Hydrogen-Bonding Interactions of 8-Substituted Purine Derivatives
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37483191
PubMed Central
PMC10357537
DOI
10.1021/acsomega.3c03244
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Hydrogen bonding between nucleobases is a crucial noncovalent interaction for life on Earth. Canonical nucleobases form base pairs according to two main geometries: Watson-Crick pairing, which enables the static functions of nucleic acids, such as the storing of genetic information; and Hoogsteen pairing, which facilitates the dynamic functions of these biomacromolecules. This precisely tuned system can be affected by oxidation or substitution of nucleobases, leading to changes in their hydrogen-bonding patterns. This paper presents an investigation into the intermolecular interactions of various 8-substituted purine derivatives with their hydrogen-bonding partners. The systems were analyzed using nuclear magnetic resonance spectroscopy and density functional theory calculations. Our results demonstrate that the stability of hydrogen-bonded complexes, or base pairs, depends primarily on the number of intermolecular H-bonds and their donor-acceptor alternation. No strong preferences for a particular geometry, either Watson-Crick or Hoogsteen, were found.
Zobrazit více v PubMed
Watson J. D.; Crick F. H. C. Genetical Implications of the Structure of Deoxyribonucleic Acid. Nature 1953, 171, 964–967. 10.1038/171964b0. PubMed DOI
Hoogsteen K. The Structure of Crystals Containing a Hydrogen-Bonded Complex of 1-Methylthymine and 9-Methyladenine. Acta Crystallogr. 1959, 12, 822–823. 10.1107/S0365110X59002389. DOI
Abrescia N. G. A.; Thompson A.; Huynh-Dinh T.; Subirana J. A. Crystal structure of an antiparallel DNA fragment with Hoogsteen base pairing. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 2806–2811. 10.1073/pnas.052675499. PubMed DOI PMC
Sklenář V.; Feigon J. Formation of a Stable Triplex from a Single DNA Strand. Nature 1990, 345, 836–838. 10.1038/345836a0. PubMed DOI
Lipps H. J.; Rhodes D. G-quadruplex structures: in vivo evidence and function. Trends Cell. Biol. 2009, 19, 414–422. 10.1016/j.tcb.2009.05.002. PubMed DOI
Balasubramanian S.; Neidle S. G-quadruplex nucleic acids as therapeutic targets. Curr. Opin. Chem. Biol. 2009, 13, 345–353. 10.1016/j.cbpa.2009.04.637. PubMed DOI PMC
Varshney D.; Spiegel J.; Zyner K.; Tannahill D.; Balasubramanian S. The regulation and functions of DNA and RNA G-quadruplexes. Nat. Rev. Mol. Cell Biol. 2020, 21, 459–474. 10.1038/s41580-020-0236-x. PubMed DOI PMC
Rice P. A.; Yang S. W.; Mizuuchi K.; Nash H. A. Crystal structure of an IHF-DNA complex: A protein-induced DNA U-turn. Cell 1996, 87, 1295–1306. 10.1016/S0092-8674(00)81824-3. PubMed DOI
Wang A. H. J.; Ughetto G.; Quigley G. J.; Hakoshima T.; Vandermarel G. A.; Vanboom J. H.; Rich A. The Molecular-Structure of a DNA Triostin-a Complex. Science 1984, 225, 1115–1121. 10.1126/science.6474168. PubMed DOI
Takahashi S.; Sugimoto N. Watson-Crick versus Hoogsteen Base Pairs: Chemical Strategy to Encode and Express Genetic Information in Life. Acc. Chem. Res. 2021, 54, 2110–2120. 10.1021/acs.accounts.0c00734. PubMed DOI
