Mutations of Pre-mRNA Splicing Regulatory Elements: Are Predictions Moving Forward to Clinical Diagnostics?

. 2017 Jul 31 ; 18 (8) : . [epub] 20170731

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid28758972

For more than three decades, researchers have known that consensus splice sites alone are not sufficient regulatory elements to provide complex splicing regulation. Other regulators, so-called splicing regulatory elements (SREs) are needed. Most importantly, their sequence variants often underlie the development of various human disorders. However, due to their variable location and high degeneracy, these regulatory sequences are also very difficult to recognize and predict. Many different approaches aiming to identify SREs have been tried, often leading to the development of in silico prediction tools. While these tools were initially expected to be helpful to identify splicing-affecting mutations in genetic diagnostics, we are still quite far from meeting this goal. In fact, most of these tools are not able to accurately discern the SRE-affecting pathological variants from those not affecting splicing. Nonetheless, several recent evaluations have given appealing results (namely for EX-SKIP, ESRseq and Hexplorer predictors). In this review, we aim to summarize the history of the different approaches to SRE prediction, and provide additional validation of these tools based on patients' clinical data. Finally, we evaluate their usefulness for diagnostic settings and discuss the challenges that have yet to be met.

Zobrazit více v PubMed

Sun H., Chasin L.A. Multiple splicing defects in an intronic false exon. Mol. Cell. Biol. 2000;20:6414–6425. doi: 10.1128/MCB.20.17.6414-6425.2000. PubMed DOI PMC

Fu X.-D., Ares M. Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 2014;15:689–701. doi: 10.1038/nrg3778. PubMed DOI PMC

Lee Y., Rio D.C. Mechanisms and Regulation of Alternative Pre-mRNA Splicing. Annu. Rev. Biochem. 2015;84:291–323. doi: 10.1146/annurev-biochem-060614-034316. PubMed DOI PMC

Baralle D., Buratti E. RNA splicing in human disease and in the clinic. Clin. Sci. 2017;131:355–368. doi: 10.1042/CS20160211. PubMed DOI

Goren A., Ram O., Amit M., Keren H., Lev-Maor G., Vig I., Pupko T., Ast G. Comparative analysis identifies exonic splicing regulatory sequences--The complex definition of enhancers and silencers. Mol. Cell. 2006;22:769–781. doi: 10.1016/j.molcel.2006.05.008. PubMed DOI

Pagani F., Stuani C., Tzetis M., Kanavakis E., Efthymiadou A., Doudounakis S., Casals T., Baralle F.E. New type of disease causing mutations: The example of the composite exonic regulatory elements of splicing in CFTR exon 12. Hum. Mol. Genet. 2003;12:1111–1120. doi: 10.1093/hmg/ddg131. PubMed DOI

Greene J., Baird A.-M., Brady L., Lim M., Gray S.G., McDermott R., Finn S.P. Circular RNAs: Biogenesis, Function and Role in Human Diseases. Front. Mol. Biosci. 2017;4 doi: 10.3389/fmolb.2017.00038. PubMed DOI PMC

Ashwal-Fluss R., Meyer M., Pamudurti N.R., Ivanov A., Bartok O., Hanan M., Evantal N., Memczak S., Rajewsky N., Kadener S. circRNA Biogenesis Competes with Pre-mRNA Splicing. Mol. Cell. 2014;56:55–66. doi: 10.1016/j.molcel.2014.08.019. PubMed DOI

Kramer M.C., Liang D., Tatomer D.C., Gold B., March Z.M., Cherry S., Wilusz J.E. Combinatorial control of Drosophila circular RNA expression by intronic repeats, hnRNPs, and SR proteins. Genes Dev. 2015;29:2168–2182. doi: 10.1101/gad.270421.115. PubMed DOI PMC

Conn S.J., Pillman K.A., Toubia J., Conn V.M., Salmanidis M., Phillips C.A., Roslan S., Schreiber A.W., Gregory P.A., Goodall G.J. The RNA Binding Protein Quaking Regulates Formation of circRNAs. Cell. 2015;160:1125–1134. doi: 10.1016/j.cell.2015.02.014. PubMed DOI

Khan M.A., Reckman Y.J., Aufiero S., van den Hoogenhof M.M., van der Made I., Beqqali A., Koolbergen D.R., Rasmussen T.B., Van Der Velden J., Creemers E.E., et al. RBM20 Regulates Circular RNA Production From the Titin Gene. Circ. Res. 2016;119:996–1003. doi: 10.1161/CIRCRESAHA.116.309568. PubMed DOI

