Systematic Approach Revealed SERPING1 Splicing-Affecting Variants to be Highly Represented in the Czech National HAE Cohort

. 2023 Nov ; 43 (8) : 1974-1991. [epub] 20230825

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37620742
Odkazy

PubMed 37620742
PubMed Central PMC10661775
DOI 10.1007/s10875-023-01565-w
PII: 10.1007/s10875-023-01565-w
Knihovny.cz E-zdroje

Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is a rare and life-threatening condition characterized by recurrent localized edema. We conducted a systematic screening of SERPING1 defects in a cohort of 207 Czech patients from 85 families with C1-INH-HAE. Our workflow involved a combined strategy of sequencing extended to UTR and deep intronic regions, advanced in silico prediction tools, and mRNA-based functional assays. This approach allowed us to detect a causal variant in all families except one and to identify a total of 56 different variants, including 5 novel variants that are likely to be causal. We further investigated the functional impact of two splicing variants, namely c.550 + 3A > C and c.686-7C > G using minigene assays and RT-PCR mRNA analysis. Notably, our cohort showed a considerably higher proportion of detected splicing variants compared to other central European populations and the LOVD database. Moreover, our findings revealed a significant association between HAE type 1 missense variants and a delayed HAE onset when compared to null variants. We also observed a significant correlation between the presence of the SERPING1 variant c.-21 T > C in the trans position to causal variants and the frequency of attacks per year, disease onset, as well as Clinical severity score. Overall, our study provides new insights into the genetic landscape of C1-INH-HAE in the Czech population, including the identification of novel variants and a better understanding of genotype-phenotype correlations. Our findings also highlight the importance of comprehensive screening strategies and functional analyses in improving the C1-INH-HAE diagnosis and management.

Zobrazit více v PubMed

Dewald G, Bork K. Missense mutations in the coagulation factor XII (Hageman factor) gene in hereditary angioedema with normal C1 inhibitor. Biochem Biophys Res Commun [Internet]. 2006 [cited 2023 Jun 13];343:1286–9. 10.1016/j.bbrc.2006.03.092 PubMed

Bafunno V, Firinu D, D’Apolito M, Cordisco G, Loffredo S, Leccese A, et al. Mutation of the angiopoietin-1 gene (ANGPT1) associates with a new type of hereditary angioedema. J Allergy Clin Immunol [Internet]. 2018 [cited 2023 Jun 13];141:1009–17. 10.1016/j.jaci.2017.05.020 PubMed

Bork K, Wulff K, Witzke G, Machnig T, Hardt J. Treatment of patients with hereditary angioedema with the c.988A>G (p.Lys330Glu) variant in the plasminogen gene. Orphanet J Rare Dis [Internet]. 2020 [cited 2023 Jun 13];15:52. 10.1186/s13023-020-1334-8 PubMed PMC

Ariano A, D’Apolito M, Bova M, Bellanti F, Loffredo S, D’Andrea G, et al. A myoferlin gain-of-function variant associates with a new type of hereditary angioedema. Allergy [Internet]. 2020 [cited 2023 Jun 13];75:2989–92. 10.1111/all.14454 PubMed

Grymová T, Grodecká L, Souček P, Freiberger T. SERPING1 exon 3 splicing variants using alternative acceptor splice sites. Mol Immunol [Internet] 2019;107:91–96. doi: 10.1016/j.molimm.2019.01.007. PubMed DOI

Nzeako UC, Frigas E, Tremaine WJ. Hereditary angioedema: a broad review for clinicians. Arch Internal Med [Internet] 2001;161:2417–2429. doi: 10.1001/archinte.161.20.2417. PubMed DOI

Cicardi M, Agostoni A. Hereditary angioedema. N Engl J Med [Internet] 1996;334:1666–1667. doi: 10.1056/NEJM199606203342510. PubMed DOI

Bowen B, Hawk JJ, Sibunka S, Hovick S, Weiler JM. A review of the reported defects in the human C1 esterase inhibitor gene producing hereditary angioedema including four new mutations. Clin Immunol [Internet]. 2001 [cited 2022 Nov 30];98:157–63. 10.1006/clim.2000.4947 PubMed

