Terminal differentiation of villus tip enterocytes is governed by distinct Tgfβ superfamily members
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37493498
PubMed Central
PMC10481656
DOI
10.15252/embr.202256454
Knihovny.cz E-zdroje
- Klíčová slova
- Tgfβ / Bmp signalling, enterocytes, epithelial differentiation, intestinal mesenchymal cells, small intestine,
- MeSH
- buněčná diferenciace MeSH
- enterocyty * metabolismus MeSH
- kostní morfogenetické proteiny metabolismus MeSH
- ligandy MeSH
- střevní sliznice * metabolismus MeSH
- transformující růstový faktor beta metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kostní morfogenetické proteiny MeSH
- ligandy MeSH
- transformující růstový faktor beta MeSH
The protective and absorptive functions of the intestinal epithelium rely on differentiated enterocytes in the villi. The differentiation of enterocytes is orchestrated by sub-epithelial mesenchymal cells producing distinct ligands along the villus axis, in particular Bmps and Tgfβ. Here, we show that individual Bmp ligands and Tgfβ drive distinct enterocytic programs specific to villus zonation. Bmp4 is expressed from the centre to the upper part of the villus and activates preferentially genes connected to lipid uptake and metabolism. In contrast, Bmp2 is produced by villus tip mesenchymal cells and it influences the adhesive properties of villus tip epithelial cells and the expression of immunomodulators. Additionally, Tgfβ induces epithelial gene expression programs similar to those triggered by Bmp2. Bmp2-driven villus tip program is activated by a canonical Bmp receptor type I/Smad-dependent mechanism. Finally, we establish an organoid cultivation system that enriches villus tip enterocytes and thereby better mimics the cellular composition of the intestinal epithelium. Our data suggest that not only a Bmp gradient but also the activity of individual Bmp drives specific enterocytic programs.
Beijing Institute for Stem Cell and Regenerative Medicine Beijing China
Department of Molecular Life Sciences University of Zurich Zurich Switzerland
Friedrich Miescher Institute for Biomedical Research Basel Switzerland
Institute for Stem Cell and Regeneration Chinese Academy of Sciences Beijing China
Zobrazit více v PubMed
Antebi YE, Linton JM, Klumpe H, Bintu B, Gong M, Su C, McCardell R, Elowitz MB (2017) Combinatorial signal perception in the BMP pathway. Cell 170: 1184–1196 PubMed PMC
Bahar Halpern K, Massalha H, Zwick RK, Moor AE, Castillo‐Azofeifa D, Rozenberg M, Farack L, Egozi A, Miller DR, Averbukh I et al (2020) Lgr5+ telocytes are a signaling source at the intestinal villus tip. Nat Commun 11: 1936 PubMed PMC
Bauché D, Marie JC (2017) Transforming growth factor β: a master regulator of the gut microbiota and immune cell interactions. Clin Trans Immunol 6: e136 PubMed PMC
Beumer J, Puschhof J, Yengej FY, Zhao L, Martinez‐Silgado A, Blotenburg M, Begthel H, Boot C, van Oudenaarden A, Chen YG et al (2022) BMP gradient along the intestinal villus axis controls zonated enterocyte and goblet cell states. Cell Rep 38: 110438 PubMed
Bragdon B, Moseychuk O, Saldanha S, King D, Julian J, Nohe A (2011) Bone morphogenetic proteins: a critical review. Cell Signal 23: 609–620 PubMed
Brügger MD, Valenta T, Fazilaty H, Hausmann G, Basler K (2020) Distinct populations of crypt‐associated fibroblasts act as signaling hubs to control colon homeostasis. PLoS Biol 18: e3001032 PubMed PMC
Buchauer L, Itzkovitz S (2021) Cellanneal: a user‐friendly deconvolution software for omics data. bioRxiv 10.48550/ARXIV.2110.08209 [PREPRINT] DOI
Cosovanu C, Resch P, Jordan S, Lehmann A, Ralser M, Farztdinov V, Spranger J, Mülleder M, Brachs S, Neumann C (2022) Intestinal epithelial c‐Maf expression determines enterocyte differentiation and nutrient uptake in mice. J Exp Med 219: e20220233 PubMed PMC
Degirmenci B, Valenta T, Dimitrieva S, Hausmann G, Basler K (2018) GLI1‐expressing mesenchymal cells form the essential Wnt‐secreting niche for colon stem cells. Nature 558: 449–453 PubMed