Sen D.; Gilbert W. A Sodium-Potassium Switch in the Formation of 4-Stranded G4-DNA. Nature 1990, 344, 410–414. 10.1038/344410a0. PubMed DOI
Sen D.; Gilbert W. Formation of Parallel 4-Stranded Complexes by Guanine-Rich Motifs in DNA and Its Implications for Meiosis. Nature 1988, 334, 364–366. 10.1038/334364a0. PubMed DOI
Osifová Z.; Socha O.; Mužíková-Čechova L.; Šála M.; Janeba Z.; Dračínský M. Hydrogen-Bonding Interactions of Methylated Adenine Derivatives. Eur. J. Org. Chem. 2021, 2021, 4166–4173. 10.1002/ejoc.202100721. DOI
Kyogoku Y.; Higuchi S.; Tsuboi M. Infra-Red Absorption Spectra of Single Crystals of 1-Methyl-Thymine 9-Methyladenine and Their 1:1complex. Spectrochim. Acta, Part A 1967, A 23, 969–983. 10.1016/0584-8539(67)80022-9. DOI
Kyogoku Y.; Lord R. C.; Rich A. Hydrogen Bonding Specificity of Nucleic Acid Purines and Pyrimidines in Solution. Science 1966, 154, 518–520. 10.1126/science.154.3748.518. PubMed DOI
Kyogoku Y.; Lord R. C.; Rich A. An Infrared Study of Hydrogen-Bonding Specificity of Hypoxanthine and Other Nucleic Acid Derivatives. Biochim. Biophys. Acta 1969, 179, 10–17. 10.1016/0005-2787(69)90116-6. PubMed DOI
Kawai K.; Saito I.; Sugiyama H. Stabilization of Hoogsteen base pairing by introduction of NH2 group at the C8 position of adenine. Tetrahedron Lett. 1998, 39, 5221–5224. 10.1016/S0040-4039(98)01026-0. DOI
Ganesh K. N.; Gourishankar A.; Vysabhattar R.; Bokil P. Property editing of peptide nucleic acids (PNA): gem-dimethyl, cyanuryl and 8-aminoadenine PNAs. Nucleic Acids Symp. Ser. 2007, 17–18. 10.1093/nass/nrm009. PubMed DOI
Pezo V.; Jaziri F.; Bourguignon P. Y.; Louis D.; Jacobs-Sera D.; Rozenski J.; Pochet S.; Herdewijn P.; Hatfull G. F.; Kaminski P. A.; Marliere P. Noncanonical DNA polymerization by aminoadenine-based siphoviruses. Science 2021, 372, 520–524. 10.1126/science.abe6542. PubMed DOI
Dennison J. B.; Shanmugam M.; Ayres M. L.; Qian J.; Krett N. L.; Medeiros L. J.; Neelapu S. S.; Rosen S. T.; Gandhi V. 8-Aminoadenosine inhibits Akt/mTOR and Erk signaling in mantle cell lymphoma. Blood 2010, 116, 5622–5630. 10.1182/blood-2010-05-285866. PubMed DOI PMC
Frey J. A.; Gandhi V. 8-Amino-Adenosine Inhibits Multiple Mechanisms of Transcription. Mol. Cancer Ther. 2010, 9, 236–245. 10.1158/1535-7163.MCT-09-0767. PubMed DOI PMC
Yang H.; Zhan Y. Q.; Fenn D.; Chi L. M.; Lam S. L. Effect of 1-methyladenine on double-helical DNA structures. FEBS Lett. 2008, 582, 1629–1633. 10.1016/j.febslet.2008.04.013. PubMed DOI
Lu L. H.; Yi C. Q.; Jian X.; Zheng G. Q.; He C. A. Structure determination of DNA methylation lesions N1-meA and N3-meC in duplex DNA using a cross-linked protein-DNA system. Nucleic Acids Res. 2010, 38, 4415–4425. 10.1093/nar/gkq129. PubMed DOI PMC
Grollman A. P.; Moriya M. Mutagenesis by 8-Oxoguanine - an Enemy Within. Trends Genet. 1993, 9, 246–249. 10.1016/0168-9525(93)90089-Z. PubMed DOI
Bruner S. D.; Norman D. P. G.; Verdine G. L. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature 2000, 403, 859–866. 10.1038/35002510. PubMed DOI