Drouet C, López-Lera A, Ghannam A, López-Trascasa M, Cichon S, Ponard D, et al. SERPING1 variants and C1-INH biological function: a close relationship with C1-INH-HAE. Front Allergy [Internet]. 2022 [cited 2022 Nov 30];3:835503. 10.3389/falgy.2022.835503 PubMed PMC

Winnewisser J, Rossi M, Späth P, Bürgi H. Type I hereditary angio-oedema. Variability of clinical presentation and course within two large kindreds. J Internal Med [Internet] 1997;241:39–46. doi: 10.1046/j.1365-2796.1997.76893000.x. PubMed DOI

Freiberger T, Grombiříková H, Ravčuková B, Jarkovský J, Kuklínek P, Kryštůfková O, et al. No evidence for linkage between the hereditary angiooedema clinical phenotype and the BDKR1, BDKR2, ACE or MBL2 gene. Scand J Immunol [Internet] 2011;74:100–106. doi: 10.1111/j.1365-3083.2011.02547.x. PubMed DOI

Speletas M, Szilagyi A, Psarros F, Moldovan D, Magerl M, Kompoti M, et al. Hereditary angioedema: molecular and clinical differences among European populations. J Allergy Clin Immunol [Internet] 2015;135:570–573.e10. doi: 10.1016/j.jaci.2014.08.007. PubMed DOI

Loffredo S, Bova M, Suffritti C, Borriello F, Zanichelli A, Petraroli A, et al. Elevated plasma levels of vascular permeability factors in C1 inhibitor-deficient hereditary angioedema. Allergy [Internet] 2016;71:989–996. doi: 10.1111/all.12862. PubMed DOI

Lung CC, Chan EK, Zuraw BL. Analysis of an exon 1 polymorphism of the B2 bradykinin receptor gene and its transcript in normal subjects and patients with C1 inhibitor deficiency. J Allergy Clin Immunol [Internet] 1997;99:134–146. doi: 10.1016/s0091-6749(97)70310-5. PubMed DOI

Woodard-Grice AV, Lucisano AC, Byrd JB, Stone ER, Simmons WH, Brown NJ. Sex-dependent and race-dependent association of XPNPEP2 C-2399A polymorphism with angiotensin-converting enzyme inhibitor-associated angioedema. Pharmacogenet Genomics [Internet] 2010;20:532–536. doi: 10.1097/FPC.0b013e32833d3acb. PubMed DOI PMC

Hakl R, Kuklínek P, Kadlecová P, Litzman J. Hereditary angio-oedema with C1 inhibitor deficiency: Characteristics and diagnostic delay of Czech patients from one centre. Allergol Immunopathol (Madr) [Internet] 2016;44:241–5. doi: 10.1016/j.aller.2015.09.003. PubMed DOI

Grodecká L, Hujová P, Kramárek M, Kršjaková T, Kováčová T, Vondrášková K, et al. Systematic analysis of splicing defects in selected primary immunodeficiencies-related genes. Clin Immunol [Internet] 2017;180:33–44. doi: 10.1016/j.clim.2017.03.010. PubMed DOI

Freiberger T, Kolárová L, Mejstrík P, Vyskocilová M, Kuklínek P, Litzman J. Five novel mutations in the C1 inhibitor gene (C1NH) leading to a premature stop codon in patients with type I hereditary angioedema. Human Mutation [Internet]. 2002 [cited 2022 Nov 30];19:461–461. 10.1002/humu.9029 PubMed

Hujová P, Souček P, Grodecká L, Grombiříková H, Ravčuková B, Kuklínek P, et al. Deep intronic mutation in SERPING1 caused hereditary angioedema through pseudoexon activation. J Clin Immunol [Internet]. 2020 [cited 2022 Nov 30];40:435–46. 10.1007/s10875-020-00753-2 PubMed

Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer R, et al. VarSome: the human genomic variant search engine. Bioinformatics [Internet]. 2019 [cited 2022 Nov 30];35:1978–80. 10.1093/bioinformatics/bty897 PubMed PMC

Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. 2010; Available from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ Accessed  30 Nov 2022

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics [Internet] 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. GigaScience [Internet] 2021;10:giab008. doi: 10.1093/gigascience/giab008. PubMed DOI PMC

Picard MarkDuplicates [Internet]. Available from: https://broadinstitute.github.io/picard/ Accessed 30 Nov 2022

Lai Z, Markovets A, Ahdesmaki M, Chapman B, Hofmann O, McEwen R, et al. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res [Internet] 2016;44:e108. doi: 10.1093/nar/gkw227. PubMed DOI PMC

Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res [Internet]. 2010 [cited 2022 Nov 30];38:e164. 10.1093/nar/gkq603 PubMed PMC

Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol [Internet]. 2011 [cited 2022 Nov 30];29:24–6. 10.1038/nbt.1754 PubMed PMC

Bygum A, Fagerberg CR, Ponard D, Monnier N, Lunardi J, Drouet C. Mutational spectrum and phenotypes in Danish families with hereditary angioedema because of C1 inhibitor deficiency. Allergy [Internet] 2011;66:76–84. doi: 10.1111/j.1398-9995.2010.02456.x. PubMed DOI

Cagini N, Veronez CL, Constantino-Silva RN, Buzolin M, Martin RP, Grumach AS, et al. New mutations in SERPING1 gene of Brazilian patients with hereditary angioedema. Biol Chem [Internet]. 2016 [cited 2022 Aug 17];397:337–44. 10.1515/hsz-2015-0222 PubMed

Loules G, Zamanakou M, Parsopoulou F, Vatsiou S, Psarros F, Csuka D, et al. Targeted next-generation sequencing for the molecular diagnosis of hereditary angioedema due to C1-inhibitor deficiency. Gene [Internet] 2018;667:76–82. doi: 10.1016/j.gene.2018.05.029. PubMed DOI

Gábos G, Moldovan D, Dobru D, Mihály E, Bara N, Nădăşan V, et al. Mutational spectrum and genotype-phenotype relationships in a cohort of Romanian hereditary angioedema patients caused by C1 inhibitor deficiency. Rev Romana Med Laborator [Internet] 2019;27:255–267. doi: 10.2478/rrlm-2019-0029. DOI

Veronez CL, Mendes AR, Leite CS, Gomes CP, Grumach AS, Pesquero JB, et al. The panorama of primary angioedema in the Brazilian population. J Allergy Clin Immunol: In Practice [Internet]. 2021;9:2293–2304.e5. 10.1016/j.jaip.2020.11.039 PubMed

Suffritti C, Zanichelli A, Maggioni L, Bonanni E, Cugno M, Cicardi M. High-molecular-weight kininogen cleavage correlates with disease states in the bradykinin-mediated angioedema due to hereditary C1-inhibitor deficiency. Clin Exp Allergy [Internet] 2014;44:1503–1514. doi: 10.1111/cea.12293. PubMed DOI

Szabó E, Csuka D, Andrási N, Varga L, Farkas H, Szilágyi Á. Overview of SERPING1 variations identified in Hungarian patients with hereditary angioedema. Front Allergy [Internet] 2022;3:836465. doi: 10.3389/falgy.2022.836465. PubMed DOI PMC

Verpy E, Biasotto M, Brai M, Misiano G, Meo T, Tosi M. Exhaustive mutation scanning by fluorescence-assisted mismatch analysis discloses new genotype-phenotype correlations in angiodema. American Journal of Human Genetics [Internet]. 1996;59:308. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914725/ Accessed 30 Nov 2022 PubMed PMC

Ponard D, Gaboriaud C, Charignon D, Ghannam A, Wagenaar-Bos IGA, Roem D, et al. SERPING1 mutation update: mutation spectrum and C1 Inhibitor phenotypes. Human Mutation [Internet]. 2020 [cited 2022 Dec 2];41:38–57. 10.1002/humu.23917 PubMed

