Mutations of Pre-mRNA Splicing Regulatory Elements: Are Predictions Moving Forward to Clinical Diagnostics?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
28758972
PubMed Central
PMC5578058
DOI
10.3390/ijms18081668
PII: ijms18081668
Knihovny.cz E-zdroje
- Klíčová slova
- evaluation of prediction tools, in silico predictions, mutation, pre-mRNA splicing, splicing aberration, splicing regulatory elements, variants of unknown significance,
- MeSH
- diagnostické techniky molekulární metody trendy MeSH
- genetické nemoci vrozené * MeSH
- lidé MeSH
- místa sestřihu RNA * MeSH
- mutace * MeSH
- prekurzory RNA genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- místa sestřihu RNA * MeSH
- prekurzory RNA MeSH
For more than three decades, researchers have known that consensus splice sites alone are not sufficient regulatory elements to provide complex splicing regulation. Other regulators, so-called splicing regulatory elements (SREs) are needed. Most importantly, their sequence variants often underlie the development of various human disorders. However, due to their variable location and high degeneracy, these regulatory sequences are also very difficult to recognize and predict. Many different approaches aiming to identify SREs have been tried, often leading to the development of in silico prediction tools. While these tools were initially expected to be helpful to identify splicing-affecting mutations in genetic diagnostics, we are still quite far from meeting this goal. In fact, most of these tools are not able to accurately discern the SRE-affecting pathological variants from those not affecting splicing. Nonetheless, several recent evaluations have given appealing results (namely for EX-SKIP, ESRseq and Hexplorer predictors). In this review, we aim to summarize the history of the different approaches to SRE prediction, and provide additional validation of these tools based on patients' clinical data. Finally, we evaluate their usefulness for diagnostic settings and discuss the challenges that have yet to be met.
Central European Institute of Technology Masaryk University Brno 62500 Czech Republic
Centre for Cardiovascular Surgery and Transplantation Brno 65691 Czech Republic
International Centre for Genetic Engineering and Biotechnology 34149 Trieste Italy
Zobrazit více v PubMed
Sun H., Chasin L.A. Multiple splicing defects in an intronic false exon. Mol. Cell. Biol. 2000;20:6414–6425. doi: 10.1128/MCB.20.17.6414-6425.2000. PubMed DOI PMC
Fu X.-D., Ares M. Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 2014;15:689–701. doi: 10.1038/nrg3778. PubMed DOI PMC
Lee Y., Rio D.C. Mechanisms and Regulation of Alternative Pre-mRNA Splicing. Annu. Rev. Biochem. 2015;84:291–323. doi: 10.1146/annurev-biochem-060614-034316. PubMed DOI PMC
Baralle D., Buratti E. RNA splicing in human disease and in the clinic. Clin. Sci. 2017;131:355–368. doi: 10.1042/CS20160211. PubMed DOI
Goren A., Ram O., Amit M., Keren H., Lev-Maor G., Vig I., Pupko T., Ast G. Comparative analysis identifies exonic splicing regulatory sequences--The complex definition of enhancers and silencers. Mol. Cell. 2006;22:769–781. doi: 10.1016/j.molcel.2006.05.008. PubMed DOI
Pagani F., Stuani C., Tzetis M., Kanavakis E., Efthymiadou A., Doudounakis S., Casals T., Baralle F.E. New type of disease causing mutations: The example of the composite exonic regulatory elements of splicing in CFTR exon 12. Hum. Mol. Genet. 2003;12:1111–1120. doi: 10.1093/hmg/ddg131. PubMed DOI
Greene J., Baird A.-M., Brady L., Lim M., Gray S.G., McDermott R., Finn S.P. Circular RNAs: Biogenesis, Function and Role in Human Diseases. Front. Mol. Biosci. 2017;4 doi: 10.3389/fmolb.2017.00038. PubMed DOI PMC