Errichelli L., Dini Modigliani S., Laneve P., Colantoni A., Legnini I., Capauto D., Rosa A., De Santis R., Scarfò R., Peruzzi G., et al. FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat. Commun. 2017;8:14741. doi: 10.1038/ncomms14741. PubMed DOI PMC

Di Giacomo D., Gaildrat P., Abuli A., Abdat J., Frébourg T., Tosi M., Martins A. Functional Analysis of a Large set of BRCA2 exon 7 Variants Highlights the Predictive Value of Hexamer Scores in Detecting Alterations of Exonic Splicing Regulatory Elements: HUMAN MUTATION. Hum. Mutat. 2013;34:1547–1557. doi: 10.1002/humu.22428. PubMed DOI

Julien P., Miñana B., Baeza-Centurion P., Valcárcel J., Lehner B. The complete local genotype–phenotype landscape for the alternative splicing of a human exon. Nat. Commun. 2016;7:11558. doi: 10.1038/ncomms11558. PubMed DOI PMC

Soukarieh O., Gaildrat P., Hamieh M., Drouet A., Baert-Desurmont S., Frébourg T., Tosi M., Martins A. Exonic Splicing Mutations Are More Prevalent than Currently Estimated and Can Be Predicted by Using In Silico Tools. PLoS Genet. 2016;12:e1005756. doi: 10.1371/journal.pgen.1005971. PubMed DOI PMC

Houdayer C., Dehainault C., Mattler C., Michaux D., Caux-Moncoutier V., Pagès-Berhouet S., d’Enghien C.D., Laugé A., Castera L., Gauthier-Villars M., et al. Evaluation of in silico splice tools for decision-making in molecular diagnosis. Hum. Mutat. 2008;29:975–982. doi: 10.1002/humu.20765. PubMed DOI

Houdayer C., Caux-Moncoutier V., Krieger S., Barrois M., Bonnet F., Bourdon V., Bronner M., Buisson M., Coulet F., Gaildrat P., et al. Guidelines for splicing analysis in molecular diagnosis derived from a set of 327 combined in silico/in vitro studies on BRCA1 and BRCA2 variants. Hum. Mutat. 2012;33:1228–1238. doi: 10.1002/humu.22101. PubMed DOI

Kergourlay V., Raї G., Blandin G., Salgado D., Béroud C., Lévy N., Krahn M., Bartoli M. Identification of Splicing Defects Caused by Mutations in the Dysferlin Gene. Hum. Mutat. 2014;35:1532–1541. doi: 10.1002/humu.22710. PubMed DOI

Grodecká L., Hujová P., Kramárek M., Kršjaková T., Kováčová T., Vondrášková K., Ravčuková B., Hrnčířová K., Souček P., Freiberger T. Systematic analysis of splicing defects in selected primary immunodeficiencies-related genes. Clin. Immunol. 2017;180:33–44. doi: 10.1016/j.clim.2017.03.010. PubMed DOI

Baralle D., Lucassen A., Buratti E. Missed threads. The impact of pre-mRNA splicing defects on clinical practice. EMBO Rep. 2009;10:810–816. doi: 10.1038/embor.2009.170. PubMed DOI PMC

DePristo M.A., Banks E., Poplin R., Garimella K.V., Maguire J.R., Hartl C., Philippakis A.A., del Angel G., Rivas M.A., Hanna M., et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 2011;43:491–498. doi: 10.1038/ng.806. PubMed DOI PMC

Buratti E., Baralle M., Baralle F.E. From single splicing events to thousands: The ambiguous step forward in splicing research. Brief Funct. Genom. 2013;12:3–12. doi: 10.1093/bfgp/els048. PubMed DOI

Liu H.X., Zhang M., Krainer A.R. Identification of functional exonic splicing enhancer motifs recognized by individual SR proteins. Genes Dev. 1998;12:1998–2012. doi: 10.1101/gad.12.13.1998. PubMed DOI PMC

Cartegni L. ESEfinder: A web resource to identify exonic splicing enhancers. Nucleic Acids Res. 2003;31:3568–3571. doi: 10.1093/nar/gkg616. PubMed DOI PMC

Wu S., Romfo C.M., Nilsen T.W., Green M.R. Functional recognition of the 3′ splice site AG by the splicing factor U2AF35. Nature. 1999;402:832–835. doi: 10.1038/45996. PubMed DOI

