Ethyl Gallate: Promising Cytoprotective against HIV-1-Induced Cytopathy and Antiretroviral-Induced Cytotoxicity
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37475729
PubMed Central
PMC10356543
DOI
10.1155/2023/6727762
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: HIV-1 infection in cell culture is typically characterized by certain cytopathic effects such as vacuolization of cells and development of syncytia, which further lead to cell death. In addition, the majority of drugs during HIV treatment exhibit serious adverse effects in patients, apart from their beneficial role. During the screening of cytoprotective agents to protect the cells from HIV-1-associated cell death and also drug-associated toxicity, antioxidants from a natural source are assumed to be a choice. A well-known antioxidant, ethyl gallate (EG), was selected for cytoprotection studies which have already been proven as an anti-HIV agent. OBJECTIVE: The main objective of the study was to explore the cytoprotective potential of EG against HIV-1-induced cytopathic effect and antiretroviral drug toxicity. METHODS: DPPH free radical scavenging assay was performed with EG to find the effective concentration for antioxidant activity. HIV-1infection-associated cytopathic effects and further rescue by EG were studied in MT-2 lymphocytes by the microscopic method and XTT cytopathic assays. The cellular toxicity of different antiretroviral drugs in different cell lines and the consequent cytoprotective effectiveness of EG were investigated using an MTT cell viability assay. RESULTS: Like ascorbic acid, EG exhibited promising antioxidant activity. HIV-1 infection of MT2 cells induces cell death often referred to as the cytopathic effect. In addition, the usage of antiretroviral drugs also causes severe adverse effects like cytotoxicity. In this context, EG was tested for its cytoprotective properties against HIV-1-induced cytopathic effect and drug-mediated cellular toxicity. EG reclaimed back the MT2 cells from HIV-1-induced cell death. Antiretroviral drugs, such as ritonavir, efavirinz, AZT, and nevirapine, were tested for their toxicity and induced more cell death at higher concentrations in different tissue models such as the liver (THLE-3), lung (AEpiCM), colorectal (HT-29), and brain (U87 MG). Pretreated cells with EG were rescued from the toxic doses of ART. CONCLUSION: EG was found to be exhibited cytoprotection not only from HIV-1-linked cell death but also from the chemotoxicity of antiretroviral drugs. Evidently, EG could be a cytoprotective supplement in the management of AIDS along with its enormous antioxidant benefits.
CZ OPENSCREEN Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic
Department of Biotechnology VFSTR Vadlamudi Guntur AP India
Department of Chemistry Acharya Nagarjuna University NNagar Guntur 522510 AP India
Discovery Biology Hetero Research Foundation Hyderabad Telangana India
Zobrazit více v PubMed
Arenas-Pinto A., Stöhr W., Jäger H. R., et al. Neurocognitive function and neuroimaging markers in virologically suppressed HIV-positive patients randomized to ritonavir-boosted protease inhibitor monotherapy or standard combination ART: a cross-sectional substudy from the PIVOT trial. Clinical Infectious Diseases . 2016;63(2):257–264. doi: 10.1093/cid/ciw279. PubMed DOI PMC
Nandini T., Girish K., Padmanabha T. S., Pundarikaksha H. P. A study of compliance to highly active antiretroviral therapy in a tertiary care hospital in South India. National Journal of Physiology, Pharmacy and Pharmacology . 2019;9(4):284–289. doi: 10.5455/njppp.2019.9.1032504022019. DOI