Alam Z. I.; Jenner A.; Daniel S. E.; Lees A. J.; Cairns N.; Marsden C. D.; Jenner P.; Halliwell B. Oxidative DNA damage in the parkinsonian brain: An apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J. Neurochem. 1997, 69, 1196–1203. 10.1046/j.1471-4159.1997.69031196.x. PubMed DOI
Breimer L. H. Molecular Mechanisms of Oxygen Radical Carcinogenesis and Mutagenesis - the Role of DNA-Base Damage. Mol. Carcinog. 1990, 3, 188–197. 10.1002/mc.2940030405. PubMed DOI
Sabharwal S. S.; Schumacker P. T. Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel?. Nat. Rev. Cancer 2014, 14, 709–721. 10.1038/nrc3803. PubMed DOI PMC
Frenkel K. Carcinogen-Mediated Oxidant Formation and Oxidative DNA Damage. Pharmacol. Therapeut. 1992, 53, 127–166. 10.1016/0163-7258(92)90047-4. PubMed DOI
Fleming A. M.; Burrows C. J. Formation and processing of DNA damage substrates for the hNEIL enzymes. Free Radical Biol. Med. 2017, 107, 35–52. 10.1016/j.freeradbiomed.2016.11.030. PubMed DOI PMC
De Bont R.; van Larebeke N. Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 2004, 19, 169–185. 10.1093/mutage/geh025. PubMed DOI
Gajewski E.; Rao G.; Nackerdien Z.; Dizdaroglu M. Modification of DNA Bases in Mammalian Chromatin by Radiation-Generated Free-Radicals. Biochemistry 1990, 29, 7876–7882. 10.1021/bi00486a014. PubMed DOI
Steenken S.; Jovanovic S. V. How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J. Am. Chem. Soc. 1997, 119, 617–618. 10.1021/ja962255b. DOI
Fleming A. M.; Burrows C. J. Interplay of Guanine Oxidation and G-Quadruplex Folding in Gene Promoters. J. Am. Chem. Soc. 2020, 142, 1115–1136. 10.1021/jacs.9b11050. PubMed DOI PMC
Liska A.; Triskova I.; Ludvik J.; Trnkova L. Oxidation potentials of guanine, guanosine and guanosine-5′-monophosphate: Theory and experiment. Electrochim. Acta 2019, 318, 108–119. 10.1016/j.electacta.2019.06.052. DOI
Cathcart R.; Schwiers E.; Saul R. L.; Ames B. N. Thymine Glycol and Thymidine Glycol in Human and Rat Urine - a Possible Assay for Oxidative DNA Damage. Proc. Natl. Acad. Sci. U. S. A. 1984, 81, 5633–5637. 10.1073/pnas.81.18.5633. PubMed DOI PMC
Shigenaga M. K.; Gimeno C. J.; Ames B. N. Urinary 8-Hydroxy-2’-Deoxyguanosine as a Biological Marker of Invivo Oxidative DNA Damage. Proc. Natl. Acad. Sci. U. S. A. 1989, 86, 9697–9701. 10.1073/pnas.86.24.9697. PubMed DOI PMC
Mangerich A.; Knutson C. G.; Parry N. M.; Muthupalani S.; Ye W. J.; Prestwich E.; Cui L.; McFaline J. L.; Mobley M.; Ge Z. M.; Taghizadeh K.; Wishnok J. S.; Wogan G. N.; Fox J. G.; Tannenbaum S. R.; Dedon P. C. Infection-induced colitis in mice causes dynamic and tissue-specific changes in stress response and DNA damage leading to colon cancer. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, E1820–E1829. 10.1073/pnas.1207829109. PubMed DOI PMC
Wood M. L.; Esteve A.; Morningstar M. L.; Kuziemko G. M.; Essigmann J. M. Genetic-Effects of Oxidative DNA Damage - Comparative Mutagenesis of 7,8-Dihydro-8-Oxoguanine and 7,8-Dihydro-8-Oxoadenine in Escherichia-Coli. Nucleic Acids Res. 1992, 20, 6023–6032. 10.1093/nar/20.22.6023. PubMed DOI PMC