Ashwal-Fluss R., Meyer M., Pamudurti N.R., Ivanov A., Bartok O., Hanan M., Evantal N., Memczak S., Rajewsky N., Kadener S. circRNA Biogenesis Competes with Pre-mRNA Splicing. Mol. Cell. 2014;56:55–66. doi: 10.1016/j.molcel.2014.08.019. PubMed DOI
Kramer M.C., Liang D., Tatomer D.C., Gold B., March Z.M., Cherry S., Wilusz J.E. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 2015;29:2168–2182. doi: 10.1101/gad.270421.115. PubMed DOI PMC
Conn S.J., Pillman K.A., Toubia J., Conn V.M., Salmanidis M., Phillips C.A., Roslan S., Schreiber A.W., Gregory P.A., Goodall G.J. The RNA Binding Protein Quaking Regulates Formation of circRNAs. Cell. 2015;160:1125–1134. doi: 10.1016/j.cell.2015.02.014. PubMed DOI
Khan M.A., Reckman Y.J., Aufiero S., van den Hoogenhof M.M., van der Made I., Beqqali A., Koolbergen D.R., Rasmussen T.B., Van Der Velden J., Creemers E.E., et al. RBM20 Regulates Circular RNA Production From the Titin Gene. Circ. Res. 2016;119:996–1003. doi: 10.1161/CIRCRESAHA.116.309568. PubMed DOI
Errichelli L., Dini Modigliani S., Laneve P., Colantoni A., Legnini I., Capauto D., Rosa A., De Santis R., Scarfò R., Peruzzi G., et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat. Commun. 2017;8:14741. doi: 10.1038/ncomms14741. PubMed DOI PMC
Di Giacomo D., Gaildrat P., Abuli A., Abdat J., Frébourg T., Tosi M., Martins A. Functional Analysis of a Large set of BRCA2 exon 7 Variants Highlights the Predictive Value of Hexamer Scores in Detecting Alterations of Exonic Splicing Regulatory Elements: HUMAN MUTATION. Hum. Mutat. 2013;34:1547–1557. doi: 10.1002/humu.22428. PubMed DOI
Julien P., Miñana B., Baeza-Centurion P., Valcárcel J., Lehner B. The complete local genotype–phenotype landscape for the alternative splicing of a human exon. Nat. Commun. 2016;7:11558. doi: 10.1038/ncomms11558. PubMed DOI PMC
Soukarieh O., Gaildrat P., Hamieh M., Drouet A., Baert-Desurmont S., Frébourg T., Tosi M., Martins A. Exonic Splicing Mutations Are More Prevalent than Currently Estimated and Can Be Predicted by Using In Silico Tools. PLoS Genet. 2016;12:e1005756. doi: 10.1371/journal.pgen.1005971. PubMed DOI PMC
Houdayer C., Dehainault C., Mattler C., Michaux D., Caux-Moncoutier V., Pagès-Berhouet S., d’Enghien C.D., Laugé A., Castera L., Gauthier-Villars M., et al. Evaluation of in silico splice tools for decision-making in molecular diagnosis. Hum. Mutat. 2008;29:975–982. doi: 10.1002/humu.20765. PubMed DOI
Houdayer C., Caux-Moncoutier V., Krieger S., Barrois M., Bonnet F., Bourdon V., Bronner M., Buisson M., Coulet F., Gaildrat P., et al. Guidelines for splicing analysis in molecular diagnosis derived from a set of 327 combined in silico/in vitro studies on BRCA1 and BRCA2 variants. Hum. Mutat. 2012;33:1228–1238. doi: 10.1002/humu.22101. PubMed DOI
Kergourlay V., Raї G., Blandin G., Salgado D., Béroud C., Lévy N., Krahn M., Bartoli M. Identification of Splicing Defects Caused by Mutations in the Dysferlin Gene. Hum. Mutat. 2014;35:1532–1541. doi: 10.1002/humu.22710. PubMed DOI
Grodecká L., Hujová P., Kramárek M., Kršjaková T., Kováčová T., Vondrášková K., Ravčuková B., Hrnčířová K., Souček P., Freiberger T. Systematic analysis of splicing defects in selected primary immunodeficiencies-related genes. Clin. Immunol. 2017;180:33–44. doi: 10.1016/j.clim.2017.03.010. PubMed DOI
Baralle D., Lucassen A., Buratti E. Missed threads. The impact of pre-mRNA splicing defects on clinical practice. EMBO Rep. 2009;10:810–816. doi: 10.1038/embor.2009.170. PubMed DOI PMC
DePristo M.A., Banks E., Poplin R., Garimella K.V., Maguire J.R., Hartl C., Philippakis A.A., del Angel G., Rivas M.A., Hanna M., et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011;43:491–498. doi: 10.1038/ng.806. PubMed DOI PMC
