SERPING1 Variants and C1-INH Biological Function: A Close Relationship With C1-INH-HAE
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article, Review
PubMed
35958943
PubMed Central
PMC9361472
DOI
10.3389/falgy.2022.835503
Knihovny.cz E-resources
- Keywords
- C1 Inhibitor, C1-INH-HAE, SERPING1 gene, angioedema, genetic variation, hereditary–diagnosis, serpin function, serpinopathy,
- Publication type
- Journal Article MeSH
- Review MeSH
Hereditary angioedema with C1 Inhibitor deficiency (C1-INH-HAE) is caused by a constellation of variants of the SERPING1 gene (n = 809; 1,494 pedigrees), accounting for 86.8% of HAE families, showing a pronounced mutagenic liability of SERPING1 and pertaining to 5.6% de novo variants. C1-INH is the major control serpin of the kallikrein-kinin system (KKS). In addition, C1-INH controls complement C1 and plasminogen activation, both systems contributing to inflammation. Recognizing the failed control of C1s protease or KKS provides the diagnosis of C1-INH-HAE. SERPING1 variants usually behave in an autosomal-dominant character with an incomplete penetrance and a low prevalence. A great majority of variants (809/893; 90.5%) that were introduced into online database have been considered as pathogenic/likely pathogenic. Haploinsufficiency is a common feature in C1-INH-HAE where a dominant-negative variant product impacts the wild-type allele and renders it inactive. Small (36.2%) and large (8.3%) deletions/duplications are common, with exon 4 as the most affected one. Point substitutions with missense variants (32.2%) are of interest for the serpin structure-function relationship. Canonical splice sites can be affected by variants within introns and exons also (14.3%). For noncanonical sequences, exon skipping has been confirmed by splicing analyses of patients' blood-derived RNAs (n = 25). Exonic variants (n = 6) can affect exon splicing. Rare deep-intron variants (n = 6), putatively acting as pseudo-exon activating mutations, have been characterized as pathogenic. Some variants have been characterized as benign/likely benign/of uncertain significance (n = 74). This category includes some homozygous (n = 10) or compound heterozygous variants (n = 11). They are presenting with minor allele frequency (MAF) below 0.00002 (i.e., lower than C1-INH-HAE frequency), and may be quantitatively unable to cause haploinsufficiency. Rare benign variants could contribute as disease modifiers. Gonadal mosaicism in C1-INH-HAE is rare and must be distinguished from a de novo variant. Situations with paternal or maternal disomy have been recorded (n = 3). Genotypes must be interpreted with biological investigation fitting with C1-INH expression and typing. Any SERPING1 variant reminiscent of the dysfunctional phenotype of serpin with multimerization or latency should be identified as serpinopathy.
Centre Hospitalier Universitaire de Grenoble Grenoble France
Hospital La Paz Institute for Health Research CIBERER U 754 Madrid Spain
Hospital La Paz Institute for Health Research Universidad Autónoma de Madrid Madrid Spain
Human Genomics Research Group Department of Biomedicine University of Basel Basel Switzerland
Institute of Medical Genetics and Pathology University Hospital Basel Basel Switzerland
Univ Grenoble Alpes and Centre Hospitalier Universitaire de Grenoble Grenoble France
University Clinic of Respiratory and Allergic Diseases Golnik Golnik Slovenia
See more in PubMed