López-Lera A, Garrido S, Roche O, López-Trascasa M. SERPING1 mutations in 59 families with hereditary angioedema. Mol Immunol [Internet] 2011;49:18–27. doi: 10.1016/j.molimm.2011.07.010. PubMed DOI

Hashimura C, Kiyohara C, Fukushi JI, Hirose T, Ohsawa I, Tahira T, et al. Clinical and genetic features of hereditary angioedema with and without C1-inhibitor (C1-INH) deficiency in Japan. Allergy [Internet] 2021;76:3529–3534. doi: 10.1111/all.15034. PubMed DOI PMC

Zuraw BL, Herschbach J. Detection of C1 inhibitor mutations in patients with hereditary angioedema. J Allergy Clin Immunol [Internet] 2000;105:541–6. doi: 10.1067/mai.2000.104780. PubMed DOI

Haslund D, Ryø LB, Seidelin Majidi S, Rose I, Skipper KA, Fryland T, et al. Dominant-negative SERPING1 variants cause intracellular retention of C1 inhibitor in hereditary angioedema. J Clin Invest [Internet] 2019;129:388–405. doi: 10.1172/JCI98869. PubMed DOI PMC

Yakushiji H, Kaji A, Suzuki K, Yamada M, Horiuchi T, Sinozaki M. Hereditary angioedema with recurrent abdominal pain in a patient with a novel mutation. Intern Med [Internet]. 2016 [cited 2022 Dec 2];55:2885–7. 10.2169/internalmedicine.55.6951 PubMed PMC

Roche O, Blanch A, Duponchel C, Fontán G, Tosi M, López-Trascasa M. Hereditary angioedema: the mutation spectrum of SERPING1/C1NH in a large Spanish cohort. Human Mutation [Internet] 2005;26:135–144. doi: 10.1002/humu.20197. PubMed DOI

Jindal AK, Rawat A, Kaur A, Sharma D, Suri D, Gupta A, et al. Novel SERPING1 gene mutations and clinical experience of type 1 hereditary angioedema from North India. Pediatr Allergy Immunol [Internet] 2021;32:599–611. doi: 10.1111/pai.13420. PubMed DOI

Andrejević S, Korošec P, Šilar M, Košnik M, Mijanović R, Bonači-Nikolić B, et al. hereditary angioedema due to C1 inhibitor deficiency in Serbia: two novel mutations and evidence of genotype-phenotype association. PLoS One [Internet]. 2015 [cited 2022 Nov 30];10:e0142174. 10.1371/journal.pone.0142174 PubMed PMC

Kanepa A, Nartisa I, Rots D, Gailite L, Farkas H, Kurjane N. National survey on clinical and genetic characteristics of patients with hereditary angioedema in Latvia. Allergy, Asthma Clin Immunol [Internet]. 2023 [cited 2023 Jun 12];19:28. 10.1186/s13223-023-00783-6 PubMed PMC

Sheikh F, Alajlan H, Albanyan M, Alruwaili H, Alawami F, Sumayli S, et al. Phenotypic and genotypic characterization of hereditary angioedema in Saudi Arabia. J Clin Immunol [Internet] 2022;43:479–484. doi: 10.1007/s10875-022-01399-y. PubMed DOI

Pappalardo E, Caccia S, Suffritti C, Tordai A, Zingale LC, Cicardi M. Mutation screening of C1 inhibitor gene in 108 unrelated families with hereditary angioedema: functional and structural correlates. Mol Immunol [Internet] 2008;45:3536–3544. doi: 10.1016/j.molimm.2008.05.007. PubMed DOI

Rijavec M, Korošec P, Šilar M, Zidarn M, Miljković J, Košnik M. Hereditary angioedema nationwide study in Slovenia reveals four novel mutations in SERPING1 gene. PLoS One [Internet]. 2013 [cited 2022 Nov 30];8:e56712. 10.1371/journal.pone.0056712 PubMed PMC

Gösswein T, Kocot A, Emmert G, Kreuz W, Martinez-Saguer I, Aygören-Pürsün E, et al. Mutational spectrum of the C1INH (SERPING1) gene in patients with hereditary angioedema. Cytogenet Genome Res [Internet] 2008;121:181–188. doi: 10.1159/000138883. PubMed DOI

