Systematic Approach Revealed SERPING1 Splicing-Affecting Variants to be Highly Represented in the Czech National HAE Cohort
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37620742
PubMed Central
PMC10661775
DOI
10.1007/s10875-023-01565-w
PII: 10.1007/s10875-023-01565-w
Knihovny.cz E-zdroje
- Klíčová slova
- C1-INH-HAE, HAE, SERPING1, genotype–phenotype relationship, hereditary angioedema, splicing, time to diagnosis,
- MeSH
- hereditární angioedémy * diagnóza epidemiologie genetika MeSH
- inhibiční protein komplementu C1 * genetika MeSH
- lidé MeSH
- messenger RNA MeSH
- sestřih RNA MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
- Názvy látek
- inhibiční protein komplementu C1 * MeSH
- messenger RNA MeSH
- SERPING1 protein, human MeSH Prohlížeč
Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is a rare and life-threatening condition characterized by recurrent localized edema. We conducted a systematic screening of SERPING1 defects in a cohort of 207 Czech patients from 85 families with C1-INH-HAE. Our workflow involved a combined strategy of sequencing extended to UTR and deep intronic regions, advanced in silico prediction tools, and mRNA-based functional assays. This approach allowed us to detect a causal variant in all families except one and to identify a total of 56 different variants, including 5 novel variants that are likely to be causal. We further investigated the functional impact of two splicing variants, namely c.550 + 3A > C and c.686-7C > G using minigene assays and RT-PCR mRNA analysis. Notably, our cohort showed a considerably higher proportion of detected splicing variants compared to other central European populations and the LOVD database. Moreover, our findings revealed a significant association between HAE type 1 missense variants and a delayed HAE onset when compared to null variants. We also observed a significant correlation between the presence of the SERPING1 variant c.-21 T > C in the trans position to causal variants and the frequency of attacks per year, disease onset, as well as Clinical severity score. Overall, our study provides new insights into the genetic landscape of C1-INH-HAE in the Czech population, including the identification of novel variants and a better understanding of genotype-phenotype correlations. Our findings also highlight the importance of comprehensive screening strategies and functional analyses in improving the C1-INH-HAE diagnosis and management.
Centre for Cardiovascular Surgery and Transplantation Brno Czech Republic
Department of Immunology and Allergology University Hospital Pilsen Pilsen Czech Republic
Faculty of Medicine Masaryk University Brno Czech Republic
Faculty of Science Masaryk University Brno Czech Republic
Institute of Biostatistics and Analyses Ltd Brno Czech Republic
Zobrazit více v PubMed
Dewald G, Bork K. Missense mutations in the coagulation factor XII (Hageman factor) gene in hereditary angioedema with normal C1 inhibitor. Biochem Biophys Res Commun [Internet]. 2006 [cited 2023 Jun 13];343:1286–9. 10.1016/j.bbrc.2006.03.092 PubMed
Bafunno V, Firinu D, D’Apolito M, Cordisco G, Loffredo S, Leccese A, et al. Mutation of the angiopoietin-1 gene (ANGPT1) associates with a new type of hereditary angioedema. J Allergy Clin Immunol [Internet]. 2018 [cited 2023 Jun 13];141:1009–17. 10.1016/j.jaci.2017.05.020 PubMed
Bork K, Wulff K, Witzke G, Machnig T, Hardt J. Treatment of patients with hereditary angioedema with the c.988A>G (p.Lys330Glu) variant in the plasminogen gene. Orphanet J Rare Dis [Internet]. 2020 [cited 2023 Jun 13];15:52. 10.1186/s13023-020-1334-8 PubMed PMC