Cicardi M, Banerji A, Bracho F, Malbrán A, Rosenkranz B, Riedl M, et al. . Icatibant, a new bradykinin-receptor antagonist, in hereditary angioedema. N Engl J Med. (2010) 363:532–41. 10.1056/NEJMx100067 PubMed DOI PMC
Nzeako UC, Frigas E, Tremaine WJ. Hereditary angioedema: a broad review for clinicians. Arch Intern Med. (2001) 161:2417–29. 10.1001/archinte.161.20.2417 PubMed DOI
Schmaier AH. The hereditary angioedema syndromes. J Clin Invest. (2019) 129:66–8. 10.1172/JCI125378 PubMed DOI PMC
Ghebrehiwet B, Kaplan AP, Joseph K, Peerschke EI. The complement and contact activation systems: partnership in pathogenesis beyond angioedema. Immunol Rev. (2016) 274:281–9. 10.1111/imr.12469 PubMed DOI
Maas C. Plasminflammation-An emerging pathway to bradykinin production. Front Immunol (Lausanne). (2019) 10:2046. 10.3389/fimmu.2019.02046 PubMed DOI PMC
Irmscher S, Döring N, Halder LD, Jo EAH, Kopka I, Dunker C, et al. . Kallikrein cleaves C3 and activates complement. J Innate Immun. (2018) 10:94–105. 10.1159/000484257 PubMed DOI PMC
Choudhary K, Patel PK, Are VN, Makde RD, Hajela K. Mannose-binding lectin-associated serine protease-1 cleaves plasminogen and plasma fibronectin: prefers plasminogen over known fibrinogen substrate. Blood Coagul Fibrinolysis. (2021) 32:504–12. 10.1097/MBC.0000000000001074 PubMed DOI
Foley JH. Plasmin(ogen) at the nexus of fibrinolysis, inflammation, and complement. Semin Thromb Haemost. (2017) 43:135–42. 10.1055/s-0036-1592302 PubMed DOI
Bekassy Z, Lopatko Fagerström I, Bader M, Karpman D. Crosstalk between the renin-angiotensin, complement and kallikrein-kinin systems in inflammation. Nat Rev Immunol. (2021) 1–18. 10.1038/s41577-021-00634-8 PubMed DOI PMC
Fijen LM, Bork K, Cohn DM. Current and prospective targets of pharmacologic treatment of hereditary angioedema types 1 and 2. Clin Rev Allergy Immunol. (2021) 61:66–76. 10.1007/s12016-021-08832-x PubMed DOI PMC
Hofman ZLM, Relan A, Zeerleder S, Drouet C, Zuraw B, Hack CE. Angioedema attacks in patients with hereditary angioedema: local manifestations of a systemic activation process. J Allergy Clin Immunol. (2016) 138:359–66. 10.1016/j.jaci.2016.02.041 PubMed DOI
Drouet C, Désormeaux A, Robillard J, Ponard D, Bouillet L, Martin L, et al. . Metallopeptidase activities in hereditary angioedema: effect of androgen prophylaxis on plasma aminopeptidase P. J Allergy Clin Immunol. (2008) 121:429–33. 10.1016/j.jaci.2007.10.048 PubMed DOI PMC
Kajdácsi E, Veszeli N, Mezo B, Jandrasics Z, Kohalmi KV, Ferrara AL, et al. . Pathways of neutrophil granulocyte activation in hereditary angioedema with C1 Inhibitor deficiency. Clin Rev Allergy Immunol. (2021) 60:383–95. 10.1007/s12016-021-08847-4 PubMed DOI PMC
Grymova T, Vlkova M, Soucek P, Hakl R, Nechvatalova J, Slamina P, et al. . Neutrophils are dysregulated in patients with hereditary angioedema types I and II in a symptom-free period. Mediators Inflamm. (2019) 9515628. 10.1155/2019/9515628 PubMed DOI PMC
Csuka D, Varga L, Farkas H, Füst G. Strong correlation of high EBNA-1-IgG levels with edematous attacks involving upper airway mucosa in hereditary angioedema due to C1-inhibitor deficiency. Mol Immunol. (2012) 49:649–54. 10.1016/j.molimm.2011.11.005 PubMed DOI
López-Lera A, Sánchez Cabo F, Garrido S, Dopazo A, López-Trascasa M. Disease-modifying factors in hereditary angioedema: an RNA expression-based screening. Orphanet J Rare Dis. (2013) 8:77. 10.1186/1750-1172-8-77 PubMed DOI PMC