Desmet F.-O., Hamroun D., Lalande M., Collod-Beroud G., Claustres M., Beroud C. Human Splicing Finder: An online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37:e67. doi: 10.1093/nar/gkp215. PubMed DOI PMC

Lastella P., Surdo N.C., Resta N., Guanti G., Stella A. In silico and in vivo splicing analysis of MLH1 and MSH2 missense mutations shows exon- and tissue-specific effects. BMC Genom. 2006;7:243. doi: 10.1186/1471-2164-7-243. PubMed DOI PMC

ElSharawy A., Hundrieser B., Brosch M., Wittig M., Huse K., Platzer M., Becker A., Simon M., Rosenstiel P., Schreiber S., et al. Systematic evaluation of the effect of common SNPs on pre-mRNA splicing. Hum. Mutat. 2009;30:625–632. doi: 10.1002/humu.20906. PubMed DOI

kConFab Investigators. Whiley P.J., Pettigrew C.A., Brewster B.L., Walker L.C., Spurdle A.B., Brown M.A. Effect of BRCA2 sequence variants predicted to disrupt exonic splice enhancers on BRCA2transcripts. BMC Med. Genet. 2010;11:80. doi: 10.1186/1471-2350-11-80. PubMed DOI PMC

Woolfe A., Mullikin J.C., Elnitski L. Genomic features defining exonic variants that modulate splicing. Genome Biol. 2010;11:R20. doi: 10.1186/gb-2010-11-2-r20. PubMed DOI PMC

Gaildrat P., Krieger S., Di Giacomo D., Abdat J., Révillion F., Caputo S., Vaur D., Jamard E., Bohers E., Ledemeney D., et al. Multiple sequence variants of BRCA2 exon 7 alter splicing regulation. J. Med. Genet. 2012;49:609–617. doi: 10.1136/jmedgenet-2012-100965. PubMed DOI

Ke S., Shang S., Kalachikov S.M., Morozova I., Yu L., Russo J.J., Ju J., Chasin L.A. Quantitative evaluation of all hexamers as exonic splicing elements. Genome Res. 2011;21:1360–1374. doi: 10.1101/gr.119628.110. PubMed DOI PMC

Wang Z., Rolish M.E., Yeo G., Tung V., Mawson M., Burge C.B. Systematic identification and analysis of exonic splicing silencers. Cell. 2004;119:831–845. doi: 10.1016/j.cell.2004.11.010. PubMed DOI

Erkelenz S., Theiss S., Otte M., Widera M., Peter J.O., Schaal H. Genomic HEXploring allows landscaping of novel potential splicing regulatory elements. Nucleic Acids Res. 2014;42:10681–10697. doi: 10.1093/nar/gku736. PubMed DOI PMC

Zhang X.H.-F. Computational definition of sequence motifs governing constitutive exon splicing. Genes Dev. 2004;18:1241–1250. doi: 10.1101/gad.1195304. PubMed DOI PMC

Fairbrother W.G., Yeo G.W., Yeh R., Goldstein P., Mawson M., Sharp P.A., Burge C.B. RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons. Nucleic Acids Res. 2004;32:W187–W190. doi: 10.1093/nar/gkh393. PubMed DOI PMC

Xiong H.Y., Alipanahi B., Lee L.J., Bretschneider H., Merico D., Yuen R.K.C., Hua Y., Gueroussov S., Najafabadi H.S., Hughes T.R., et al. The human splicing code reveals new insights into the genetic determinants of disease. Science. 2015;347:1254806. doi: 10.1126/science.1254806. PubMed DOI PMC

Piva F., Giulietti M., Burini A.B., Principato G. SpliceAid 2: A database of human splicing factors expression data and RNA target motifs. Hum. Mutat. 2012;33:81–85. doi: 10.1002/humu.21609. PubMed DOI

Fairbrother W.G. Predictive Identification of Exonic Splicing Enhancers in Human Genes. Science. 2002;297:1007–1013. doi: 10.1126/science.1073774. PubMed DOI

Castello A., Fischer B., Frese C., Horos R., Alleaume A.-M., Foehr S., Curk T., Krijgsveld J., Hentze M. Comprehensive Identification of RNA-Binding Domains in Human Cells. Mol. Cell. 2016;63:696–710. doi: 10.1016/j.molcel.2016.06.029. PubMed DOI PMC