Ariano A, D’Apolito M, Bova M, Bellanti F, Loffredo S, D’Andrea G, et al. A myoferlin gain-of-function variant associates with a new type of hereditary angioedema. Allergy [Internet]. 2020 [cited 2023 Jun 13];75:2989–92. 10.1111/all.14454 PubMed
Grymová T, Grodecká L, Souček P, Freiberger T. SERPING1 exon 3 splicing variants using alternative acceptor splice sites. Mol Immunol [Internet] 2019;107:91–96. doi: 10.1016/j.molimm.2019.01.007. PubMed DOI
Nzeako UC, Frigas E, Tremaine WJ. Hereditary angioedema: a broad review for clinicians. Arch Internal Med [Internet] 2001;161:2417–2429. doi: 10.1001/archinte.161.20.2417. PubMed DOI
Cicardi M, Agostoni A. Hereditary angioedema. N Engl J Med [Internet] 1996;334:1666–1667. doi: 10.1056/NEJM199606203342510. PubMed DOI
Bowen B, Hawk JJ, Sibunka S, Hovick S, Weiler JM. A review of the reported defects in the human C1 esterase inhibitor gene producing hereditary angioedema including four new mutations. Clin Immunol [Internet]. 2001 [cited 2022 Nov 30];98:157–63. 10.1006/clim.2000.4947 PubMed
Drouet C, López-Lera A, Ghannam A, López-Trascasa M, Cichon S, Ponard D, et al. SERPING1 variants and C1-INH biological function: a close relationship with C1-INH-HAE. Front Allergy [Internet]. 2022 [cited 2022 Nov 30];3:835503. 10.3389/falgy.2022.835503 PubMed PMC
Winnewisser J, Rossi M, Späth P, Bürgi H. Type I hereditary angio-oedema. Variability of clinical presentation and course within two large kindreds. J Internal Med [Internet] 1997;241:39–46. doi: 10.1046/j.1365-2796.1997.76893000.x. PubMed DOI
Freiberger T, Grombiříková H, Ravčuková B, Jarkovský J, Kuklínek P, Kryštůfková O, et al. No evidence for linkage between the hereditary angiooedema clinical phenotype and the BDKR1, BDKR2, ACE or MBL2 gene. Scand J Immunol [Internet] 2011;74:100–106. doi: 10.1111/j.1365-3083.2011.02547.x. PubMed DOI
Speletas M, Szilagyi A, Psarros F, Moldovan D, Magerl M, Kompoti M, et al. Hereditary angioedema: molecular and clinical differences among European populations. J Allergy Clin Immunol [Internet] 2015;135:570–573.e10. doi: 10.1016/j.jaci.2014.08.007. PubMed DOI
Loffredo S, Bova M, Suffritti C, Borriello F, Zanichelli A, Petraroli A, et al. Elevated plasma levels of vascular permeability factors in C1 inhibitor-deficient hereditary angioedema. Allergy [Internet] 2016;71:989–996. doi: 10.1111/all.12862. PubMed DOI
Lung CC, Chan EK, Zuraw BL. Analysis of an exon 1 polymorphism of the B2 bradykinin receptor gene and its transcript in normal subjects and patients with C1 inhibitor deficiency. J Allergy Clin Immunol [Internet] 1997;99:134–146. doi: 10.1016/s0091-6749(97)70310-5. PubMed DOI
Woodard-Grice AV, Lucisano AC, Byrd JB, Stone ER, Simmons WH, Brown NJ. Sex-dependent and race-dependent association of XPNPEP2 C-2399A polymorphism with angiotensin-converting enzyme inhibitor-associated angioedema. Pharmacogenet Genomics [Internet] 2010;20:532–536. doi: 10.1097/FPC.0b013e32833d3acb. PubMed DOI PMC
Hakl R, Kuklínek P, Kadlecová P, Litzman J. Hereditary angio-oedema with C1 inhibitor deficiency: Characteristics and diagnostic delay of Czech patients from one centre. Allergol Immunopathol (Madr) [Internet] 2016;44:241–5. doi: 10.1016/j.aller.2015.09.003. PubMed DOI
Grodecká L, Hujová P, Kramárek M, Kršjaková T, Kováčová T, Vondrášková K, et al. Systematic analysis of splicing defects in selected primary immunodeficiencies-related genes. Clin Immunol [Internet] 2017;180:33–44. doi: 10.1016/j.clim.2017.03.010. PubMed DOI