Germenis AE, Rijavec M, Veronez CL. Leveraging genetics for hereditary angioedema: a road map to precision medicine. Clin Rev Allergy Immunol. (2021) 60:416–28. 10.1007/s12016-021-08836-7 PubMed DOI
Rosen FS, Pensky J, Donaldson V, Charache P. Hereditary angioneurotic edema: two genetic variants. Science. (1965) 148:957–8. 10.1126/science.148.3672.957 PubMed DOI
Cicardi M, Aberer W, Banerji A, Bas M, Bernstein JA, Bork K, et al. . Classification, diagnosis, and approach to treatment for angioedema: consensus report from the Hereditary Angioedema International Working Group. Allergy. (2014) 69:602–16. 10.1111/all.12380 PubMed DOI
Ponard D, Gaboriaud C, Charignon D, Ghannam A, Wagenaar-Bos IGA, Roem D, et al. . SERPING1 mutation update: Mutation spectrum and C1 Inhibitor phenotypes. Hum Mutat. (2020) 41:38–57. 10.1002/humu.23917 PubMed DOI
Henao MP, Kraschnewski JL, Kelbel T, Craig TJ. Diagnosis and screening of patients with hereditary angioedema in primary care. Ther Clin Risk Manag. (2016) 12:701–11. 10.2147/TCRM.S86293 PubMed DOI PMC
Germenis AE, Speletas M. Genetics of hereditary angioedema revisited. Clin Rev Allergy Immunol. (2016) 51:170–82. 10.1007/s12016-016-8543-x PubMed DOI
Davis AE, 3rd, Lu F, Mejia P. C1 inhibitor, a multi-functional serine protease. inhibitor Thromb Haemost. (2010) 104:886–93. 10.1160/TH10-01-0073 PubMed DOI
Drouet C, Ponard D, Ghannam A. C1 inhibitor. In: Barnum S, Schein T, editors. The Complement FactsBook. London: Academic Press. p 241–249. (2018). 10.1016/B978-0-12-810420-0.00023-7 DOI
Lomas DA, Belorgey D, Mallya M, Miranda E, Kinghorn KJ, Sharp LK, et al. . Molecular mousetraps and the serpinopathies. Biochem Soc Trans. (2005) 33:321–30. 10.1042/BST0330321 PubMed DOI
Huntington JA, Read RJ, Carrell RW. Structure of a serpin-protease complex shows inhibition by deformation. Nature. (2000) 407:923–6. 10.1038/35038119 PubMed DOI
Khan MS, Singh P, Azhar A, Naseem A, Rashid Q, Kabir MA, et al. . Serpin inhibition mechanism: a delicate balance between native metastable state and polymerization. J Amino Acids. (2011) 2011:606797. 10.4061/2011/606797 PubMed DOI PMC
Wells MJ, Sheffield WP, Blajchman MA. The clearance of thrombin-antithrombin and related serpin-enzyme complexes from the circulation: role of various hepatocyte receptors. Thromb Haemost. (1999) 81:325–37. 10.1055/s-0037-1614472 PubMed DOI
Gooptu B, Lomas DA. Conformational pathology of the serpins: themes, variations, and therapeutic strategies. Annu Rev Biochem. (2009) 78:147–76. 10.1146/annurev.biochem.78.082107.133320 PubMed DOI
Windfuhr JP, Alsenz J, Loos M. The critical concentration of C1-esterase inhibitor (C1-INH) in human serum preventing auto-activation of the first component of complement (C1). Mol Immunol. (2005) 42:657–63. 10.1016/j.molimm.2004.09.025 PubMed DOI
Wagenaar-Bos IG, Drouet C, Aygören-Pursun E, Bork K, Bucher C, Bygum A, et al. . Functional C1-inhibitor diagnostics in hereditary angioedema: assay evaluation and recommendations. J Immunol Methods. (2008) 338:14–20. 10.1016/j.jim.2008.06.004 PubMed DOI
Li HH, Busse P, Lumry WR, Frazer-Abel A, Levy H, Steele T, et al. . Comparison of chromogenic and ELISA functional C1 inhibitor tests in diagnosing hereditary angioedema. J Allergy Clin Immunol Pract. (2015) 3:200–5. 10.1016/j.jaip.2014.08.002 PubMed DOI
Madsen DE, Hansen S, Gram J, Bygum A, Drouet C, Sidelmann JJ. Presence of C1-inhibitor polymers in a subset of patients suffering from hereditary angioedema. PLoS ONE. (2014) 9:e112051. 10.1371/journal.pone.0112051 PubMed DOI PMC
