI
Fernandes R. M. S. N., da Silva N. P., Sato E. I. Increased myeloperoxidase plasma levels in rheumatoid arthritis. Rheumatology International. 2012;32(6):1605–1609. doi: 10.1007/s00296-011-1810-5. PubMed DOI
Glasser L., Fiederlein R. L. Functional differentiation of normal human neutrophils. Blood. 1987;69(3):937–944. PubMed
Neeli I., Khan S. N., Radic M. Histone deimination as a response to inflammatory stimuli in neutrophils. The Journal of Immunology. 2008;180(3):1895–1902. doi: 10.4049/jimmunol.180.3.1895. PubMed DOI
Behnen M., Leschczyk C., Möller S., et al. Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcγRIIIB and Mac-1. The Journal of Immunology. 2014;193(4):1954–1965. doi: 10.4049/jimmunol.1400478. PubMed DOI
Hayashi F., Means T. K., Luster A. D. Toll-like receptors stimulate human neutrophil function. Blood. 2003;102(7):2660–2669. doi: 10.1182/blood-2003-04-1078. PubMed DOI
Sabroe I., Prince L. R., Jones E. C., et al. Selective roles for Toll-like receptor (TLR)2 and TLR4 in the regulation of neutrophil activation and life span. The Journal of Immunology. 2003;170(10):5268–5275. doi: 10.4049/jimmunol.170.10.5268. PubMed DOI
Andreasen P. A., Kjøller L., Christensen L., Duffy M. J. The urokinase-type plasminogen activator system in cancer metastasis: a review. International Journal of Cancer. 1997;72(1):1–22. doi: 10.1002/(SICI)1097-0215(19970703)72:1<1::AID-IJC1>3.0.CO;2-Z. PubMed DOI
Kaplan A. P., Austen K. F. A prealbumin activator of prekallikrein. II. Derivation of activators of prekallikrein from active Hageman factor by digestion with plasmin. The Journal of Experimental Medicine. 1971;133(4):696–712. doi: 10.1084/jem.133.4.696. PubMed DOI PMC
Fields T., Ghebrehiwet B., Kaplan A. P. Kinin formation in hereditary angioedema plasma: evidence against kinin derivation from C2 and in support of “spontaneous” formation of bradykinin. Journal of Allergy and Clinical Immunology. 1983;72(1):54–60. doi: 10.1016/0091-6749(83)90052-0. PubMed DOI
Nussberger J., Cugno M., Cicardi M., Agostoni A. Local bradykinin generation in hereditary angioedema. Journal of Allergy and Clinical Immunology. 1999;104(6):1321–1322. doi: 10.1016/S0091-6749(99)70030-8. PubMed DOI
Brown E. W., Ravindran S., Patston P. A. The reaction between plasmin and C1-inhibitor results in plasmin inhibition by the serpin mechanism. Blood Coagulation & Fibrinolysis. 2002;13(8):711–714. doi: 10.1097/00001721-200212000-00007. PubMed DOI
Bork K., Wulff K., Meinke P., Wagner N., Hardt J., Witzke G. A novel mutation in the coagulation factor 12 gene in subjects with hereditary angioedema and normal C1-inhibitor. Clinical Immunology. 2011;141(1):31–35. doi: 10.1016/j.clim.2011.07.002. PubMed DOI
Dewald G., Bork K. Missense mutations in the coagulation factor XII (Hageman factor) gene in hereditary angioedema with normal C1 inhibitor. Biochemical and Biophysical Research Communications. 2006;343(4):1286–1289. doi: 10.1016/j.bbrc.2006.03.092. PubMed DOI
Kiss N., Barabás E., Várnai K., et al. Novel duplication in the F12 gene in a patient with recurrent angioedema. Clinical Immunology. 2013;149(1):142–145. doi: 10.1016/j.clim.2013.08.001. PubMed DOI
Liu D., Cai S., Gu X., Scafidi J., Wu X., Davis A. E. C1 inhibitor prevents endotoxin shock via a direct interaction with lipopolysaccharide. The Journal of Immunology. 2003;171(5):2594–2601. doi: 10.4049/jimmunol.171.5.2594. PubMed DOI