Maia LSM, Moreno AS, Ferriani MPL, Nunes FL, Ferraro MF, Dias MM, et al. Genotype-phenotype correlations in Brazilian patients with hereditary angioedema due to C1 inhibitor deficiency. Allergy [Internet]. 2019 [cited 2022 Dec 2];74:1013–6. 10.1111/all.13699 PubMed

Pappalardo E, Cicardi M, Duponchel C, Carugati A, Choquet S, Tosi M. Frequent de novo mutations and exon deletions in the Clinhibitor gene of patients with angioedema. J Allergy Clin Immunol [Internet] 2000;106:1147–1154. doi: 10.1067/mai.2000.110471. PubMed DOI

Skriver K, Radziejewska E, Silbermann JA, Donaldson VH, Bock SC. CpG mutations in the reactive site of human C 1 - inhibitor. J Biol Chem [Internet]. 1989 [cited 2022 Dec 2];264:3066–71. 10.1016/S0021-9258(18)94031-7 PubMed

Nabilou S, Pak F, Alizadeh Z, Fazlollahi MR, Houshmand M, Ayazi M, et al. Genetic study of hereditary angioedema type I and type II (first report from Iranian patients: describing three new mutations). Immunol Investig [Internet]. 2022 [cited 2022 Dec 2];51:170–81. 10.1080/08820139.2020.1817068 PubMed

Guryanova I, Suffritti C, Parolin D, Zanichelli A, Ishchanka N, Polyakova E, et al. Hereditary angioedema due to C1 inhibitor deficiency in Belarus: epidemiology, access to diagnosis and seven novel mutations in SERPING1 gene. Clin Mol Allergy [Internet] 2021;19:3. doi: 10.1186/s12948-021-00141-0. PubMed DOI PMC

Mendoza-Alvarez A, Tosco-Herrera E, Muñoz-Barrera A, Rubio-Rodríguez LA, Alonso-Gonzalez A, Corrales A, et al. A catalog of the genetic causes of hereditary angioedema in the Canary Islands (Spain). Front Immunol [Internet]. 2022 [cited 2023 Feb 8];13:997148. 10.3389/fimmu.2022.997148 PubMed PMC

Wang X, Lei S, Xu Y, Liu S, Zhi Y. Mutation update of SERPING1 related to hereditary angioedema in the Chinese population. Hereditas [Internet]. 2022 [cited 2022 Dec 20];159:28. 10.1186/s41065-022-00242-z PubMed PMC

Eldering E, Huijbregts CC, Lubbers YT, Longstaff C, Hack CE. Characterization of recombinant C1 inhibitor P1 variants. J Biol Chem [Internet]. 1992;267:7013–20. Available from: https://pubmed.ncbi.nlm.nih.gov/1551909/. PubMed

Xu Y-Y, Zhi Y-X, Yin J, Wang L-L, Wen L-P, Gu J-Q, et al. Mutational spectrum and geno-phenotype correlation in Chinese families with hereditary angioedema. Allergy [Internet] 2012;67:1430–1436. doi: 10.1111/all.12024. PubMed DOI

Topyıldız E, Duman Şenol H, Gülen F, Demir E, Mete Gökmen N. Successful treatment of post-pericardiotomy syndrome via c1 inhibitor replacement therapy in a hereditary angioedema patient with marfan syndrome. TurkJPediatr [Internet]. 2023 ;65:338. Available from: 10.24953/turkjped.2022.637 Accessed 12 Jun 2023 PubMed

Sim DW, Park KH, Lee J-H, Park J-W. A case of type 2 hereditary angioedema with SERPING1 mutation. Allergy Asthma Immunol Res [Internet]. 2017 [cited 2023 Jun 13];9:96–8. 10.4168/aair.2017.9.1.96 PubMed PMC

Veronez CL, Aabom A, Martin RP, Filippelli-Silva R, Gonçalves RF, Nicolicht P, et al. Genetic variation of Kallikrein-Kinin system and related genes in patients with hereditary angioedema. Front Med [Internet] 2019;6:28. doi: 10.3389/fmed.2019.00028. PubMed DOI PMC