Doncheva NT, Morris JH, Gorodkin J, Jensen LJ (2019) Cytoscape String App: network analysis and visualization of proteomics data. J Proteome Res 18: 623–632 PubMed PMC
Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, Di Tommaso P, Nahnsen S (2020) The nf‐core framework for community‐curated bioinformatics pipelines. Nat Biotechnol 38: 276–278 PubMed
Fazilaty H, Brügger MD, Valenta T, Szczerba BM, Berkova L, Doumpas N, Hausmann G, Scharl M, Basler K (2021) Tracing colonic embryonic transcriptional profiles and their reactivation upon intestinal damage. Cell Rep 36: 109484 PubMed
Fujii M, Matano M, Toshimitsu K, Takano A, Mikami Y, Nishikori S, Sugimoto S, Sato T (2018) Human intestinal organoids maintain self‐renewal capacity and cellular diversity in niche‐inspired culture condition. Cell Stem Cell 23: 787–793 PubMed
Galili T, O'Callaghan A, Sidi J, Sievert C (2017) Heatmaply: an R package for creating interactive cluster heatmaps for online publishing. Bioinformatics 34: 1600–1602 PubMed PMC
Gao CH, Yu G, Cai P (2021) ggVennDiagram: An intuitive, easy‐to‐use, and highly customizable R package to generate Venn diagram. Front Genet 12: 1598 PubMed PMC
Gehart H, Clevers H (2019) Tales from the crypt: new insights into intestinal stem cells. Nat Rev Gastroenterol Hepatol 16: 19–34 PubMed
González‐Loyola A, Bernier‐Latmani J, Roci I, Wyss T, Langer J, Durot S, Munoz O, Prat‐Luri B, Delorenzi M, Lutolf MP et al (2022) c‐MAF coordinates enterocyte zonation and nutrient uptake transcriptional programs. J Exp Med 219: e20212418 PubMed PMC
Gracz AD, Puthoff BJ, Magness ST (2012) Identification, isolation, and culture of intestinal epithelial stem cells from murine intestine. In Somatic stem cells, Singh SR (ed), pp 89–107. Totowa, NJ: Humana Press; PubMed PMC
Greicius G, Kabiri Z, Sigmundsson K, Liang C, Bunte R, Singh MK, Virshup DM (2018) PDGFRα+ pericryptal stromal cells are the critical source of Wnts and RSPO3 for murine intestinal stem cells in vivo . Proc Natl Acad Sci U S A 115: E3173–E3181 PubMed PMC
Grün D, Lyubimova A, Kester L, Wiebrands K, Basak O, Sasaki N, Clevers H, van Oudenaarden A (2015) Single‐cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525: 251–255 PubMed
Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, Burgin G, Delorey TM, Howitt MR, Katz Y et al (2017a) A single‐cell survey of the small intestinal epithelium. Nature 551: 333–339 PubMed PMC
Haber AL, Biton M, Rogel N, Herbst RH, Shekhar K, Smillie C, Burgin G, Delorey TM, Howitt MR, Katz Y et al (2017b) Gene Expression Omnibus GSE92332. (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE92332). [DATASET]
Hamilton TG, Klinghoffer RA, Corrin PD, Soriano P (2003) Evolutionary divergence of platelet‐derived growth factor alpha receptor signaling mechanisms. Mol Cell Biol 23: 4013–4025 PubMed PMC
Han T, Goswami S, Hu Y, Tang F, Zafra MP, Murphy C, Cao Z, Poirier JT, Khurana E, Elemento O et al (2020) Lineage reversion drives WNT independence in intestinal cancer. Cancer Discov 10: 1590–1609 PubMed PMC
Hao Y, Hao S, Andersen‐Nissen E, Mauck WM, Zheng S, Butler A, Lee MJ, Wilk AJ, Darby C, Zager M et al (2021) Integrated analysis of multimodal single‐cell data. Cell 184: 3573–3587 PubMed PMC
Haramis APG, Begthel H, van den Born M, van Es J, Jonkheer S, Offerhaus GJA, Clevers H (2004) De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303: 1684–1686 PubMed
Harnik Y, Buchauer L, Ben‐Moshe S, Averbukh I, Levin Y, Savidor A, Eilam R, Moor AE, Itzkovitz S (2021) Spatial discordances between mRNAs and proteins in the intestinal epithelium. Nat Metab 3: 1680–1693 PubMed
Howe KL, Reardon C, Wang A, Nazli A, McKay DM (2005) Transforming growth factor‐β regulation of epithelial tight junction proteins enhances barrier function and blocks enterohemorrhagic Escherichia coli O157:H7‐induced increased permeability. Am J Pathol 167: 1587–1597 PubMed PMC
Howe KL, Achuthan P, Allen J, Allen J, Alvarez‐Jarreta J, Amode MR, Armean IM, Azov AG, Bennett R, Bhai J et al (2021) Ensembl 2021. Nucleic Acids Res 49: D884–D891 PubMed PMC