Hack CE, Relan A, van Amersfoort ES, Cicardi M. Target levels of functional C1-inhibitor in hereditary angioedema. Allergy. (2012) 67:123–30. 10.1111/j.1398-9995.2011.02716.x PubMed DOI
Bouillet L, Ponard D, Rousset H, Cichon S, Drouet C. A case of hereditary angio-oedema type III presenting with C1-inhibitor cleavage and a missense mutation in F12 gene. Br J Dermatol. (2007). 10.1111/j.1365-2133.2007.07778.x PubMed DOI
Veronez CL, Mendes AR, Leite CS, Gomes CP, Grumach AS, Pesquero JB. Hereditary angioedema brazilian study group (GEBRAEH). The panorama of primary angioedema in the Brazilian population. J Allergy Clin Immunol Pract. (2021) 9:2293–304.e5. PubMed
Blanch A, Roche O, Urrutia I, Gamboa P, Fontán G, López-Trascasa M. First case of homozygous C1 inhibitor deficiency. J Allergy Clin Immunol. (2006) 118:1330–5. 10.1016/j.jaci.2006.07.035 PubMed DOI
Verpy E, Biasotto M, Brai M, Misiano G, Meo T, Tosi M. Exhaustive mutation scanning by fluorescence-assisted mismatch analysis discloses new genotype-phenotype correlations in angioedema. Am J Hum Genet. (1996) 59:308–19. PubMed PMC
Büyüköztürk S, Eroglu BK, Gelincik A, Uzümcü A, Ozşeker F, Colakoglu B, et al. . A Turkish family with a novel mutation in the promoter region of the C1 inhibitor gene. J Allergy Clin Immunol. (2009) 123:962–4. 10.1016/j.jaci.2008.12.022 PubMed DOI
Kesim B, Uyguner ZO, Gelincik A, Mete Gökmen N, Sin AZ, Karakaya G, et al. . The Turkish hereditary angioedema pilot study (TURHAPS): the first Turkish series of hereditary angioedema. Int Arch Allergy Immunol. (2011) 156:443–50. 10.1159/000323915 PubMed DOI
Zahedi K, Bissler JJ, Prada AE, Prada JA, Davis AE, 3rd. The promoter of the C1 inhibitor gene contains a polypurine.polypyrimidine segment that enhances transcriptional activity. J Immunol. (1999) 162:7249–55. PubMed
Rijavec M, Korošec P, Šilar M, Zidarn M, Miljković J, Košnik M, et al. . Hereditary angioedema nationwide study in Slovenia reveals four novel mutations in SERPING1 gene. PLoS ONE. (2013) 8:e56712. 10.1371/journal.pone.0056712 PubMed DOI PMC
Kalmár L, Hegedüs T, Farkas H, Nagy M, Tordai A. HAEdb: a novel interactive, locus-specific mutation database for the C1 inhibitor gene. Hum Mutat. (2005) 25:1–5. 10.1002/humu.20112 PubMed DOI
Pappalardo E, Caccia S, Suffritti C, Tordai A, Zingale LC, Cicardi M. Mutation screening of C1 inhibitor gene in 108 unrelated families with hereditary angioedema: functional and structural correlates. Mol Immunol. (2008) 45:3536–44. 10.1016/j.molimm.2008.05.007 PubMed DOI
Bygum A, Fagerberg CR, Ponard D, Monnier N, Lunardi J, Drouet C. Mutational spectrum and phenotypes in Danish families with hereditary angioedema. Allergy. (2011) 66:76–84. 10.1111/j.1398-9995.2010.02456.x PubMed DOI
López-Lera A, Favier B, Mena de la Cruz R, Drouet C, López-Trascasa M. A new case of homozygous C1-inhibitor deficiency suggests a role for Arg378 in the control of kinin pathway activation. J Allergy Clin Immunol. (2010) 126:1307–10.e3. 10.1016/j.jaci.2010.07.037 PubMed DOI
Mete Gökmen N, Gülbahar O, Onay H, Peker Koc Z, Özgül S, Köse T, et al. . Deletions in SERPING1 lead to lower C1 Inhibitor function: lower C1 Inhibitor function can predict disease severity. Int Arch Allergy Immunol. (2019) 178:50–9. 10.1159/000492583 PubMed DOI
Bafunno V, Divella C, Sessa F, Tiscia GL, Castellano G, Gesualdo L, et al. . De novo homozygous mutation of the C1 inhibitor gene in a patient with hereditary angioedema. J Allergy Clin Immunol. (2013) 132:748–50.e3. 10.1016/j.jaci.2013.04.006 PubMed DOI