Förster TM, Magerl M, Maurer M, Zülbahar S, Zielke S, Inhaber N, et al. HAE patient self-sampling for biomarker establishment. Orphanet J Rare Dis [Internet] 2021;16:399. doi: 10.1186/s13023-021-02021-x. PubMed DOI PMC

Aulak Ks, Cicardi M, Harrison Ra. Identification of a new P1 residue mutation (444Arg→Ser) in a dysfunctional C1 inhibitor protein contained in a type II hereditary angioedema plasma. FEBS Lett [Internet]. 1990 [cited 2022 Dec 2];266:13–6. 10.1016/0014-5793(90)81494-9 PubMed

Ren Z, Zhao S, Li T, Wedner HJ, Atkinson JP. Insights into the pathogenesis of hereditary angioedema using genetic sequencing and recombinant protein expression analyses. J Allergy Clin Immunol [Internet]. 2022;S0091–6749(22)02557-X. 10.1016/j.jaci.2022.11.027 PubMed PMC

Obtulowicz K, Ksiaźek T, Bogdali A, Dyga W, Czarnobilska E, Juchacz A. Genetic variants of SERPING1 gene in Polish patients with hereditary angioedema due to C1 inhibitor deficiency. Cent Eur J Immunol [Internet]. 2020 [cited 2022 Dec 5];45:301–9. 10.5114/ceji.2020.101252 PubMed PMC

Duponchel C, Djenouhat K, Frémeaux-Bacchi V, Monnier N, Drouet C, Tosi M. Functional analysis of splicing mutations and of an exon 2 polymorphic variant of SERPING1/C1NH. Hum Mutat [Internet] 2006;27:295–296. doi: 10.1002/humu.9414. PubMed DOI

Madsen DE, Hansen S, Gram J, Bygum A, Drouet C, Sidelmann JJ. Presence of C1-inhibitor polymers in a subset of patients suffering from hereditary angioedema. Plos One [Internet]. 2014 [cited 2023 Jun 13];9:e112051. 10.1371/journal.pone.0112051 PubMed PMC

Johnsrud I, Kulseth MA, Rødningen OK, Landrø L, Helsing P, Waage Nielsen E, et al. A nationwide study of Norwegian patients with hereditary angioedema with C1 inhibitor deficiency identified six novel mutations in SERPING1. PLoS One [Internet] 2015;10:e0131637. doi: 10.1371/journal.pone.0131637. PubMed DOI PMC

de la Cruz RM, López-Lera A, López-Trascasa M. Analysis of SERPING1 expression on hereditary angioedema patients: quantitative analysis of full-length and exon 3 splicing variants. Immunol Lett [Internet] 2012;141:158–164. doi: 10.1016/j.imlet.2011.07.011. PubMed DOI

Kesim B, Uyguner ZO, Gelincik A, Gökmen NM, Sin AZ, Karakaya G, et al. The Turkish Hereditary Angioedema Pilot Study (TURHAPS): the first Turkish series of hereditary angioedema. Int Arch Allergy Immunol [Internet] 2011;156:443–450. doi: 10.1159/000323915. PubMed DOI

Germenis AE, Vatsiou S, Csuka D, Zamanakou M, Farkas H. Deep intronic SERPING1 gene variants: ending one odyssey and starting another? J Clin Immunol [Internet]. 2021 [cited 2022 Dec 5];41:248–50. 10.1007/s10875-020-00887-3 PubMed

Hida T, Ishikawa A, Okura M, Kishibe M, Uhara H. A Japanese patient with hereditary angioedema caused by deep intron variation in the SERPING1 gene. J Dermatol [Internet]. 2023. 10.1111/1346-8138.16817 PubMed

Colobran R, Pujol-Borrell R, Hernández-González M, Guilarte M. A novel splice site mutation in the SERPING1 gene leads to haploinsufficiency by complete degradation of the mutant allele mRNA in a case of familial hereditary angioedema. J Clin Immunol [Internet] 2014;34:521–523. doi: 10.1007/s10875-014-0042-3. PubMed DOI

Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, Database Mutation The Human Genome (HGMD): towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet [Internet]., [cited, et al. 8];136:665–77. Available from. 2017. 10.1002/humu.10212. PubMed PMC

Germenis AE, Speletas M. Genetics of hereditary angioedema revisited. Clin Rev Allerg Immunol [Internet]. 2016 [cited 2022 Nov 30];51:170–82. 10.1007/s12016-016-8543-x PubMed

Fokkema IFAC, Taschner PEM, Schaafsma GCP, Celli J, Laros JFJ, den Dunnen JT. Leiden Open Variation Database (LOVD). Human Mutation [Internet]. 2011 [cited 2022 Nov 30];32:557–63. 10.1002/humu.21438

Guédard-Méreuze SL, Vaché C, Molinari N, Vaudaine J, Claustres M, Roux A-F, et al. Sequence contexts that determine the pathogenicity of base substitutions at position +3 of donor splice-sites. Human Mutation [Internet]. 2009 [cited 2022 Nov 30];30:1329–39. 10.1002/humu.21070 PubMed

Maurer M, Magerl M, Betschel S, Aberer W, Ansotegui IJ, Aygören-Pürsün E, et al. The international WAO/EAACI guideline for the management of hereditary angioedema-The 2021 revision and update. Allergy [Internet] 2022;77:1961–1990. doi: 10.1111/all.15214. PubMed DOI

Clinical Genome Resource [Internet]. [cited 2023 Jan 30]. Available from: https://clinicalgenome.org/affiliation/50128/.

Grivčeva-Panovska V, Košnik M, Korošec P, Andrejević S, Karadža-Lapić L, Rijavec M. Hereditary angioedema due to C1-inhibitor deficiency in Macedonia: clinical characteristics, novel SERPING1 mutations and genetic factors modifying the clinical phenotype. Ann Med [Internet]. 2018 [cited 2023 Jun 13];50:269–76. 10.1080/07853890.2018.1449959 PubMed

Kalmár L, Hegedüs T, Farkas H, Nagy M, Tordai A. HAEdb: a novel interactive, locus-specific mutation database for the C1 inhibitor gene. Hum Mutat [Internet] 2005;25:1–5. doi: 10.1002/humu.20112. PubMed DOI

Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature [Internet]. 2020 [cited 2022 Nov 30];581:434–43. 10.1038/s41586-020-2308-7 PubMed PMC

Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res [Internet]. 2018 [cited 2022 Nov 30];46:D1062–7. 10.1093/nar/gkx1153 PubMed PMC

Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The Human Genome Browser at UCSC. Genome Res [Internet]. 2002 [cited 2022 Nov 30];12:996–1006. 10.1101/gr.229102 PubMed PMC

Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, et al. Ensembl 2022. Nucleic Acids Res [Internet]. 2022 [cited 2022 Nov 30];50:D988–95. 10.1093/nar/gkab1049 PubMed PMC

The UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res [Internet]. 2021 [cited 2022 Nov 30];49:D480–9. 10.1093/nar/gkaa1100 PubMed PMC

Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for genomes. Nat Protoc [Internet]. 2016 [cited 2022 Nov 30];11:1–9. 10.1038/nprot.2015.123 PubMed

Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet [Internet]. 2013 [cited 2022 Nov 30];0 7:Unit7.20. 10.1002/0471142905.hg0720s76 PubMed PMC

Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res [Internet] 2019;47:D886–D894. doi: 10.1093/nar/gky1016. PubMed DOI PMC

Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR. ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res [Internet]. 2003;31:3568–71. Available from: 10.1093/nar/gkg616 Accessed 30 Nov 2022 PubMed PMC

Desmet FO, Hamroun D, Lalande M, Collod-Bëroud G, Claustres M, Béroud C. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res [Internet] 2009;37:e67. doi: 10.1093/NAR/GKP215. PubMed DOI PMC

Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. https://home.liebertpub.com/cmb [Internet]. 2004;11:377–94. 10.1089/1066527041410418 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...