Freiberger T, Kolárová L, Mejstrík P, Vyskocilová M, Kuklínek P, Litzman J. Five novel mutations in the C1 inhibitor gene (C1NH) leading to a premature stop codon in patients with type I hereditary angioedema. Human Mutation [Internet]. 2002 [cited 2022 Nov 30];19:461–461. 10.1002/humu.9029 PubMed
Hujová P, Souček P, Grodecká L, Grombiříková H, Ravčuková B, Kuklínek P, et al. Deep intronic mutation in SERPING1 caused hereditary angioedema through pseudoexon activation. J Clin Immunol [Internet]. 2020 [cited 2022 Nov 30];40:435–46. 10.1007/s10875-020-00753-2 PubMed
Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer R, et al. VarSome: the human genomic variant search engine. Bioinformatics [Internet]. 2019 [cited 2022 Nov 30];35:1978–80. 10.1093/bioinformatics/bty897 PubMed PMC
Andrews S. FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. 2010; Available from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ Accessed 30 Nov 2022
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics [Internet] 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. GigaScience [Internet] 2021;10:giab008. doi: 10.1093/gigascience/giab008. PubMed DOI PMC
Picard MarkDuplicates [Internet]. Available from: https://broadinstitute.github.io/picard/ Accessed 30 Nov 2022
Lai Z, Markovets A, Ahdesmaki M, Chapman B, Hofmann O, McEwen R, et al. VarDict: a novel and versatile variant caller for next-generation sequencing in cancer research. Nucleic Acids Res [Internet] 2016;44:e108. doi: 10.1093/nar/gkw227. PubMed DOI PMC
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res [Internet]. 2010 [cited 2022 Nov 30];38:e164. 10.1093/nar/gkq603 PubMed PMC
Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol [Internet]. 2011 [cited 2022 Nov 30];29:24–6. 10.1038/nbt.1754 PubMed PMC
Bygum A, Fagerberg CR, Ponard D, Monnier N, Lunardi J, Drouet C. Mutational spectrum and phenotypes in Danish families with hereditary angioedema because of C1 inhibitor deficiency. Allergy [Internet] 2011;66:76–84. doi: 10.1111/j.1398-9995.2010.02456.x. PubMed DOI
Cagini N, Veronez CL, Constantino-Silva RN, Buzolin M, Martin RP, Grumach AS, et al. New mutations in SERPING1 gene of Brazilian patients with hereditary angioedema. Biol Chem [Internet]. 2016 [cited 2022 Aug 17];397:337–44. 10.1515/hsz-2015-0222 PubMed
Loules G, Zamanakou M, Parsopoulou F, Vatsiou S, Psarros F, Csuka D, et al. Targeted next-generation sequencing for the molecular diagnosis of hereditary angioedema due to C1-inhibitor deficiency. Gene [Internet] 2018;667:76–82. doi: 10.1016/j.gene.2018.05.029. PubMed DOI
Gábos G, Moldovan D, Dobru D, Mihály E, Bara N, Nădăşan V, et al. Mutational spectrum and genotype-phenotype relationships in a cohort of Romanian hereditary angioedema patients caused by C1 inhibitor deficiency. Rev Romana Med Laborator [Internet] 2019;27:255–267. doi: 10.2478/rrlm-2019-0029. DOI
Veronez CL, Mendes AR, Leite CS, Gomes CP, Grumach AS, Pesquero JB, et al. The panorama of primary angioedema in the Brazilian population. J Allergy Clin Immunol: In Practice [Internet]. 2021;9:2293–2304.e5. 10.1016/j.jaip.2020.11.039 PubMed
Suffritti C, Zanichelli A, Maggioni L, Bonanni E, Cugno M, Cicardi M. High-molecular-weight kininogen cleavage correlates with disease states in the bradykinin-mediated angioedema due to hereditary C1-inhibitor deficiency. Clin Exp Allergy [Internet] 2014;44:1503–1514. doi: 10.1111/cea.12293. PubMed DOI