Bors A, Csuka D, Varga L, Farkas H, Tordai A, Füst G, et al. . Less severe clinical manifestations in patients with hereditary angioedema with missense C1INH gene mutations. J Allergy Clin Immunol. (2013) 131:1708–13. 10.1016/j.jaci.2012.11.015 PubMed DOI
Speletas M, Szilágyi Á, Csuka D, Koutsostathis N, Psarros F, Moldovan D, et al. . F12-46C/T polymorphism as modifier of the clinical phenotype of hereditary angioedema. Allergy. (2015) 70:1661–4. 10.1111/all.12714 PubMed DOI
Charignon D, Ponard D, de Gennes C, Drouet C, Ghannam A. SERPING1 and F12 combined variants in a hereditary angioedema family. Ann Allergy Asthma Immunol. (2018) 121:500–2. 10.1016/j.anai.2018.05.031 PubMed DOI
Bork K, Zibat A, Ferrari DM, Wollnik B, Schön MP, Wulff K, et al. . Hereditary angioedema in a single family with specific mutations in both plasminogen and SERPING1 genes. J Dtsch Dermatol Ges. (2020) 18:215–23. 10.1111/ddg.14036 PubMed DOI
Bork K, Wulff K, Steinmüller-Magin L, Braenne I, Staubach-Renz P, Witzke G, et al. . Hereditary angioedema with a mutation in the plasminogen gene. Allergy. (2018) 73:442–50. 10.1111/all.13270 PubMed DOI
Veronez CL, Aabom A, Martin RP, Filippelli-Silva R, Gonçalves RF, Nicolicht P, et al. . Genetic variation of kallikrein-kinin system and related genes in patients with hereditary angioedema. Front Med (Lausanne). (2019) 6:28. 10.3389/fmed.2019.00028 PubMed DOI PMC
Loules G, Parsopoulou F, Zamanakou M, Csuka D, Bova M, González-Quevedo T, et al. . Deciphering the genetics of primary angioedema with normal levels of C1 Inhibitor. J Clin Med. (2020) 9:3402. 10.3390/jcm9113402 PubMed DOI PMC
Veronez CL, Dias da Silva E, Teixeira PVL, Cagini N, Constantino-Silva RN, Grumach AS, et al. . Genetic analysis of hereditary angioedema in a Brazilian family by targeted next generation sequencing. Biol Chem. (2016) 397:315–22. 10.1515/hsz-2015-0212 PubMed DOI
Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. . Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. (2015) 17:405–24. 10.1038/gim.2015.30 PubMed DOI PMC
Germenis AE, Margaglione M, Pesquero JB, Farkas H, Cichon S, Csuka D, et al. . International consensus on the use of genetics in the management of hereditary angioedema. J Allergy Clin Immunol Pract. (2020) 8:901–11. 10.1016/j.jaip.2019.10.004 PubMed DOI
Bos IG, Hack CE, Abrahams JP. Structural and functional aspects of C1-inhibitor. Immunobiology. (2002) 205:518–33. 10.1078/0171-2985-00151 PubMed DOI
Stoppa-Lyonnet D, Carter PE, Meo T, Tosi M. Clusters of intragenic Alu repeats predispose the human C1 inhibitor locus to deleterious rearrangements. Proc Natl Acad Sci U S A. (1990) 87:1551–5. 10.1073/pnas.87.4.1551 PubMed DOI PMC
Pappalardo E, Cicardi M, Duponchel C, Carugati A, Choquet S, Agostoni A, et al. . Frequent de novo mutations and exon deletions in the C1inhibitor gene of patients with angioedema. J Allergy Clin Immunol. (2000) 106:1147–54. 10.1067/mai.2000.110471 PubMed DOI
Duponchel C, Di Rocco C, Cicardi M, Tosi M. Rapid detection by fluorescent multiplex PCR of exon deletions and duplications in the C1 inhibitor gene of hereditary angioedema patients. Hum Mutat. (2001) 17:61–70. 10.1002/1098-1004(2001)17:1<61::AID-HUMU7>3.0.CO;2-9 PubMed DOI
Roche O, Blanch A, Duponchel C, Fontán G, Tosi M, López-Trascasa M, et al. . Hereditary angioedema: the mutation spectrum of SERPING1/C1NH in a large Spanish cohort. Hum Mutat. (2005) 26:135–44. 10.1002/humu.20197 PubMed DOI