Buratti E., Baralle M., Baralle F.E. From single splicing events to thousands: The ambiguous step forward in splicing research. Brief Funct. Genom. 2013;12:3–12. doi: 10.1093/bfgp/els048. PubMed DOI
Liu H.X., Zhang M., Krainer A.R. Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev. 1998;12:1998–2012. doi: 10.1101/gad.12.13.1998. PubMed DOI PMC
Cartegni L. ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res. 2003;31:3568–3571. doi: 10.1093/nar/gkg616. PubMed DOI PMC
Wu S., Romfo C.M., Nilsen T.W., Green M.R. Functional recognition of the 3′ splice site AG by the splicing factor U2AF35. Nature. 1999;402:832–835. doi: 10.1038/45996. PubMed DOI
Desmet F.-O., Hamroun D., Lalande M., Collod-Beroud G., Claustres M., Beroud C. Human Splicing Finder: An online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37:e67. doi: 10.1093/nar/gkp215. PubMed DOI PMC
Lastella P., Surdo N.C., Resta N., Guanti G., Stella A. In silico and in vivo splicing analysis of MLH1 and MSH2 missense mutations shows exon- and tissue-specific effects. BMC Genom. 2006;7:243. doi: 10.1186/1471-2164-7-243. PubMed DOI PMC
ElSharawy A., Hundrieser B., Brosch M., Wittig M., Huse K., Platzer M., Becker A., Simon M., Rosenstiel P., Schreiber S., et al. Systematic evaluation of the effect of common SNPs on pre-mRNA splicing. Hum. Mutat. 2009;30:625–632. doi: 10.1002/humu.20906. PubMed DOI
kConFab Investigators. Whiley P.J., Pettigrew C.A., Brewster B.L., Walker L.C., Spurdle A.B., Brown M.A. Effect of BRCA2 sequence variants predicted to disrupt exonic splice enhancers on BRCA2transcripts. BMC Med. Genet. 2010;11:80. doi: 10.1186/1471-2350-11-80. PubMed DOI PMC
Woolfe A., Mullikin J.C., Elnitski L. Genomic features defining exonic variants that modulate splicing. Genome Biol. 2010;11:R20. doi: 10.1186/gb-2010-11-2-r20. PubMed DOI PMC
Gaildrat P., Krieger S., Di Giacomo D., Abdat J., Révillion F., Caputo S., Vaur D., Jamard E., Bohers E., Ledemeney D., et al. Multiple sequence variants of BRCA2 exon 7 alter splicing regulation. J. Med. Genet. 2012;49:609–617. doi: 10.1136/jmedgenet-2012-100965. PubMed DOI
Ke S., Shang S., Kalachikov S.M., Morozova I., Yu L., Russo J.J., Ju J., Chasin L.A. Quantitative evaluation of all hexamers as exonic splicing elements. Genome Res. 2011;21:1360–1374. doi: 10.1101/gr.119628.110. PubMed DOI PMC
Wang Z., Rolish M.E., Yeo G., Tung V., Mawson M., Burge C.B. Systematic identification and analysis of exonic splicing silencers. Cell. 2004;119:831–845. doi: 10.1016/j.cell.2004.11.010. PubMed DOI
Erkelenz S., Theiss S., Otte M., Widera M., Peter J.O., Schaal H. Genomic HEXploring allows landscaping of novel potential splicing regulatory elements. Nucleic Acids Res. 2014;42:10681–10697. doi: 10.1093/nar/gku736. PubMed DOI PMC
Zhang X.H.-F. Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev. 2004;18:1241–1250. doi: 10.1101/gad.1195304. PubMed DOI PMC
Fairbrother W.G., Yeo G.W., Yeh R., Goldstein P., Mawson M., Sharp P.A., Burge C.B. RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons. Nucleic Acids Res. 2004;32:W187–W190. doi: 10.1093/nar/gkh393. PubMed DOI PMC
Xiong H.Y., Alipanahi B., Lee L.J., Bretschneider H., Merico D., Yuen R.K.C., Hua Y., Gueroussov S., Najafabadi H.S., Hughes T.R., et al. The human splicing code reveals new insights into the genetic determinants of disease. Science. 2015;347:1254806. doi: 10.1126/science.1254806. PubMed DOI PMC
Piva F., Giulietti M., Burini A.B., Principato G. SpliceAid 2: A database of human splicing factors expression data and RNA target motifs. Hum. Mutat. 2012;33:81–85. doi: 10.1002/humu.21609. PubMed DOI
Fairbrother W.G. Predictive Identification of Exonic Splicing Enhancers in Human Genes. Science. 2002;297:1007–1013. doi: 10.1126/science.1073774. PubMed DOI
Castello A., Fischer B., Frese C., Horos R., Alleaume A.-M., Foehr S., Curk T., Krijgsveld J., Hentze M. Comprehensive Identification of RNA-Binding Domains in Human Cells. Mol. Cell. 2016;63:696–710. doi: 10.1016/j.molcel.2016.06.029. PubMed DOI PMC
Raponi M., Kralovicova J., Copson E., Divina P., Eccles D., Johnson P., Baralle D., Vorechovsky I. Prediction of single-nucleotide substitutions that result in exon skipping: Identification of a splicing silencer in BRCA1 exon 6. Hum. Mutat. 2011;32:436–444. doi: 10.1002/humu.21458. PubMed DOI
Schwartz S., Hall E., Ast G. SROOGLE: Webserver for integrative, user-friendly visualization of splicing signals. Nucleic Acids Res. 2009;37:W189–W192. doi: 10.1093/nar/gkp320. PubMed DOI PMC
Zhang C., Li W.-H., Krainer A.R., Zhang M.Q. RNA landscape of evolution for optimal exon and intron discrimination. Proc. Natl. Acad. Sci. USA. 2008;105:5797–5802. doi: 10.1073/pnas.0801692105. PubMed DOI PMC
Stadler M.B., Shomron N., Yeo G.W., Schneider A., Xiao X., Burge C.B. Inference of Splicing Regulatory Activities by Sequence Neighborhood Analysis. PLoS Genet. 2006;2:e191. doi: 10.1371/journal.pgen.0020191. PubMed DOI PMC
Aissat A., de Becdelièvre A., Golmard L., Vasseur C., Costa C., Chaoui A., Martin N., Costes B., Goossens M., Girodon E., et al. Combined Computational-Experimental Analyses of CFTR Exon Strength Uncover Predictability of Exon-Skipping Level. Hum. Mutat. 2013;34:873–881. doi: 10.1002/humu.22300. PubMed DOI
Voelker R.B., Berglund J.A. A comprehensive computational characterization of conserved mammalian intronic sequences reveals conserved motifs associated with constitutive and alternative splicing. Genome Res. 2007;17:1023–1033. doi: 10.1101/gr.6017807. PubMed DOI PMC
Yeo G.W., Van Nostrand E.L., Nostrand E.L.V., Liang T.Y. Discovery and analysis of evolutionarily conserved intronic splicing regulatory elements. PLoS Genet. 2007;3:e85. PubMed PMC
Van der Klift H.M., Jansen A.M.L., van der Steenstraten N., Bik E.C., Tops C.M.J., Devilee P., Wijnen J.T. Splicing analysis for exonic and intronic mismatch repair gene variants associated with Lynch syndrome confirms high concordance between minigene assays and patient RNA analyses. Mol. Genet. Genom. Med. 2015;3:327–345. doi: 10.1002/mgg3.145. PubMed DOI PMC
Královicová J., Vorechovsky I. Global control of aberrant splice-site activation by auxiliary splicing sequences: Evidence for a gradient in exon and intron definition. Nucleic Acids Res. 2007;35:6399–6413. doi: 10.1093/nar/gkm680. PubMed DOI PMC
Flanigan K.M., Dunn D.M., von Niederhausern A., Soltanzadeh P., Howard M.T., Sampson J.B., Swoboda K.J., Bromberg M.B., Mendell J.R., Taylor L.E., et al. Nonsense mutation-associated Becker muscular dystrophy: Interplay between exon definition and splicing regulatory elements within the DMD gene. Hum. Mutat. 2011;32:299–308. doi: 10.1002/humu.21426. PubMed DOI PMC
De Conti L., Baralle M., Buratti E. Exon and intron definition in pre-mRNA splicing. Wiley Interdiscip. Rev. RNA. 2013;4:49–60. PubMed
Gutierrez-Arcelus M., Ongen H., Lappalainen T., Montgomery S.B., Buil A., Yurovsky A., Bryois J., Padioleau I., Romano L., Planchon A., et al. Tissue-Specific Effects of Genetic and Epigenetic Variation on Gene Regulation and Splicing. PLoS Genet. 2015;11:e1004958. PubMed PMC
Baralle M., Skoko N., Knezevich A., De Conti L., Motti D., Bhuvanagiri M., Baralle D., Buratti E., Baralle F.E. NF1 mRNA biogenesis: Effect of the genomic milieu in splicing regulation of the NF1 exon 37 region. FEBS Lett. 2006;580:4449–4456. doi: 10.1016/j.febslet.2006.07.018. PubMed DOI