Koag M. C.; Jung H. M.; Lee S. Mutagenesis mechanism of the major oxidative adenine lesion 7,8-dihydro-8-oxoadenine. Nucleic Acids Res. 2020, 48, 5119–5134. 10.1093/nar/gkaa193. PubMed DOI PMC
Raetz A. G.; David S. S. When you’re strange: Unusual features of the MUTYH glycosylase and implications in cancer. DNA Repair 2019, 80, 16–25. 10.1016/j.dnarep.2019.05.005. PubMed DOI PMC
Out A. A.; Tops C. M. J.; Nielsen M.; Weiss M. M.; van Minderhout I. J. H. M.; Fokkema I. F. A. C.; Buisine M. P.; Claes K.; Colas C.; Fodde R.; Fostira F.; Franken P. F.; Gaustadnes M.; Heinimann K.; Hodgson S. V.; Hogervorst F. B. L.; Holinski-Feder E.; Lagerstedt-Robinson K.; Olschwang S.; van den Ouweland A. M. W.; Redeker E. J. W.; Scott R. J.; Vankeirsbilck B.; Gronlund R. V.; Wijnen J. T.; Wikman F. P.; Aretz S.; Sampson J. R.; Devilee P.; den Dunnen J. T.; Hes F. J. Leiden Open Variation Database of the MUTYH Gene. Hum. Mutat. 2010, 31, 1205–1215. 10.1002/humu.21343. PubMed DOI
Fleming A. M.; Zhu J.; Manage S. A. H.; Burrows C. J. Human NEIL3 Gene Expression Regulated by Epigenetic-Like Oxidative DNA Modification. J. Am. Chem. Soc. 2019, 141, 11036–11049. 10.1021/jacs.9b01847. PubMed DOI PMC
Aleksič S.; Podbevšek P.; Plavec J. 8-Oxoguanine Forms Quartets with a Large Central Cavity. Biochemistry 2022, 2022, 2390–2397. 10.1021/acs.biochem.2c00478. PubMed DOI PMC
Kamiya H.; Miura H.; Muratakamiya N.; Ishikawa H.; Sakaguchi T.; Inoue H.; Sasaki T.; Masutani C.; Hanaoka F.; Nishimura S.; Ohtsuka E. 8-Hydroxyadenine (7,8-Dihydro-8-Oxoadenine) Induces Misincorporation in in vitro DNA-Synthesis and Mutations in NIH 3T3 Cells. Nucleic Acids Res. 1995, 23, 2893–2899. 10.1093/nar/23.15.2893. PubMed DOI PMC
Tan X. Z.; Grollman A. P.; Shibutani S. Comparison of the mutagenic properties of 8-oxo-7,8-dihydro-2′-deoxyadenosine and 8-oxo-7,8-dihydro-2′-deoxyguanosine DNA lesions in mammalian cells. Carcinogenesis 1999, 20, 2287–2292. 10.1093/carcin/20.12.2287. PubMed DOI
Olinski R.; Zastawny T.; Budzbon J.; Skokowski J.; Zegarski W.; Dizdaroglu M. DNA-Base Modifications in Chromatin of Human Cancerous Tissues. FEBS Lett. 1992, 309, 193–198. 10.1016/0014-5793(92)81093-2. PubMed DOI
Jaruga P.; Dizdaroglu M. Repair of products of oxidative DNA base damage in human cells. Nucleic Acids Res. 1996, 24, 1389–1394. 10.1093/nar/24.8.1389. PubMed DOI PMC
Fuciarelli A. F.; Wegher B. J.; Gajewski E.; Dizdaroglu M.; Blakely W. F. Quantitative Measurement of Radiation-Induced Base Products in DNA Using Gas-Chromatography Mass-Spectrometry. Radiat. Res. 1989, 119, 219–231. 10.2307/3577615. PubMed DOI
Dey M.; Moritz F.; Grotemeyer J.; Schlag E. W. Base-Pair Formation of Free Nucleobases and Mononucleosides in the Gas-Phase. J. Am. Chem. Soc. 1994, 116, 9211–9215. 10.1021/ja00099a042. DOI
Vologodskii A.; Frank-Kamenetskii M. D. Theoretical model, its parameters and predictions Reply to comments on ″DNA melting and energetics of the double helix″. Phys. Life Rev. 2018, 25, 42–44. 10.1016/j.plrev.2018.04.003. PubMed DOI