Raponi M., Kralovicova J., Copson E., Divina P., Eccles D., Johnson P., Baralle D., Vorechovsky I. Prediction of single-nucleotide substitutions that result in exon skipping: Identification of a splicing silencer in BRCA1 exon 6. Hum. Mutat. 2011;32:436–444. doi: 10.1002/humu.21458. PubMed DOI

Schwartz S., Hall E., Ast G. SROOGLE: Webserver for integrative, user-friendly visualization of splicing signals. Nucleic Acids Res. 2009;37:W189–W192. doi: 10.1093/nar/gkp320. PubMed DOI PMC

Zhang C., Li W.-H., Krainer A.R., Zhang M.Q. RNA landscape of evolution for optimal exon and intron discrimination. Proc. Natl. Acad. Sci. USA. 2008;105:5797–5802. doi: 10.1073/pnas.0801692105. PubMed DOI PMC

Stadler M.B., Shomron N., Yeo G.W., Schneider A., Xiao X., Burge C.B. Inference of Splicing Regulatory Activities by Sequence Neighborhood Analysis. PLoS Genet. 2006;2:e191. doi: 10.1371/journal.pgen.0020191. PubMed DOI PMC

Aissat A., de Becdelièvre A., Golmard L., Vasseur C., Costa C., Chaoui A., Martin N., Costes B., Goossens M., Girodon E., et al. Combined Computational-Experimental Analyses of CFTR Exon Strength Uncover Predictability of Exon-Skipping Level. Hum. Mutat. 2013;34:873–881. doi: 10.1002/humu.22300. PubMed DOI

Voelker R.B., Berglund J.A. A comprehensive computational characterization of conserved mammalian intronic sequences reveals conserved motifs associated with constitutive and alternative splicing. Genome Res. 2007;17:1023–1033. doi: 10.1101/gr.6017807. PubMed DOI PMC

Yeo G.W., Van Nostrand E.L., Nostrand E.L.V., Liang T.Y. Discovery and analysis of evolutionarily conserved intronic splicing regulatory elements. PLoS Genet. 2007;3:e85. PubMed PMC

Van der Klift H.M., Jansen A.M.L., van der Steenstraten N., Bik E.C., Tops C.M.J., Devilee P., Wijnen J.T. Splicing analysis for exonic and intronic mismatch repair gene variants associated with Lynch syndrome confirms high concordance between minigene assays and patient RNA analyses. Mol. Genet. Genom. Med. 2015;3:327–345. doi: 10.1002/mgg3.145. PubMed DOI PMC

Královicová J., Vorechovsky I. Global control of aberrant splice-site activation by auxiliary splicing sequences: Evidence for a gradient in exon and intron definition. Nucleic Acids Res. 2007;35:6399–6413. doi: 10.1093/nar/gkm680. PubMed DOI PMC

Flanigan K.M., Dunn D.M., von Niederhausern A., Soltanzadeh P., Howard M.T., Sampson J.B., Swoboda K.J., Bromberg M.B., Mendell J.R., Taylor L.E., et al. Nonsense mutation-associated Becker muscular dystrophy: Interplay between exon definition and splicing regulatory elements within the DMD gene. Hum. Mutat. 2011;32:299–308. doi: 10.1002/humu.21426. PubMed DOI PMC

De Conti L., Baralle M., Buratti E. Exon and intron definition in pre-mRNA splicing. Wiley Interdiscip. Rev. RNA. 2013;4:49–60. PubMed

Gutierrez-Arcelus M., Ongen H., Lappalainen T., Montgomery S.B., Buil A., Yurovsky A., Bryois J., Padioleau I., Romano L., Planchon A., et al. Tissue-Specific Effects of Genetic and Epigenetic Variation on Gene Regulation and Splicing. PLoS Genet. 2015;11:e1004958. PubMed PMC

Baralle M., Skoko N., Knezevich A., De Conti L., Motti D., Bhuvanagiri M., Baralle D., Buratti E., Baralle F.E. NF1 mRNA biogenesis: Effect of the genomic milieu in splicing regulation of the NF1 exon 37 region. FEBS Lett. 2006;580:4449–4456. doi: 10.1016/j.febslet.2006.07.018. PubMed DOI

Mine M., Brivet M., Touati G., Grabowski P., Abitbol M., Marsac C. Splicing Error in E1α Pyruvate Dehydrogenase mRNA Caused by Novel Intronic Mutation Responsible for Lactic Acidosis and Mental Retardation. J. Biol. Chem. 2003;278:11768–11772. PubMed