Mine M., Brivet M., Touati G., Grabowski P., Abitbol M., Marsac C. Splicing Error in E1α Pyruvate Dehydrogenase mRNA Caused by Novel Intronic Mutation Responsible for Lactic Acidosis and Mental Retardation. J. Biol. Chem. 2003;278:11768–11772. PubMed
Moseley C.T., Mullis P.E., Prince M.A., Phillips J.A. An Exon Splice Enhancer Mutation Causes Autosomal Dominant GH Deficiency. J. Clin. Endocrinol. Metab. 2002;87:847–852. doi: 10.1210/jcem.87.2.8236. PubMed DOI
Dhir A., Buratti E. Alternative splicing: Role of pseudoexons in human disease and potential therapeutic strategies: Pseudoexons in human disease. FEBS J. 2010;277:841–855. doi: 10.1111/j.1742-4658.2009.07520.x. PubMed DOI
Divina P., Kvitkovicova A., Buratti E., Vorechovsky I. Ab initio prediction of mutation-induced cryptic splice-site activation and exon skipping. Eur. J. Hum. Genet. 2009;17:759–765. PubMed PMC
Sharma N., Sosnay P.R., Ramalho A.S., Douville C., Franca A., Gottschalk L.B., Park J., Lee M., Vecchio-Pagan B., Raraigh K.S., et al. Experimental Assessment of Splicing Variants Using Expression Minigenes and Comparison with In Silico Predictions. Hum. Mutat. 2014;35:1249–1259. PubMed PMC
Walker L.C., Whiley P.J., Houdayer C., Hansen T.V.O., Vega A., Santamarina M., Blanco A., Fachal L., Southey M.C., Lafferty A., et al. Evaluation of a 5-Tier Scheme Proposed for Classification of Sequence Variants Using Bioinformatic and Splicing Assay Data: Inter-Reviewer Variability and Promotion of Minimum Reporting Guidelines. Hum. Mutat. 2013;34:1424–1431. PubMed
Thompson B.A., Spurdle A.B., Plazzer J.-P., Greenblatt M.S., Akagi K., Al-Mulla F., Bapat B., Bernstein I., Capellá G., den Dunnen J.T., et al. Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat. Genet. 2014;46:107–115. PubMed PMC
Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015;17:405–423. doi: 10.1038/gim.2015.30. PubMed DOI PMC
Spurdle A.B., Couch F.J., Hogervorst F.B.L., Radice P., Sinilnikova O.M. Prediction and assessment of splicing alterations: Implications for clinical testing. Hum. Mutat. 2008;29:1304–1313. doi: 10.1002/humu.20901. PubMed DOI PMC
Fraile-Bethencourt E., Díez-Gómez B., Velásquez-Zapata V., Acedo A., Sanz D.J., Velasco E.A. Functional classification of DNA variants by hybrid minigenes: Identification of 30 spliceogenic variants of BRCA2 exons 17 and 18. PLoS Genet. 2017;13:e1006691. doi: 10.1371/journal.pgen.1006691. PubMed DOI PMC
Petkovic V., Godi M., Lochmatter D., Eblé A., Flück C.E., Robinson I.C., Mullis P.E. Growth Hormone (GH)-Releasing Hormone Increases the Expression of the Dominant-Negative GH Isoform in Cases of Isolated GH Deficiency due to GH Splice-Site Mutations. Endocrinology. 2010;151:2650–2658. doi: 10.1210/en.2009-1280. PubMed DOI
Suñé-Pou M., Prieto-Sánchez S., Boyero-Corral S., Moreno-Castro C., El Yousfi Y., Suñé-Negre J., Hernández-Munain C., Suñé C. Targeting Splicing in the Treatment of Human Disease. Genes. 2017;8:87. doi: 10.3390/genes8030087. PubMed DOI PMC
Sardone V., Zhou H., Muntoni F., Ferlini A., Falzarano M. Antisense Oligonucleotide-Based Therapy for Neuromuscular Disease. Molecules. 2017;22:563. doi: 10.3390/molecules22040563. PubMed DOI PMC
Tian N., Li J., Shi J., Sui G. From General Aberrant Alternative Splicing in Cancers and Its Therapeutic Application to the Discovery of an Oncogenic DMTF1 Isoform. Int. J. Mol. Sci. 2017;18:191. doi: 10.3390/ijms18030191. PubMed DOI PMC
Havens M.A., Hastings M.L. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res. 2016;44:6549–6563. doi: 10.1093/nar/gkw533. PubMed DOI PMC
SERPING1 Variants and C1-INH Biological Function: A Close Relationship With C1-INH-HAE
High-throughput analysis revealed mutations' diverging effects on SMN1 exon 7 splicing