Ethyl Gallate: Promising Cytoprotective against HIV-1-Induced Cytopathy and Antiretroviral-Induced Cytotoxicity

. 2023 ; 2023 () : 6727762. [epub] 20230712

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37475729

INTRODUCTION: HIV-1 infection in cell culture is typically characterized by certain cytopathic effects such as vacuolization of cells and development of syncytia, which further lead to cell death. In addition, the majority of drugs during HIV treatment exhibit serious adverse effects in patients, apart from their beneficial role. During the screening of cytoprotective agents to protect the cells from HIV-1-associated cell death and also drug-associated toxicity, antioxidants from a natural source are assumed to be a choice. A well-known antioxidant, ethyl gallate (EG), was selected for cytoprotection studies which have already been proven as an anti-HIV agent. OBJECTIVE: The main objective of the study was to explore the cytoprotective potential of EG against HIV-1-induced cytopathic effect and antiretroviral drug toxicity. METHODS: DPPH free radical scavenging assay was performed with EG to find the effective concentration for antioxidant activity. HIV-1infection-associated cytopathic effects and further rescue by EG were studied in MT-2 lymphocytes by the microscopic method and XTT cytopathic assays. The cellular toxicity of different antiretroviral drugs in different cell lines and the consequent cytoprotective effectiveness of EG were investigated using an MTT cell viability assay. RESULTS: Like ascorbic acid, EG exhibited promising antioxidant activity. HIV-1 infection of MT2 cells induces cell death often referred to as the cytopathic effect. In addition, the usage of antiretroviral drugs also causes severe adverse effects like cytotoxicity. In this context, EG was tested for its cytoprotective properties against HIV-1-induced cytopathic effect and drug-mediated cellular toxicity. EG reclaimed back the MT2 cells from HIV-1-induced cell death. Antiretroviral drugs, such as ritonavir, efavirinz, AZT, and nevirapine, were tested for their toxicity and induced more cell death at higher concentrations in different tissue models such as the liver (THLE-3), lung (AEpiCM), colorectal (HT-29), and brain (U87 MG). Pretreated cells with EG were rescued from the toxic doses of ART. CONCLUSION: EG was found to be exhibited cytoprotection not only from HIV-1-linked cell death but also from the chemotoxicity of antiretroviral drugs. Evidently, EG could be a cytoprotective supplement in the management of AIDS along with its enormous antioxidant benefits.

Zobrazit více v PubMed

Arenas-Pinto A., Stöhr W., Jäger H. R., et al. Neurocognitive function and neuroimaging markers in virologically suppressed HIV-positive patients randomized to ritonavir-boosted protease inhibitor monotherapy or standard combination ART: a cross-sectional substudy from the PIVOT trial. Clinical Infectious Diseases . 2016;63(2):257–264. doi: 10.1093/cid/ciw279. PubMed DOI PMC

Nandini T., Girish K., Padmanabha T. S., Pundarikaksha H. P. A study of compliance to highly active antiretroviral therapy in a tertiary care hospital in South India. National Journal of Physiology, Pharmacy and Pharmacology . 2019;9(4):284–289. doi: 10.5455/njppp.2019.9.1032504022019. DOI

Menon S., Rossi R., Kariisa M., et al. Relationship between Highly Active Antiretroviral Therapy (HAART) and human papillomavirus type 16 (HPV 16) infection among women in Sub-Saharan Africa and public health implications: a systematic review. PLoS One . 2019;14(3) doi: 10.1371/journal.pone.0213086.e0213086 PubMed DOI PMC

Martin A. M., Nolan D., Gaudieri S., Phillips E., Mallal S. Pharmacogenetics of antiretroviral therapy: genetic variation of response and toxicity. Pharmacogenomics . 2004;5(6):643–655. doi: 10.1517/14622416.5.6.643. PubMed DOI

Savasi V., Parisi F., Oneta M., et al. Effects of highly active antiretroviral therapy on semen parameters of a cohort of 770 HIV1 infected men. PLoS One . 2019;14(2):p. e0212194. doi: 10.1371/journal.pone.0212194. PubMed DOI PMC

Shah A., Gangwani M. R., Chaudhari N. S., Glazyrin A., Bhat H. K., Kumar A. Neurotoxicity in the post-HAART era: caution for the antiretroviral therapeutics. Neurotoxicity Research . 2016;30(4):677–697. doi: 10.1007/s12640-016-9646-0. PubMed DOI PMC

Adana M. Y., Akang E. N., Naidu E. C., et al. Testicular microanatomical and hormonal alterations following use of antiretroviral therapy in Sprague Dawley rats: role of Naringenin. Andrologia . 2018;50(9) doi: 10.1111/and.13137.e13137 PubMed DOI

Dold L., Luda C., Schwarze-Zander C., et al. Genetic polymorphisms associated with fatty liver disease and fibrosis in HIV-positive patients receiving combined antiretroviral therapy (cART) PLoS One . 2017;12(6) doi: 10.1371/journal.pone.0178685.e0178685 PubMed DOI PMC

Hall A. M., Hendry B. M., Nitsch D., Connolly J. O. Tenofovir-associated kidney toxicity in HIV-infected patients: a review of the evidence. American Journal of Kidney Diseases . 2011;57(5):773–780. doi: 10.1053/j.ajkd.2011.01.022. PubMed DOI

Apostolova N., Gomez‐Sucerquia L. J., Gortat A., Blas‐Garcia A., Esplugues J. V. Compromising mitochondrial function with the antiretroviral drug efavirenz induces cell survival‐promoting autophagy. Hepatology . 2011;54(3):1009–1019. doi: 10.1002/hep.24459. PubMed DOI

Neuman M. G., Schneider M., Nanau R. M., Parry C. HIV-antiretroviral therapy-induced liver, gastrointestinal, and pancreatic injury. International Journal of Hepatology . 2012;2012:23. doi: 10.1155/2012/760706.760706 PubMed DOI PMC

Sharma B. HIV-1, neuro-AIDS, and cognitive impairments. JOURNAL OF NEUROINFECTIOUS DISEASES . 2014;5 doi: 10.4172/2314-7326.1000e103. DOI

Gupta S. K., Post F. A., Arribas J. R., et al. Renal safety of tenofovir alafenamide vs. tenofovir disoproxil fumarate: a pooled analysis of 26 clinical trials. AIDS . 2019;33(9):1455–1465. doi: 10.1097/QAD.0000000000002223. PubMed DOI PMC

Kaur R., Sharma P., Gupta G. K., Ntie-Kang F., Kumar D. Structure-activity-relationship and mechanistic insights for anti-HIV natural products. Molecules . 2020;25(9):p. 2070. doi: 10.3390/molecules25092070. PubMed DOI PMC

Govea-Salas M., Rivas-Estilla A. M., Rodríguez-Herrera R., et al. Gallic acid decreases hepatitis C virus expression through its antioxidant capacity. Experimental and Therapeutic Medicine . 2016;11(2):619–624. doi: 10.3892/etm.2015.2923. PubMed DOI PMC

Krishna C. M., Kolla J. N., Asha S., Reddy T. In vitro anti-HIV-1 activity of ethyl gallate. VirusDisease . 2020;31(1):22–27. doi: 10.1007/s13337-019-00562-1. PubMed DOI PMC

Chen J., Yang S., Huang S., et al. Transcriptome study reveals apoptosis of porcine kidney cells induced by fumonisin B1 via TNF signalling pathway. Food and Chemical Toxicology . 2020;139 doi: 10.1016/j.fct.2020.111274.111274 PubMed DOI

Ohnishi M., Morishita H., Iwahashi H., et al. Inhibitory effects of chlorogenic acids on linoleic acid peroxidation and haemolysis. Phytochemistry . 1994;36(3):579–583. doi: 10.1631/jzus.2007.B0673. DOI

Kim H. W., Shim M. J., Choi E. C., Kim B. K. Inhibition of cytopathic effect of human immunodeficiency virus-1 by water-soluble extract of Ganoderma lucidum. Archives of Pharmacal Research . 1997;20(5):425–431. doi: 10.1007/BF02973934. PubMed DOI