Szabó E, Csuka D, Andrási N, Varga L, Farkas H, Szilágyi Á. Overview of SERPING1 variations identified in Hungarian patients with hereditary angioedema. Front Allergy [Internet] 2022;3:836465. doi: 10.3389/falgy.2022.836465. PubMed DOI PMC
Verpy E, Biasotto M, Brai M, Misiano G, Meo T, Tosi M. Exhaustive mutation scanning by fluorescence-assisted mismatch analysis discloses new genotype-phenotype correlations in angiodema. American Journal of Human Genetics [Internet]. 1996;59:308. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914725/ Accessed 30 Nov 2022 PubMed PMC
Ponard D, Gaboriaud C, Charignon D, Ghannam A, Wagenaar-Bos IGA, Roem D, et al. SERPING1 mutation update: mutation spectrum and C1 Inhibitor phenotypes. Human Mutation [Internet]. 2020 [cited 2022 Dec 2];41:38–57. 10.1002/humu.23917 PubMed
López-Lera A, Garrido S, Roche O, López-Trascasa M. SERPING1 mutations in 59 families with hereditary angioedema. Mol Immunol [Internet] 2011;49:18–27. doi: 10.1016/j.molimm.2011.07.010. PubMed DOI
Hashimura C, Kiyohara C, Fukushi JI, Hirose T, Ohsawa I, Tahira T, et al. Clinical and genetic features of hereditary angioedema with and without C1-inhibitor (C1-INH) deficiency in Japan. Allergy [Internet] 2021;76:3529–3534. doi: 10.1111/all.15034. PubMed DOI PMC
Zuraw BL, Herschbach J. Detection of C1 inhibitor mutations in patients with hereditary angioedema. J Allergy Clin Immunol [Internet] 2000;105:541–6. doi: 10.1067/mai.2000.104780. PubMed DOI
Haslund D, Ryø LB, Seidelin Majidi S, Rose I, Skipper KA, Fryland T, et al. Dominant-negative SERPING1 variants cause intracellular retention of C1 inhibitor in hereditary angioedema. J Clin Invest [Internet] 2019;129:388–405. doi: 10.1172/JCI98869. PubMed DOI PMC
Yakushiji H, Kaji A, Suzuki K, Yamada M, Horiuchi T, Sinozaki M. Hereditary angioedema with recurrent abdominal pain in a patient with a novel mutation. Intern Med [Internet]. 2016 [cited 2022 Dec 2];55:2885–7. 10.2169/internalmedicine.55.6951 PubMed PMC
Roche O, Blanch A, Duponchel C, Fontán G, Tosi M, López-Trascasa M. Hereditary angioedema: the mutation spectrum of SERPING1/C1NH in a large Spanish cohort. Human Mutation [Internet] 2005;26:135–144. doi: 10.1002/humu.20197. PubMed DOI
Jindal AK, Rawat A, Kaur A, Sharma D, Suri D, Gupta A, et al. Novel SERPING1 gene mutations and clinical experience of type 1 hereditary angioedema from North India. Pediatr Allergy Immunol [Internet] 2021;32:599–611. doi: 10.1111/pai.13420. PubMed DOI
Andrejević S, Korošec P, Šilar M, Košnik M, Mijanović R, Bonači-Nikolić B, et al. hereditary angioedema due to C1 inhibitor deficiency in Serbia: two novel mutations and evidence of genotype-phenotype association. PLoS One [Internet]. 2015 [cited 2022 Nov 30];10:e0142174. 10.1371/journal.pone.0142174 PubMed PMC
Kanepa A, Nartisa I, Rots D, Gailite L, Farkas H, Kurjane N. National survey on clinical and genetic characteristics of patients with hereditary angioedema in Latvia. Allergy, Asthma Clin Immunol [Internet]. 2023 [cited 2023 Jun 12];19:28. 10.1186/s13223-023-00783-6 PubMed PMC
Sheikh F, Alajlan H, Albanyan M, Alruwaili H, Alawami F, Sumayli S, et al. Phenotypic and genotypic characterization of hereditary angioedema in Saudi Arabia. J Clin Immunol [Internet] 2022;43:479–484. doi: 10.1007/s10875-022-01399-y. PubMed DOI
Pappalardo E, Caccia S, Suffritti C, Tordai A, Zingale LC, Cicardi M. Mutation screening of C1 inhibitor gene in 108 unrelated families with hereditary angioedema: functional and structural correlates. Mol Immunol [Internet] 2008;45:3536–3544. doi: 10.1016/j.molimm.2008.05.007. PubMed DOI