Davis A., III, Lu F., Mejia P. C1 inhibitor, a multi-functional serine protease inhibitor. Thrombosis and Haemostasis. 2010;104(11):886–893. doi: 10.1160/TH10-01-0073. PubMed DOI
Dorresteijn M. J., Visser T., Cox L. A. E., et al. C1-esterase inhibitor attenuates the inflammatory response during human endotoxemia. Critical Care Medicine. 2010;38(11):2139–2145. doi: 10.1097/CCM.0b013e3181f17be4. PubMed DOI
Liu D., Lu F., Qin G., Fernandes S. M., Li J., Davis A. E. C1 inhibitor-mediated protection from sepsis. The Journal of Immunology. 2007;179(6):3966–3972. doi: 10.4049/jimmunol.179.6.3966. PubMed DOI
Gabrilovich D. I., Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews Immunology. 2009;9(3):162–174. doi: 10.1038/nri2506. PubMed DOI PMC
Mantovani A., Cassatella M. A., Costantini C., Jaillon S. Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Reviews Immunology. 2011;11(8):519–531. doi: 10.1038/nri3024. PubMed DOI
Honda D., Ohsawa I., Sato N., et al. Diminished capacity of opsonization and immune complex solubilization, and detection of anti-C1q antibodies in sera from patients with hereditary angioedema. Allergology International. 2017;66(4):603–609. doi: 10.1016/j.alit.2017.03.008. PubMed DOI
Kessel A., Peri R., Perricone R., et al. The autoreactivity of B cells in hereditary angioedema due to C1 inhibitor deficiency. Clinical and Experimental Immunology. 2012;167(3):422–428. doi: 10.1111/j.1365-2249.2011.04527.x. PubMed DOI PMC
Nielsen E. W., Gran J. T., Straume B., Mellbye O. J., Johansen H. T., Mollnes T. E. Hereditary angio-oedema: new clinical observations and autoimmune screening, complement and kallikrein-kinin analyses. Journal of Internal Medicine. 1996;239(2):119–130. doi: 10.1046/j.1365-2796.1996.418764000.x. PubMed DOI
Farkas H., Csuka D., Gács J., et al. Lack of increased prevalence of immunoregulatory disorders in hereditary angioedema due to C1-inhibitor deficiency. Clinical Immunology. 2011;141(1):58–66. doi: 10.1016/j.clim.2011.05.004. PubMed DOI
Agostoni A., Cicardi M. Hereditary and acquired C1-inhibitor deficiency: biological and clinical characteristics in 235 patients. Medicine. 1992;71(4):206–215. doi: 10.1097/00005792-199207000-00003. PubMed DOI
Muhlemann M. F., Macrae K. D., Smith A. M., et al. Hereditary angioedema and thyroid autoimmunity. Journal of Clinical Pathology. 1987;40(5):518–523. doi: 10.1136/jcp.40.5.518. PubMed DOI PMC
Sanchez A. M., Yang Y. The role of natural regulatory T cells in infection. Immunologic Research. 2011;49(1-3):124–134. doi: 10.1007/s12026-010-8176-8. PubMed DOI PMC
Visy B., Füst G., Bygum A., et al. Helicobacter pylori infection as a triggering factor of attacks in patients with hereditary angioedema. Helicobacter. 2007;12(3):251–257. doi: 10.1111/j.1523-5378.2007.00501.x. PubMed DOI
Zotter Z., Veszeli N., Kőhalmi K. V., et al. Bacteriuria increases the risk of edematous attacks in hereditary angioedema with C1-inhibitor deficiency. Allergy. 2016;71(12):1791–1793. doi: 10.1111/all.13034. PubMed DOI
Cedzyński M., Madaliński K., Gregorek H., et al. Possible disease-modifying factors: the mannan-binding lectin pathway and infections in hereditary angioedema of children and adults. Archivum Immunologiae et Therapiae Experimentalis. 2008;56(1):69–75. doi: 10.1007/s00005-008-0004-7. PubMed DOI PMC