Nicolicht P, Faria DOS, Martins-Silva L, Maia LSM, Moreno AS, Arruda LK, et al. . Gene mapping strategy for Alu elements rearrangements: Detection of new large deletions in the SERPING1 gene causing hereditary angioedema in Brazilian families. Gene. (2019) 685:179–85. 10.1016/j.gene.2018.10.084 PubMed DOI
López-Lera A, Garrido S, Roche O, López-Trascasa M. SERPING1 mutations in 59 families with hereditary angioedema. Mol Immunol. (2011) 49:18–27. 10.1016/j.molimm.2011.07.010 PubMed DOI
Wong WY, Wong H, Au E, Chan E. Identification and mapping of a 2,009-bp DNA deletion in SERPING1 of a hereditary angioedema patient. Case Rep Genet. (2019) 7052062. 10.1155/2019/7052062 PubMed DOI PMC
Loules G, Zamanakou M, Parsopoulou F, Vatsiou S, Psarros F, Csuka D, et al. . Targeted next-generation sequencing for the molecular diagnosis of hereditary angioedema due to C1-inhibitor deficiency. Gene. (2018) 667:76–82. 10.1016/j.gene.2018.05.029 PubMed DOI
Grodecká L, Hujová P, Kramárek M, Kršjaková T, Kováčová T, Vondrášková K, et al. . Systematic analysis of splicing defects in selected primary immunodeficiencies-related genes. Clin Immunol. (2017) 180:3–44. 10.1016/j.clim.2017.03.010 PubMed DOI
Siddique Z, McPhaden AR, Lappin DF, Whaley K. An RNA splice site mutation in the C1-inhibitor gene causes type I hereditary angio-oedema. Hum Genet. (1991) 88:231–2. 10.1007/BF00206079 PubMed DOI
Andrejević S, Korošec P, Šilar M, Košnik M, Mijanović R, Bonači-Nikolić B, et al. . Hereditary angioedema due to C1 Inhibitor deficiency in Serbia: two novel mutations and evidence of genotype-phenotype association. PLoS ONE. (2015) 10:e0142174. 10.1371/journal.pone.0142174 PubMed DOI PMC
Grodecká L, Buratti E, Freiberger T. Mutations of pre-mRNA splicing regulatory elements: are predictions moving forward to clinical diagnostics? Int J Mol Sci. (2017) 18:1668. 10.3390/ijms18081668 PubMed DOI PMC
López-Martínez R, Martínez-Borra J, Fernández-González P, Coto E, Toyos-González P. Hereditary angioedema caused by a novel intronic variant of SERPING1. Pediatr Allergy Immunol. (2022) 33:e13681. 10.1111/PAI.13681/v2/response1 PubMed DOI
Colobran R, Lois S. de la Cruz X, Pujol-Borrell R, Hernández-González M, Guilarte M. Identification and characterization of a novel splice site mutation in the SERPING1 gene in a family with hereditary angioedema. Clin Immunol. (2014) 150:143–8. 10.1016/j.clim.2013.11.013 PubMed DOI
Senapathy P, Shapiro MB, Harris NL. Splice junctions, branch point sites, and exons: sequence statistics, identification, and applications to genome project. Methods Enzymol. (1990) 183:252–78. 10.1016/0076-6879(90)83018-5 PubMed DOI
Roca X, Krainer AR, Eperon IC. Pick one but be quick: 5' splice sites and the problems of too many choices. Genes Dev. (2013) 27:129–44. 10.1101/gad.209759.112 PubMed DOI PMC
Baralle D, Baralle M. Splicing in action: assessing disease causing sequence changes. J Med Genet. (2005) 42:737–48. 10.1136/jmg.2004.029538 PubMed DOI PMC
Obtułowicz K, Ksiazek T, Bogdali A, Dyga W, Czarnobilska E, Juchacz A. Genetic variants of SERPING1 gene in Polish patients with hereditary angioedema due to C1 inhibitor deficiency. Cent Eur J Immunol. (2020) 45:301–9. 10.5114/ceji.2020.101252 PubMed DOI PMC
Speletas M, Szilagyi A, Psarros F, Moldovan D, Magerl M, Maria Kompoti M, et al. . Hereditary angioedema: Molecular and clinical differences among European populations. J Allergy Clin Immunol. (2015) 135:570–3. 10.1016/j.jaci.2014.08.007 PubMed DOI