Rijavec M, Korošec P, Šilar M, Zidarn M, Miljković J, Košnik M. Hereditary angioedema nationwide study in Slovenia reveals four novel mutations in SERPING1 gene. PLoS One [Internet]. 2013 [cited 2022 Nov 30];8:e56712. 10.1371/journal.pone.0056712 PubMed PMC
Gösswein T, Kocot A, Emmert G, Kreuz W, Martinez-Saguer I, Aygören-Pürsün E, et al. Mutational spectrum of the C1INH (SERPING1) gene in patients with hereditary angioedema. Cytogenet Genome Res [Internet] 2008;121:181–188. doi: 10.1159/000138883. PubMed DOI
Maia LSM, Moreno AS, Ferriani MPL, Nunes FL, Ferraro MF, Dias MM, et al. Genotype-phenotype correlations in Brazilian patients with hereditary angioedema due to C1 inhibitor deficiency. Allergy [Internet]. 2019 [cited 2022 Dec 2];74:1013–6. 10.1111/all.13699 PubMed
Pappalardo E, Cicardi M, Duponchel C, Carugati A, Choquet S, Tosi M. Frequent de novo mutations and exon deletions in the Clinhibitor gene of patients with angioedema. J Allergy Clin Immunol [Internet] 2000;106:1147–1154. doi: 10.1067/mai.2000.110471. PubMed DOI
Skriver K, Radziejewska E, Silbermann JA, Donaldson VH, Bock SC. CpG mutations in the reactive site of human C 1 - inhibitor. J Biol Chem [Internet]. 1989 [cited 2022 Dec 2];264:3066–71. 10.1016/S0021-9258(18)94031-7 PubMed
Nabilou S, Pak F, Alizadeh Z, Fazlollahi MR, Houshmand M, Ayazi M, et al. Genetic study of hereditary angioedema type I and type II (first report from Iranian patients: describing three new mutations). Immunol Investig [Internet]. 2022 [cited 2022 Dec 2];51:170–81. 10.1080/08820139.2020.1817068 PubMed
Guryanova I, Suffritti C, Parolin D, Zanichelli A, Ishchanka N, Polyakova E, et al. Hereditary angioedema due to C1 inhibitor deficiency in Belarus: epidemiology, access to diagnosis and seven novel mutations in SERPING1 gene. Clin Mol Allergy [Internet] 2021;19:3. doi: 10.1186/s12948-021-00141-0. PubMed DOI PMC
Mendoza-Alvarez A, Tosco-Herrera E, Muñoz-Barrera A, Rubio-Rodríguez LA, Alonso-Gonzalez A, Corrales A, et al. A catalog of the genetic causes of hereditary angioedema in the Canary Islands (Spain). Front Immunol [Internet]. 2022 [cited 2023 Feb 8];13:997148. 10.3389/fimmu.2022.997148 PubMed PMC
Wang X, Lei S, Xu Y, Liu S, Zhi Y. Mutation update of SERPING1 related to hereditary angioedema in the Chinese population. Hereditas [Internet]. 2022 [cited 2022 Dec 20];159:28. 10.1186/s41065-022-00242-z PubMed PMC
Eldering E, Huijbregts CC, Lubbers YT, Longstaff C, Hack CE. Characterization of recombinant C1 inhibitor P1 variants. J Biol Chem [Internet]. 1992;267:7013–20. Available from: https://pubmed.ncbi.nlm.nih.gov/1551909/. PubMed
Xu Y-Y, Zhi Y-X, Yin J, Wang L-L, Wen L-P, Gu J-Q, et al. Mutational spectrum and geno-phenotype correlation in Chinese families with hereditary angioedema. Allergy [Internet] 2012;67:1430–1436. doi: 10.1111/all.12024. PubMed DOI
Topyıldız E, Duman Şenol H, Gülen F, Demir E, Mete Gökmen N. Successful treatment of post-pericardiotomy syndrome via c1 inhibitor replacement therapy in a hereditary angioedema patient with marfan syndrome. TurkJPediatr [Internet]. 2023 ;65:338. Available from: 10.24953/turkjped.2022.637 Accessed 12 Jun 2023 PubMed
Sim DW, Park KH, Lee J-H, Park J-W. A case of type 2 hereditary angioedema with SERPING1 mutation. Allergy Asthma Immunol Res [Internet]. 2017 [cited 2023 Jun 13];9:96–8. 10.4168/aair.2017.9.1.96 PubMed PMC