Klumpe HE, Langley MA, Linton JM, Su CJ, Antebi YE, Elowitz MB (2022) The context‐dependent, combinatorial logic of BMP signaling. Cell Syst 13: 388–407 PubMed PMC
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA‐seq data with DESeq2. Genome Biol 15: 550 PubMed PMC
McCarthy N, Manieri E, Storm EE, Saadatpour A, Luoma AM, Kapoor VN, Madha S, Gaynor LT, Cox C, Keerthivasan S et al (2020a) Distinct mesenchymal cell populations generate the essential intestinal BMP signaling gradient. Cell Stem Cell 3: 391–402 PubMed PMC
McCarthy N, Manieri E, Storm EE, Saadatpour A, Luoma AM, Kapoor VN, Madha S, Gaynor LT, Cox C, Keerthivasan S et al (2020b) Gene Expression Omnibus GSM3747599. (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM3747599). [DATASET] PubMed PMC
Miyoshi H, Ajima R, Luo CT, Yamaguchi TP, Stappenbeck TS (2012) Wnt5a potentiates TGF‐β signaling to promote colonic crypt regeneration after tissue injury. Science 338: 108–113 PubMed PMC
Moor AE, Harnik Y, Ben‐Moshe S, Massasa EE, Rozenberg M, Eilam R, Bahar Halpern K, Itzkovitz S (2018a) Spatial reconstruction of single enterocytes uncovers broad zonation along the intestinal villus Axis. Cell 175: 1156–1167 PubMed
Moor AE, Harnik Y, Ben‐Moshe S, Massasa EE, Rozenberg M, Eilam R, Bahar Halpern K, Itzkovitz S (2018b) Zenodo 3403670. (https://zenodo.org/record/3403670) [DATASET] PubMed
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017) Salmon provides fast and bias‐aware quantification of transcript expression. Nat Methods 14: 417–419 PubMed PMC
Qi Z, Li Y, Zhao B, Xu C, Liu Y, Li H, Zhang B, Wang X, Yang X, Xie W et al (2017) BMP restricts stemness of intestinal Lgr5+ stem cells by directly suppressing their signature genes. Nat Commun 8: 13824 PubMed PMC
Salazar VS, Gamer LW, Rosen V (2016) BMP signalling in skeletal development, disease and repair. Nat Rev Endocrinol 12: 203–221 PubMed
Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ et al (2009) Single Lgr5 stem cells build crypt‐villus structures in vitro without a mesenchymal niche. Nature 459: 262–265 PubMed
Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469: 415–418 PubMed PMC
Schindelin J, Arganda‐Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji:an open‐source platform for biological‐image analysis. Nat Methods 9: 676–682 PubMed PMC
Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473: 337–342 PubMed
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498–2504 PubMed PMC
Spit M, Koo BK, Maurice MM (2018) Tales from the crypt: intestinal niche signals in tissue renewal, plasticity and cancer. Open Biol 8: 180120 PubMed PMC
Stolfi C, Troncone E, Marafini I, Monteleone G (2020) Role of TGF‐Beta and Smad7 in gut inflammation, fibrosis and cancer. Biomolecules 11: 17 PubMed PMC
Wang RN, Green J, Wang Z, Deng Y, Qiao M, Peabody M, Zhang Q, Ye J, Yan Z, Denduluri S et al (2014) Bone morphogenetic protein (BMP) signaling in development and human diseases. Genes Dis 1: 87–105 PubMed PMC
Wickham H (2016) ggplot2: elegant graphics for data analysis. New York, NY: Springer‐Verlag New York;
Wickham H, François R, Henry L, Müller K, Vaughan D (2023) Dplyr: a grammar of data manipulation. (https://dplyr.tidyverse.org, https://github.com/tidyverse/dplyr)
Yan KS, Gevaert O, Zheng GXY, Anchang B, Probert CS, Larkin KA, Davies PS, Cheng ZF, Kaddis JS, Han A et al (2017a) Intestinal enteroendocrine lineage cells possess homeostatic and injury‐inducible stem cell activity. Cell Stem Cell 21: 78–90 PubMed PMC
Yan KS, Gevaert O, Zheng GXY, Anchang B, Probert CS, Larkin KA, Davies PS, Cheng ZF, Kaddis JS, Han A et al (2017b) Gene Expression Omnibus GSE99457 (GSM2644349 and GSM 2644350). (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE99457) [DATASET]
Yang Q, Xue SL, Chan CJ, Rempfler M, Vischi D, Maurer‐Gutierrez F, Hiiragi T, Hannezo E, Liberali P (2021) Cell fate coordinates mechano‐osmotic forces in intestinal crypt formation. Nat Cell Biol 23: 733–744 PubMed PMC