Gösswein T, Kocot A, Emmert G, Kreuz W, Martinez-Saguer I, Aygören-Pürsün E, et al. . Mutational spectrum of the C1INH (SERPING1) gene in patients with hereditary angioedema. Cytogenet Genome Res. (2008) 121:181–8. 10.1159/000138883 PubMed DOI
Duponchel C, Djenouhat K, Frémeaux-Bacchi V, Monnier N, Drouet C, Tosi M. Functional analysis of splicing mutations and of an exon 2 polymorphic variant of SERPING1/C1NH. Hum Mutat. (2006) 27:295–6. 10.1002/humu.9414 PubMed DOI
Pagani F, Baralle FE. Genomic variants in exons and introns: identifying the splicing spoilers. Nat Rev Genet. (2004) 5:389–96. 10.1038/nrg1327 PubMed DOI
Rodríguez JA, Narváez CF. First Analysis of SERPING1 gene in patients with hereditary angioedema in Colombia reveals two genotypic variants in a highly symptomatic individual. J Clin Immunol. (2018) 38:294–9. 10.1007/s10875-018-0491-1 PubMed DOI
Hujová P, Souček P, Grodecká L, Grombiríková H, Ravčuková B, Kuklínek P, et al. . Deep intronic mutation in SERPING1 caused hereditary angioedema through pseudoexon activation. J Clin Immunol. (2020) 40:435–46. 10.1007/s10875-020-00753-2 PubMed DOI
Germenis AE, Vatsiou S, Csuka D, Zamanakou M, Farkas H. Deep intronic SERPING1 gene variants: ending one odyssey and starting another? J Clin Immunol. (2021) 41:248–50. 10.1007/s10875-020-00887-3 PubMed DOI
Vatsiou S, Zamanakou M, Loules G, Psarros F, Parsopoulou F, Csuka D, et al. . A novel deep intronic SERPING1 variant as a cause of hereditary angioedema due to C1-inhibitor deficiency. Allergol Int. (2020) 69:443–9. 10.1016/j.alit.2019.12.009 PubMed DOI
Kramer J, Rosen FS, Colten HR, Rajczy K, Strunk RC. Transinhibition of C1 inhibitor synthesis in type I hereditary angioneurotic edema. J Clin Immunol. (1993) 91:1258–62. 10.1172/JCI116290 PubMed DOI PMC
Laimer M, Klausegger A, Aberer W, Oende K, Steinhuber M, Lanschuetzer CM, et al. . Haploinsufficiency due to deletion within the 3′-UTR of C1-INH-gene associated with hereditary angioedema. Genet Med. (2006) 8:249–54. 10.1097/01.gim.0000214302.90076.fa PubMed DOI
Haslund D, Ryø LB, Majidi SS, Rose I, Skipper KA, Fryland T, et al. . Dominant-negative SERPING1 variants cause intracellular retention of C1 inhibitor in hereditary angioedema. J Clin Invest. (2019) 129:388–405. 10.1172/JCI98869 PubMed DOI PMC
Aulak KS, Eldering E, Hack CE, Lubbers YP, Harrison RA, Mast A, et al. . A hinge region mutation in C1-inhibitor (Ala436->Thr) results in nonsubstrate-like behavior and in polymerization of the molecule. J Biol Chem. (1993) 268:18088–94. 10.1016/S0021-9258(17)46815-3 PubMed DOI
Zahedi R, Aulak KS, Eldering E, Davis AE, 3rd. Characterization of C1 Inhibitor-Ta A dysfunctional C1INH with deletion of lysine 251. J Biol Chem. (1996) 271:24307–12. 10.1074/jbc.271.39.24307 PubMed DOI
Yasuno S, Ansai O, Hayashi R, Nakamura S, Shimomura Y. Evidence for a dominant-negative effect of a missense mutation in the SERPING1 gene responsible for hereditary angioedema type I. J Dermatol. (2021) 48:1243–9. 10.1111/1346-8138.15930 PubMed DOI
Loli-Ausejo D, López-Lera A, Drouet C, Lluncor M, Phillips-Anglés E, Pedrosa M, et al. . In search of an association between genotype and phenotype in hereditary angioedema due to C1-INH deficiency. Clin Rev Allergy Immunol. (2021) 61:1–14. 10.1007/s12016-021-08834-9 PubMed DOI
Caccia S, Suffritti C, Carzaniga T, Berardelli R, Berra S, Martorana V, et al. . Intermittent C1-Inhibitor deficiency associated with recessive inheritance: functional and structural insight. Sci Rep. (2018) 8:977. 10.1038/s41598-017-16667-w PubMed DOI PMC