Veronez CL, Aabom A, Martin RP, Filippelli-Silva R, Gonçalves RF, Nicolicht P, et al. Genetic variation of Kallikrein-Kinin system and related genes in patients with hereditary angioedema. Front Med [Internet] 2019;6:28. doi: 10.3389/fmed.2019.00028. PubMed DOI PMC
Förster TM, Magerl M, Maurer M, Zülbahar S, Zielke S, Inhaber N, et al. HAE patient self-sampling for biomarker establishment. Orphanet J Rare Dis [Internet] 2021;16:399. doi: 10.1186/s13023-021-02021-x. PubMed DOI PMC
Aulak Ks, Cicardi M, Harrison Ra. Identification of a new P1 residue mutation (444Arg→Ser) in a dysfunctional C1 inhibitor protein contained in a type II hereditary angioedema plasma. FEBS Lett [Internet]. 1990 [cited 2022 Dec 2];266:13–6. 10.1016/0014-5793(90)81494-9 PubMed
Ren Z, Zhao S, Li T, Wedner HJ, Atkinson JP. Insights into the pathogenesis of hereditary angioedema using genetic sequencing and recombinant protein expression analyses. J Allergy Clin Immunol [Internet]. 2022;S0091–6749(22)02557-X. 10.1016/j.jaci.2022.11.027 PubMed PMC
Obtulowicz K, Ksiaźek T, Bogdali A, Dyga W, Czarnobilska E, Juchacz A. Genetic variants of SERPING1 gene in Polish patients with hereditary angioedema due to C1 inhibitor deficiency. Cent Eur J Immunol [Internet]. 2020 [cited 2022 Dec 5];45:301–9. 10.5114/ceji.2020.101252 PubMed PMC
Duponchel C, Djenouhat K, Frémeaux-Bacchi V, Monnier N, Drouet C, Tosi M. Functional analysis of splicing mutations and of an exon 2 polymorphic variant of SERPING1/C1NH. Hum Mutat [Internet] 2006;27:295–296. doi: 10.1002/humu.9414. PubMed DOI
Madsen DE, Hansen S, Gram J, Bygum A, Drouet C, Sidelmann JJ. Presence of C1-inhibitor polymers in a subset of patients suffering from hereditary angioedema. Plos One [Internet]. 2014 [cited 2023 Jun 13];9:e112051. 10.1371/journal.pone.0112051 PubMed PMC
Johnsrud I, Kulseth MA, Rødningen OK, Landrø L, Helsing P, Waage Nielsen E, et al. A nationwide study of Norwegian patients with hereditary angioedema with C1 inhibitor deficiency identified six novel mutations in SERPING1. PLoS One [Internet] 2015;10:e0131637. doi: 10.1371/journal.pone.0131637. PubMed DOI PMC
de la Cruz RM, López-Lera A, López-Trascasa M. Analysis of SERPING1 expression on hereditary angioedema patients: quantitative analysis of full-length and exon 3 splicing variants. Immunol Lett [Internet] 2012;141:158–164. doi: 10.1016/j.imlet.2011.07.011. PubMed DOI
Kesim B, Uyguner ZO, Gelincik A, Gökmen NM, Sin AZ, Karakaya G, et al. The Turkish Hereditary Angioedema Pilot Study (TURHAPS): the first Turkish series of hereditary angioedema. Int Arch Allergy Immunol [Internet] 2011;156:443–450. doi: 10.1159/000323915. PubMed DOI
Germenis AE, Vatsiou S, Csuka D, Zamanakou M, Farkas H. Deep intronic SERPING1 gene variants: ending one odyssey and starting another? J Clin Immunol [Internet]. 2021 [cited 2022 Dec 5];41:248–50. 10.1007/s10875-020-00887-3 PubMed
Hida T, Ishikawa A, Okura M, Kishibe M, Uhara H. A Japanese patient with hereditary angioedema caused by deep intron variation in the SERPING1 gene. J Dermatol [Internet]. 2023. 10.1111/1346-8138.16817 PubMed
Colobran R, Pujol-Borrell R, Hernández-González M, Guilarte M. A novel splice site mutation in the SERPING1 gene leads to haploinsufficiency by complete degradation of the mutant allele mRNA in a case of familial hereditary angioedema. J Clin Immunol [Internet] 2014;34:521–523. doi: 10.1007/s10875-014-0042-3. PubMed DOI
Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, Database Mutation The Human Genome (HGMD): towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet [Internet]., [cited, et al. 8];136:665–77. Available from. 2017. 10.1002/humu.10212. PubMed PMC