Menon S., Rossi R., Kariisa M., et al. Relationship between Highly Active Antiretroviral Therapy (HAART) and human papillomavirus type 16 (HPV 16) infection among women in Sub-Saharan Africa and public health implications: a systematic review. PLoS One . 2019;14(3) doi: 10.1371/journal.pone.0213086.e0213086 PubMed DOI PMC
Martin A. M., Nolan D., Gaudieri S., Phillips E., Mallal S. Pharmacogenetics of antiretroviral therapy: genetic variation of response and toxicity. Pharmacogenomics . 2004;5(6):643–655. doi: 10.1517/14622416.5.6.643. PubMed DOI
Savasi V., Parisi F., Oneta M., et al. Effects of highly active antiretroviral therapy on semen parameters of a cohort of 770 HIV1 infected men. PLoS One . 2019;14(2):p. e0212194. doi: 10.1371/journal.pone.0212194. PubMed DOI PMC
Shah A., Gangwani M. R., Chaudhari N. S., Glazyrin A., Bhat H. K., Kumar A. Neurotoxicity in the post-HAART era: caution for the antiretroviral therapeutics. Neurotoxicity Research . 2016;30(4):677–697. doi: 10.1007/s12640-016-9646-0. PubMed DOI PMC
Adana M. Y., Akang E. N., Naidu E. C., et al. Testicular microanatomical and hormonal alterations following use of antiretroviral therapy in Sprague Dawley rats: role of Naringenin. Andrologia . 2018;50(9) doi: 10.1111/and.13137.e13137 PubMed DOI
Dold L., Luda C., Schwarze-Zander C., et al. Genetic polymorphisms associated with fatty liver disease and fibrosis in HIV-positive patients receiving combined antiretroviral therapy (cART) PLoS One . 2017;12(6) doi: 10.1371/journal.pone.0178685.e0178685 PubMed DOI PMC
Hall A. M., Hendry B. M., Nitsch D., Connolly J. O. Tenofovir-associated kidney toxicity in HIV-infected patients: a review of the evidence. American Journal of Kidney Diseases . 2011;57(5):773–780. doi: 10.1053/j.ajkd.2011.01.022. PubMed DOI
Apostolova N., Gomez‐Sucerquia L. J., Gortat A., Blas‐Garcia A., Esplugues J. V. Compromising mitochondrial function with the antiretroviral drug efavirenz induces cell survival‐promoting autophagy. Hepatology . 2011;54(3):1009–1019. doi: 10.1002/hep.24459. PubMed DOI
Neuman M. G., Schneider M., Nanau R. M., Parry C. HIV-antiretroviral therapy-induced liver, gastrointestinal, and pancreatic injury. International Journal of Hepatology . 2012;2012:23. doi: 10.1155/2012/760706.760706 PubMed DOI PMC
Sharma B. HIV-1, neuro-AIDS, and cognitive impairments. JOURNAL OF NEUROINFECTIOUS DISEASES . 2014;5 doi: 10.4172/2314-7326.1000e103. DOI
Gupta S. K., Post F. A., Arribas J. R., et al. Renal safety of tenofovir alafenamide vs. tenofovir disoproxil fumarate: a pooled analysis of 26 clinical trials. AIDS . 2019;33(9):1455–1465. doi: 10.1097/QAD.0000000000002223. PubMed DOI PMC
Kaur R., Sharma P., Gupta G. K., Ntie-Kang F., Kumar D. Structure-activity-relationship and mechanistic insights for anti-HIV natural products. Molecules . 2020;25(9):p. 2070. doi: 10.3390/molecules25092070. PubMed DOI PMC
Govea-Salas M., Rivas-Estilla A. M., Rodríguez-Herrera R., et al. Gallic acid decreases hepatitis C virus expression through its antioxidant capacity. Experimental and Therapeutic Medicine . 2016;11(2):619–624. doi: 10.3892/etm.2015.2923. PubMed DOI PMC
Krishna C. M., Kolla J. N., Asha S., Reddy T. In vitro anti-HIV-1 activity of ethyl gallate. VirusDisease . 2020;31(1):22–27. doi: 10.1007/s13337-019-00562-1. PubMed DOI PMC
Chen J., Yang S., Huang S., et al. Transcriptome study reveals apoptosis of porcine kidney cells induced by fumonisin B1 via TNF signalling pathway. Food and Chemical Toxicology . 2020;139 doi: 10.1016/j.fct.2020.111274.111274 PubMed DOI
Ohnishi M., Morishita H., Iwahashi H., et al. Inhibitory effects of chlorogenic acids on linoleic acid peroxidation and haemolysis. Phytochemistry . 1994;36(3):579–583. doi: 10.1631/jzus.2007.B0673. DOI