Bissler JJ, Aulak KS, Donaldson VH, Rosen FS, Cicardi M, Harrison RA, et al. . Molecular defects in hereditary angioneurotic edema. Proc Assoc Am Physicians. (1997) 109:164–73. PubMed
Zahedi R, Bissler JJ, Davis AE, 3rd, Andreadis C, Wisnieski JJ. Unique C1 inhibitor dysfunction in a kindred without angioedema II Identification of an Ala443>Val substitution and functional analysis of the recombinant mutant protein. J Clin Invest. (1995) 95:1299–305. 10.1172/JCI117780 PubMed DOI PMC
Zahedi R, MacFarlane RC, Wisnieski JJ, Davis AE, 3rd. C1 inhibitor: analysis of the role of amino acid residues within the reactive center loop in target protease recognition. J Immunol. (2001) 167:1500–6. 10.4049/jimmunol.167.3.1500 PubMed DOI
Ghannam A, Sellier P, Defendi F, Favier B, Charignon D, López-Lera A, et al. . C1 inhibitor function using contact-phase proteases as target: evaluation of an innovative assay. Allergy. (2015) 70:1103–11. 10.1111/all.12657 PubMed DOI
Guarino S, Perricone C, Guarino MD, Giardina E, Gambardella S, Rosaria D'Apice M, et al. . Gonadal mosaicism in hereditary angioedema. Clin Genet. (2006) 70:83–85. 10.1111/j.1399-0004.2006.00643.x PubMed DOI
Yu T-C, Shyur S-D, Huang L-H, Wen D-C, Li J-S. Paternal mosaicism and hereditary angioedema in a Taiwanese family. Ann Allergy Asthma Immunol. (2007) 99:375–9. 10.1016/S1081-1206(10)60557-1 PubMed DOI
Ebo DG, Van Gasse AL, Sabato V, Bartholomeus E, Reyniers E, Vanbellinghen J-F, et al. . Hereditary angioedema in 2 sisters due to paternal gonadal mosaicism. J Allergy Clin Immunol Pract. (2018) 6:277–9. 10.1016/j.jaip.2017.07.002 PubMed DOI
Gianni P, Loules G, Zamanakou M, Kompoti M, Csuka D, Psarros F, et al. . Genetic determinants of C1 Inhibitor deficiency angioedema age of onset. Int Arch Allergy Immunol. (2017) 174:200–4. 10.1159/000481987 PubMed DOI
Rijavec M, Košnik M, Andrejević S, KaradŽa-Lapić L, Grivčeva-Panovska V, Korošec P. The functional promoter F12-46C/T variant predicts the asymptomatic phenotype of C1-INH-HAE. Clin Exp Allergy. (2019) 49:1520–2. 10.1111/cea.13470 PubMed DOI
Vatsiou S, Zamanakou M, Loules G, Gonzáles-Quevedo T, Porenski G, Juchacz A, et al. . Aspects of hereditary angioedema genotyping in the era of NGS: The case of F12 gene. Alergia Astma Immunologia. (2018) 23:205–10.
Baralle D, Lucassen A, Buratti E. Missed threads. The impact of pre-mRNA splicing defects on clinical practice. EMBO Rep. (2009) 10:810–6. 10.1038/embor.2009.170 PubMed DOI PMC
Buratti E, Baralle M, Baralle FE. From single splicing events to thousands: the ambiguous step forward in splicing research. Brief Funct Genom. (2013) 12:3–12. 10.1093/bfgp/els048 PubMed DOI
Sanrattana W, Maas C, de Maat S. SERPINs-From trap to treatment. Front Med (Lausanne). (2019) 6:25. 10.3389/fmed.2019.00025 PubMed DOI PMC
Roussel BD, Irving JA, Ekeowa UI, Belorgey D, Haq I, Ordóñez A, et al. . Unravelling the twists and turns of the serpinopathies. FEBS J. (2011) 278:3859–67. 10.1111/j.1742-4658.2011.08201.x PubMed DOI
Caballero T, Cabañas R, Pedrosa M. Medical algorithm: management of C1 inhibitor hereditary angioedema. Allergy. (2021) 00:1–4. 10.1111/all.15115 PubMed DOI
Ameratunga R, Bartlett A, McCall J, Steele R, Woon S-T, Katelaris CH. Hereditary angioedema as a metabolic liver disorder: novel therapeutic options and prospects for cure. Front Immunol. (2016) 7:547. 10.3389/fimmu.2016.00547 PubMed DOI PMC