Germenis AE, Speletas M. Genetics of hereditary angioedema revisited. Clin Rev Allerg Immunol [Internet]. 2016 [cited 2022 Nov 30];51:170–82. 10.1007/s12016-016-8543-x PubMed
Fokkema IFAC, Taschner PEM, Schaafsma GCP, Celli J, Laros JFJ, den Dunnen JT. Leiden Open Variation Database (LOVD). Human Mutation [Internet]. 2011 [cited 2022 Nov 30];32:557–63. 10.1002/humu.21438
Guédard-Méreuze SL, Vaché C, Molinari N, Vaudaine J, Claustres M, Roux A-F, et al. Sequence contexts that determine the pathogenicity of base substitutions at position +3 of donor splice-sites. Human Mutation [Internet]. 2009 [cited 2022 Nov 30];30:1329–39. 10.1002/humu.21070 PubMed
Maurer M, Magerl M, Betschel S, Aberer W, Ansotegui IJ, Aygören-Pürsün E, et al. The international WAO/EAACI guideline for the management of hereditary angioedema-The 2021 revision and update. Allergy [Internet] 2022;77:1961–1990. doi: 10.1111/all.15214. PubMed DOI
Clinical Genome Resource [Internet]. [cited 2023 Jan 30]. Available from: https://clinicalgenome.org/affiliation/50128/.
Grivčeva-Panovska V, Košnik M, Korošec P, Andrejević S, Karadža-Lapić L, Rijavec M. Hereditary angioedema due to C1-inhibitor deficiency in Macedonia: clinical characteristics, novel SERPING1 mutations and genetic factors modifying the clinical phenotype. Ann Med [Internet]. 2018 [cited 2023 Jun 13];50:269–76. 10.1080/07853890.2018.1449959 PubMed
Kalmár L, Hegedüs T, Farkas H, Nagy M, Tordai A. HAEdb: a novel interactive, locus-specific mutation database for the C1 inhibitor gene. Hum Mutat [Internet] 2005;25:1–5. doi: 10.1002/humu.20112. PubMed DOI
Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature [Internet]. 2020 [cited 2022 Nov 30];581:434–43. 10.1038/s41586-020-2308-7 PubMed PMC
Landrum MJ, Lee JM, Benson M, Brown GR, Chao C, Chitipiralla S, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res [Internet]. 2018 [cited 2022 Nov 30];46:D1062–7. 10.1093/nar/gkx1153 PubMed PMC
Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The Human Genome Browser at UCSC. Genome Res [Internet]. 2002 [cited 2022 Nov 30];12:996–1006. 10.1101/gr.229102 PubMed PMC
Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, et al. Ensembl 2022. Nucleic Acids Res [Internet]. 2022 [cited 2022 Nov 30];50:D988–95. 10.1093/nar/gkab1049 PubMed PMC
The UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res [Internet]. 2021 [cited 2022 Nov 30];49:D480–9. 10.1093/nar/gkaa1100 PubMed PMC
Vaser R, Adusumalli S, Leng SN, Sikic M, Ng PC. SIFT missense predictions for genomes. Nat Protoc [Internet]. 2016 [cited 2022 Nov 30];11:1–9. 10.1038/nprot.2015.123 PubMed
Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet [Internet]. 2013 [cited 2022 Nov 30];0 7:Unit7.20. 10.1002/0471142905.hg0720s76 PubMed PMC
Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res [Internet] 2019;47:D886–D894. doi: 10.1093/nar/gky1016. PubMed DOI PMC
Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR. ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res [Internet]. 2003;31:3568–71. Available from: 10.1093/nar/gkg616 Accessed 30 Nov 2022 PubMed PMC
Desmet FO, Hamroun D, Lalande M, Collod-Bëroud G, Claustres M, Béroud C. Human Splicing Finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res [Internet] 2009;37:e67. doi: 10.1093/NAR/GKP215. PubMed DOI PMC
Yeo G, Burge CB. Maximum entropy modeling of short sequence motifs with applications to RNA splicing signals. https://home.liebertpub.com/cmb [Internet]. 2004;11:377–94. 10.1089/1066527041410418 PubMed