Hughesman C. B.; Turner R. F. B.; Haynes C. A. Role of the Heat Capacity Change in Understanding and Modeling Melting Thermodynamics of Complementary Duplexes Containing Standard and Nucleobase-Modified LNA. Biochemistry 2011, 50, 5354–5368. 10.1021/bi200223s. PubMed DOI
Pohl R.; Socha O.; Šála M.; Rejman D.; Dračínský M. The Control of the Tautomeric Equilibrium of Isocytosine by Intermolecular Interactions. Eur. J. Org. Chem. 2018, 2018, 5128–5135. 10.1002/ejoc.201800506. DOI
Schlund S.; Mladenovic M.; Janke E. M. B.; Engels B.; Weisz K. Geometry and cooperativity effects in adenosine-carboxylic acid complexes. J. Am. Chem. Soc. 2005, 127, 16151–16158. 10.1021/ja0531430. PubMed DOI
Dunger A.; Limbach H. H.; Weisz K. Geometry and strength of hydrogen bonds in complexes of 2′-deoxyadenosine with 2′-deoxyuridine. J. Am. Chem. Soc. 2000, 122, 10109–10114. 10.1021/ja000718e. DOI
Janke E. M. B.; Dunger A.; Limbach H. H.; Weisz K. Hydrogen bonding in complexes of adenosine and 4-thiouridine: a low-temperature NMR study. Magn. Reson. Chem. 2001, 39, S177–S182. 10.1002/mrc.945. DOI
Pohl R.; Socha O.; Slavíček P.; Šála M.; Hodgkinson P.; Dračínský M. Proton transfer in guanine-cytosine base pair analogues studied by NMR spectroscopy and PIMD simulations. Faraday Discuss. 2018, 212, 331–344. 10.1039/C8FD00070K. PubMed DOI
McConnell T. L.; Wetmore S. D. How do size-expanded DNA nucleobases enhance duplex stability? Computational analysis of the hydrogen-bonding and stacking ability of xDNA bases. J. Phys. Chem. B 2007, 111, 2999–3009. 10.1021/jp0670079. PubMed DOI
Štoček J. R.; Dračínský M. Tautomerism of Guanine Analogues. Biomolecules 2020, 10, 170–179. 10.3390/biom10020170. PubMed DOI PMC
Fan W. J.; Zhang R. Q.; Liu S. B. Computation of large systems with an economic basis set: Structures and reactivity indices of nucleic acid base pairs from density functional theory. J. Comput. Chem. 2007, 28, 967–974. 10.1002/jcc.20670. PubMed DOI
Wheaton C. A.; Dobrowolski S. L.; Millen A. L.; Wetmore S. D. Nitrosubstituted aromatic molecules as universal nucleobases: Computational analysis of stacking interactions. Chem. Phys. Lett. 2006, 428, 157–166. 10.1016/j.cplett.2006.07.051. DOI
Šponer J.; Leszczynski J.; Hobza P. Electronic properties, hydrogen bonding, stacking, and cation binding of DNA and RNA bases. Biopolymers 2001, 61, 3–31. 10.1002/1097-0282(2001)61:1<3::AID-BIP10048>3.0.CO;2-4. PubMed DOI
Cabaj M. K.; Dominiak P. M. Frequency and hydrogen bonding of nucleobase homopairs in small molecule crystals. Nucleic Acids Res. 2020, 48, 8302–8319. 10.1093/nar/gkaa629. PubMed DOI PMC
Ranga S.; Mukherjee M.; Dutta A. K. Interactions of Solvated Electrons with Nucleobases: The Effect of Base Pairing. ChemPhysChem 2020, 21, 1019–1027. 10.1002/cphc.202000133. PubMed DOI
Cuyacot B. J. R.; Durník I.; Foroutan-Nejad C.; Marek R. Anatomy of Base Pairing in DNA by Interacting Quantum Atoms. J. Chem. Inf. Model. 2021, 61, 211–222. 10.1021/acs.jcim.0c00642. PubMed DOI
Janeba Z.; Holý A.; Masojidkova M. Synthesis of acyclic nucleoside and nucleotide analogs derived from 6-amino-7H-purin-8(9H)-one. Collect. Czech. Chem. Commun. 2000, 65, 1126–1144. 10.1135/cccc20001126. DOI