Krishnan V. B. R., Kumari Merugu S., Jyothsna Gali S., Kapavarapu R., Babu Bollikolla H. Efficient multicomponent synthesis of biginelli‐dihydro‐pyrimidines and evaluation of anti‐cancer activity. ChemistrySelect . 2022;7(29) doi: 10.1002/slct.202201630.e202201630 DOI

Malunavar S. S., Prabhala P., Sutar S. M., Kapavarapu R., Mittal M. K., Kalkhambkar R. G. Molecular modeling and in vitro antimicrobial evaluation of some 2-Aryl-Benzoxazoles/Benzothiazole analogues containing alkyl, alkenyl and alkynyl linkages. Chemical Data Collections . 2022;39 doi: 10.1016/j.cdc.2022.100876.100876 DOI

Raghubeer S., Nagiah S., Phulukdaree A., Chuturgoon A. The phytoalexin resveratrol ameliorates ochratoxin A toxicity in human embryonic kidney (HEK293) cells. Journal of Cellular Biochemistry . 2015;116(12):2947–2955. doi: 10.1002/jcb.25242. PubMed DOI

Kalaivani T., Rajasekaran C., Mathew L. Free radical scavenging, cytotoxic, and hemolytic activities of an active antioxidant compound ethyl gallate from leaves of Acacia nilotica (L.) Wild. Ex. Delile subsp. indica (Benth.) Brenan. Journal of Food Science . 2011;76(6):T144–T149. doi: 10.1111/j.1750-3841.2011.02243.x. PubMed DOI

Dalakas M. C. Peripheral neuropathy and antiretroviral drugs. Journal of the Peripheral Nervous System . 2001;6(1):14–20. doi: 10.1046/j.1529-8027.2001.006001014.x. PubMed DOI

Fernandez-Montero J. V., Eugenia E., Barreiro P., Labarga P., Soriano V. Antiretroviral drug-related toxicities–clinical spectrum, prevention, and management. Expert Opinion on Drug Safety . 2013;12(5):697–707. doi: 10.1517/14740338.2013.806480. PubMed DOI

Scruggs E. R., Dirks Naylor A. J. Mechanisms of zidovudine-induced mitochondrial toxicity and myopathy. Pharmacology . 2008;82(2):83–88. doi: 10.1159/000134943. PubMed DOI

Chen L., Wu X., Shen T., et al. Protective effects of ethyl gallate on H2O2-induced mitochondrial dysfunction in PC12 cells. Metabolic Brain Disease . 2019;34(2):545–555. doi: 10.1007/s11011-019-0382-z. PubMed DOI

Rohilla S., Dureja H., Chawla V. Cytoprotective agents to avoid chemotherapy induced side effects on normal cells: a review. Current Cancer Drug Targets . 2019;19(10):765–781. doi: 10.2174/1568009619666190326120457. PubMed DOI

Patil R., Ona M. A., Papafragkakis H., et al. Acute liver toxicity due to efavirenz/emtricitabine/tenofovir. Case reports in hepatology . 2015;2015:2. doi: 10.1155/2015/280353.280353 PubMed DOI PMC

Baylor M. S., Johann-Liang R. Hepatotoxicity associated with nevirapine use. JAIDS Journal of Acquired Immune Deficiency Syndromes . 2004;35(5):538–539. doi: 10.1097/00126334-200404150-00014. PubMed DOI

Velichkovska M., Surnar B., Nair M., Dhar S., Toborek M. Targeted mitochondrial COQ10 delivery attenuates antiretroviral-drug-induced senescence of neural progenitor cells. Molecular Pharmaceutics . 2018;16(2):724–736. doi: 10.1021/acs.molpharmaceut.8b01014. PubMed DOI PMC

Yukawa S., Watanabe D., Uehira T., Shirasaka T. Clinical benefits of using inulin clearance and cystatin C for determining glomerular filtration rate in HIV-1-infected individuals treated with dolutegravir. Journal of Infection and Chemotherapy . 2018;24(3):199–205. doi: 10.1016/j.jiac.2017.10.015. PubMed DOI

Valentova K. Cytoprotective activity of natural and synthetic antioxidants. Antioxidants . 2020;9(8):p. 713. doi: 10.3390/antiox9080713. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...