Kim H. W., Shim M. J., Choi E. C., Kim B. K. Inhibition of cytopathic effect of human immunodeficiency virus-1 by water-soluble extract of Ganoderma lucidum. Archives of Pharmacal Research . 1997;20(5):425–431. doi: 10.1007/BF02973934. PubMed DOI
Krishnan V. B. R., Kumari Merugu S., Jyothsna Gali S., Kapavarapu R., Babu Bollikolla H. Efficient multicomponent synthesis of biginelli‐dihydro‐pyrimidines and evaluation of anti‐cancer activity. ChemistrySelect . 2022;7(29) doi: 10.1002/slct.202201630.e202201630 DOI
Malunavar S. S., Prabhala P., Sutar S. M., Kapavarapu R., Mittal M. K., Kalkhambkar R. G. Molecular modeling and in vitro antimicrobial evaluation of some 2-Aryl-Benzoxazoles/Benzothiazole analogues containing alkyl, alkenyl and alkynyl linkages. Chemical Data Collections . 2022;39 doi: 10.1016/j.cdc.2022.100876.100876 DOI
Raghubeer S., Nagiah S., Phulukdaree A., Chuturgoon A. The phytoalexin resveratrol ameliorates ochratoxin A toxicity in human embryonic kidney (HEK293) cells. Journal of Cellular Biochemistry . 2015;116(12):2947–2955. doi: 10.1002/jcb.25242. PubMed DOI
Kalaivani T., Rajasekaran C., Mathew L. Free radical scavenging, cytotoxic, and hemolytic activities of an active antioxidant compound ethyl gallate from leaves of Acacia nilotica (L.) Wild. Ex. Delile subsp. indica (Benth.) Brenan. Journal of Food Science . 2011;76(6):T144–T149. doi: 10.1111/j.1750-3841.2011.02243.x. PubMed DOI
Dalakas M. C. Peripheral neuropathy and antiretroviral drugs. Journal of the Peripheral Nervous System . 2001;6(1):14–20. doi: 10.1046/j.1529-8027.2001.006001014.x. PubMed DOI
Fernandez-Montero J. V., Eugenia E., Barreiro P., Labarga P., Soriano V. Antiretroviral drug-related toxicities–clinical spectrum, prevention, and management. Expert Opinion on Drug Safety . 2013;12(5):697–707. doi: 10.1517/14740338.2013.806480. PubMed DOI
Scruggs E. R., Dirks Naylor A. J. Mechanisms of zidovudine-induced mitochondrial toxicity and myopathy. Pharmacology . 2008;82(2):83–88. doi: 10.1159/000134943. PubMed DOI
Chen L., Wu X., Shen T., et al. Protective effects of ethyl gallate on H2O2-induced mitochondrial dysfunction in PC12 cells. Metabolic Brain Disease . 2019;34(2):545–555. doi: 10.1007/s11011-019-0382-z. PubMed DOI
Rohilla S., Dureja H., Chawla V. Cytoprotective agents to avoid chemotherapy induced side effects on normal cells: a review. Current Cancer Drug Targets . 2019;19(10):765–781. doi: 10.2174/1568009619666190326120457. PubMed DOI
Patil R., Ona M. A., Papafragkakis H., et al. Acute liver toxicity due to efavirenz/emtricitabine/tenofovir. Case reports in hepatology . 2015;2015:2. doi: 10.1155/2015/280353.280353 PubMed DOI PMC
Baylor M. S., Johann-Liang R. Hepatotoxicity associated with nevirapine use. JAIDS Journal of Acquired Immune Deficiency Syndromes . 2004;35(5):538–539. doi: 10.1097/00126334-200404150-00014. PubMed DOI
Velichkovska M., Surnar B., Nair M., Dhar S., Toborek M. Targeted mitochondrial COQ10 delivery attenuates antiretroviral-drug-induced senescence of neural progenitor cells. Molecular Pharmaceutics . 2018;16(2):724–736. doi: 10.1021/acs.molpharmaceut.8b01014. PubMed DOI PMC
Yukawa S., Watanabe D., Uehira T., Shirasaka T. Clinical benefits of using inulin clearance and cystatin C for determining glomerular filtration rate in HIV-1-infected individuals treated with dolutegravir. Journal of Infection and Chemotherapy . 2018;24(3):199–205. doi: 10.1016/j.jiac.2017.10.015. PubMed DOI
Valentova K. Cytoprotective activity of natural and synthetic antioxidants. Antioxidants . 2020;9(8):p. 713. doi: 10.3390/antiox9080713. PubMed DOI PMC