McFarland J. M.; Francis M. B. Reductive alkylation of proteins using iridium catalyzed transfer hydrogenation. J. Am. Chem. Soc. 2005, 127, 13490–13491. 10.1021/ja054686c. PubMed DOI
Štoček J. R.; Bártová K.; Čechová L.; Šála M.; Socha O.; Janeba Z.; Dračínský M. Determination of nucleobase-pairing free energies from rotamer equilibria of 2-(methylamino)pyrimidines. Chem. Commun. 2019, 55, 11075–11078. 10.1039/C9CC05513D. PubMed DOI
Kyogoku Y.; Lord R. C.; Rich A. Effect of Substituents on Hydrogen Bonding of Adenine and Uracil Derivatives. Proc. Natl. Acad. Sci. U. S. A. 1967, 57, 250–257. 10.1073/pnas.57.2.250. PubMed DOI PMC
Murray T. J.; Zimmerman S. C. New Triply Hydrogen-Bonded Complexes with Highly Variable Stabilities. J. Am. Chem. Soc. 1992, 114, 4010–4011. 10.1021/ja00036a079. DOI
Hamilton A. D.; Vanengen D. Induced Fit in Synthetic Receptors - Nucleotide Base Recognition by a Molecular Hinge. J. Am. Chem. Soc. 1987, 109, 5035–5036. 10.1021/ja00250a052. DOI
Jorgensen W. L.; Pranata J. Importance of Secondary Interactions in Triply Hydrogen-Bonded Complexes - guanine-cytosine vs uracil-2,6-diaminopyridine. J. Am. Chem. Soc. 1990, 112, 2008–2010. 10.1021/ja00161a061. DOI
Papmeyer M.; Vuilleumier C. A.; Pavan G. M.; Zhurov K. O.; Severin K. Molecularly Defined Nanostructures Based on a Novel AAA-DDD Triple Hydrogen-Bonding Motif. Angew. Chem., Int. Ed. 2016, 55, 1685–1689. 10.1002/anie.201510423. PubMed DOI
Feng Y. N.; Philp D. A Molecular Replication Process Drives Supramolecular Polymerization. J. Am. Chem. Soc. 2021, 143, 17029–17039. 10.1021/jacs.1c06404. PubMed DOI
Becke A. D. Density-Functional Thermochemistry 3. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. 10.1063/1.464913. DOI
Lee C. T.; Yang W. T.; Parr R. G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. Phys. Rev. B 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI
Barone V.; Cossi M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys. Chem. A 1998, 102, 1995–2001. 10.1021/jp9716997. DOI
Cossi M.; Rega N.; Scalmani G.; Barone V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24, 669–681. 10.1002/jcc.10189. PubMed DOI
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.10.1063/1.3382344. PubMed DOI
Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Petersson G. A.; Nakatsuji H.; Li X.; Caricato X.; Marenich A. V.; Bloino J.; Janesko B. G.; Gomperts R.; Mennucci B.; Hratchian H. P.; Ortiz J. V.; Izmaylov A. F.; Sonnenberg J. L.; Williams-Young D.; Ding F.; Lipparini F.; Egidi F.; Goings J.; Peng B.; Petrone A.; Henderson T.; Ranasinghe D.; Zakrzewski V. G.; Gao J.; Rega N.; Zheng G.; Liang W.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Throssell K.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M. J.; Heyd J. J.; Brothers E. N.; Kudin K. N.; Staroverov V. N.; Keith T. A.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A. P.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Millam J. M.; Klene M.; Adamo C.; Cammi R.; Ochterski J. W.; Martin R. L.; Morokuma K.; Farkas O.; Foresman J. B.; Fox D. J.. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford CT, 2016.