Moseley C.T., Mullis P.E., Prince M.A., Phillips J.A. An Exon Splice Enhancer Mutation Causes Autosomal Dominant GH Deficiency. J. Clin. Endocrinol. Metab. 2002;87:847–852. doi: 10.1210/jcem.87.2.8236. PubMed DOI

Dhir A., Buratti E. Alternative splicing: Role of pseudoexons in human disease and potential therapeutic strategies: Pseudoexons in human disease. FEBS J. 2010;277:841–855. doi: 10.1111/j.1742-4658.2009.07520.x. PubMed DOI

Divina P., Kvitkovicova A., Buratti E., Vorechovsky I. Ab initio prediction of mutation-induced cryptic splice-site activation and exon skipping. Eur. J. Hum. Genet. 2009;17:759–765. PubMed PMC

Sharma N., Sosnay P.R., Ramalho A.S., Douville C., Franca A., Gottschalk L.B., Park J., Lee M., Vecchio-Pagan B., Raraigh K.S., et al. Experimental Assessment of Splicing Variants Using Expression Minigenes and Comparison with In Silico Predictions. Hum. Mutat. 2014;35:1249–1259. PubMed PMC

Walker L.C., Whiley P.J., Houdayer C., Hansen T.V.O., Vega A., Santamarina M., Blanco A., Fachal L., Southey M.C., Lafferty A., et al. Evaluation of a 5-Tier Scheme Proposed for Classification of Sequence Variants Using Bioinformatic and Splicing Assay Data: Inter-Reviewer Variability and Promotion of Minimum Reporting Guidelines. Hum. Mutat. 2013;34:1424–1431. PubMed

Thompson B.A., Spurdle A.B., Plazzer J.-P., Greenblatt M.S., Akagi K., Al-Mulla F., Bapat B., Bernstein I., Capellá G., den Dunnen J.T., et al. Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat. Genet. 2014;46:107–115. PubMed PMC

Richards S., Aziz N., Bale S., Bick D., Das S., Gastier-Foster J., Grody W.W., Hegde M., Lyon E., Spector E., et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015;17:405–423. doi: 10.1038/gim.2015.30. PubMed DOI PMC

Spurdle A.B., Couch F.J., Hogervorst F.B.L., Radice P., Sinilnikova O.M. Prediction and assessment of splicing alterations: Implications for clinical testing. Hum. Mutat. 2008;29:1304–1313. doi: 10.1002/humu.20901. PubMed DOI PMC

Fraile-Bethencourt E., Díez-Gómez B., Velásquez-Zapata V., Acedo A., Sanz D.J., Velasco E.A. Functional classification of DNA variants by hybrid minigenes: Identification of 30 spliceogenic variants of BRCA2 exons 17 and 18. PLoS Genet. 2017;13:e1006691. doi: 10.1371/journal.pgen.1006691. PubMed DOI PMC

Petkovic V., Godi M., Lochmatter D., Eblé A., Flück C.E., Robinson I.C., Mullis P.E. Growth Hormone (GH)-Releasing Hormone Increases the Expression of the Dominant-Negative GH Isoform in Cases of Isolated GH Deficiency due to GH Splice-Site Mutations. Endocrinology. 2010;151:2650–2658. doi: 10.1210/en.2009-1280. PubMed DOI

Suñé-Pou M., Prieto-Sánchez S., Boyero-Corral S., Moreno-Castro C., El Yousfi Y., Suñé-Negre J., Hernández-Munain C., Suñé C. Targeting Splicing in the Treatment of Human Disease. Genes. 2017;8:87. doi: 10.3390/genes8030087. PubMed DOI PMC

Sardone V., Zhou H., Muntoni F., Ferlini A., Falzarano M. Antisense Oligonucleotide-Based Therapy for Neuromuscular Disease. Molecules. 2017;22:563. doi: 10.3390/molecules22040563. PubMed DOI PMC

Tian N., Li J., Shi J., Sui G. From General Aberrant Alternative Splicing in Cancers and Its Therapeutic Application to the Discovery of an Oncogenic DMTF1 Isoform. Int. J. Mol. Sci. 2017;18:191. doi: 10.3390/ijms18030191. PubMed DOI PMC

Havens M.A., Hastings M.L. Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res. 2016;44:6549–6563. doi: 10.1093/nar/gkw533. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace