• This record comes from PubMed

A risk-based soft sensor for failure rate monitoring in water distribution network via adaptive neuro-fuzzy interference systems

. 2023 Jul 27 ; 13 (1) : 12200. [epub] 20230727

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article

Links

PubMed 37500665
PubMed Central PMC10374646
DOI 10.1038/s41598-023-38620-w
PII: 10.1038/s41598-023-38620-w
Knihovny.cz E-resources

Water Distribution Networks (WDNs) are considered one of the most important water infrastructures, and their study is of great importance. In the meantime, it seems necessary to investigate the factors involved in the failure of the urban water distribution network to optimally manage water resources and the environment. This study investigated the impact of influential factors on the failure rate of the water distribution network in Birjand, Iran. The outcomes can be considered a case study, with the possibility of extending to any similar city worldwide. The soft sensor based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) was implemented to predict the failure rate based on effective features. Finally, the WDN was assessed using the Failure Modes and Effects Analysis (FMEA) technique. The results showed that pipe diameter, pipe material, and water pressure are the most influential factors. Besides, polyethylene pipes have failure rates four times higher than asbestos-cement pipes. Moreover, the failure rate is directly proportional to water pressure but inversely related to the pipe diameter. Finally, the FMEA analysis based on the knowledge management technique demonstrated that pressure management in WDNs is the main policy for risk reduction of leakage and failure.

See more in PubMed

Abd Ellah RG. Water resources in Egypt and their challenges, lake Nasser case study. Egypt. J. Aquat. Res. 2020;46(1):1–12. doi: 10.1016/j.ejar.2020.03.001. DOI

P. Aghapoor Khameneh, S. M. Miri Lavasani, R. Nabizadeh Nodehi, and R. Arjmandi, Water distribution network failure analysis under uncertainty. Int. J. Environ. Sci. Technol., vol. 17, no. 1, pp. 421–432. (2020), 10.1007/s13762-019-02362-y.

Tang K, Parsons DJ, Jude S. Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system. Reliab. Eng. Syst. Saf. 2019;186:24–36. doi: 10.1016/j.ress.2019.02.001. DOI

Nikoloudi E, Romano M, Memon FA, Kapelan Z. Interactive decision support methodology for near real-time response to failure events in a water distribution network. J. Hydroinf. 2021;23(3):483–499. doi: 10.2166/hydro.2020.101. DOI

Hernandez Hernandez E, Ormsbee L. segment-based assessment of consequences of failure on water distribution systems. J. Water Resour. Plan Manag. 2021 doi: 10.1061/(ASCE)WR.1943-5452.0001340. DOI

Schurer R, Hijnen WAM, Van Der Wal A. The significance of the biomass subfraction of high-MW organic carbon for the microbial growth and maintenance potential of disinfectant-free drinking water produced from surface water. Water Res. 2022;209:117898. doi: 10.1016/j.watres.2021.117898. PubMed DOI

Sangroula U, Han K-H, Koo K-M, Gnawali K, Yum K-T. Optimization of water distribution networks using genetic algorithm based SOP–WDN program. Water (Basel) 2022;14(6):851. doi: 10.3390/w14060851. DOI

O. R. D. US EPA, EPANET 2.2.0: An EPA and water community collaboration. (2020). [Online]. Available: https://www.epa.gov/sciencematters/epanet-220-epa-and-water-community-collaboration

Wéber R, Huzsvár T, Hős C. Vulnerability analysis of water distribution networks to accidental pipe burst. Water Res. 2020;184:116178. doi: 10.1016/j.watres.2020.116178. PubMed DOI

Sun J, Wang R, Wang X, Yang H, Ping J. Spatial cluster analysis of bursting pipes in water supply networks. Procedia Eng. 2014;70:1610–1618. doi: 10.1016/j.proeng.2014.02.178. DOI

Gheisi A, Naser Gh. Multi-aspect performance analysis of water distribution systems under pipe failure. Procedia Eng. 2015;119:158–167. doi: 10.1016/j.proeng.2015.08.867. DOI

Piratla KR, Yerri SR, Yazdekhasti S, Cho J, Koo D, Matthews JC. Empirical analysis of water-main failure consequences. Procedia Eng. 2015;118:727–734. doi: 10.1016/j.proeng.2015.08.507. DOI

Sousa J, Ribeiro L, Muranho J, Marques AS. Locating leaks in water distribution networks with simulated annealing and graph theory. Procedia Eng. 2015;119:63–71. doi: 10.1016/j.proeng.2015.08.854. DOI

Jafari SM, Zahiri AR, Bozorg Hadad O, Mohammad Rezapour Tabari M. A hybrid of six soft models based on ANFIS for pipe failure rate forecasting and uncertainty analysis: A case study of Gorgan city water distribution network. Soft. Comput. 2021;25(11):7459–7478. doi: 10.1007/s00500-021-05706-4. DOI

Zohra HF, Mahmouda B, Luc D. Vulnerability assessment of water supply network. Energy Proc. 2012;18:772–783. doi: 10.1016/j.egypro.2012.05.093. DOI

Tuhovčák L, Tauš M, Míka P. Indirect condition assessment of water mains. Proc. Eng. 2014;70:1669–1678. doi: 10.1016/j.proeng.2014.02.184. DOI

Khramenkov SV, Primin OG. Ensuring the reliability of the water piping of the Moscow water supply system. J. Water Supply Res. Technol. AQUA. 2005;54(2):127–132. doi: 10.2166/aqua.2005.0012. DOI

Maslak V, Nasonkina N, Sakhnovskaya V, Gutarova M, Antonenko S, Nemova D. Evaluation of technical condition of water supply networks on undermined territories. Proc. Eng. 2015;117:980–989. doi: 10.1016/j.proeng.2015.08.206. DOI

Trietsch EA, Vreeburg JHG. Reliability of valves and section isolation. Water Supp. 2005;5(2):47–51. doi: 10.2166/ws.2005.0021. DOI

Kwon HJ, Kwon H-K. Estimations of safety degree of water distribution system. Proc. Eng. 2016;154:398–402. doi: 10.1016/j.proeng.2016.07.500. DOI

Peabody AW, Bianchetti RL, Peabody AW. Peabody’s control of pipeline corrosion. 2. NACE International, The Corrosion Society; 2001.

Sargaonkar A, Kamble S, Rao R. Model study for rehabilitation planning of water supply network. Comput. Environ. Urban Syst. 2013;39:172–181. doi: 10.1016/j.compenvurbsys.2012.08.002. DOI

Marzouk M, Hamid SA, El-Said M. A methodology for prioritizing water mains rehabilitation in Egypt. HBRC J. 2015;11(1):114–128. doi: 10.1016/j.hbrcj.2014.03.002. DOI

S. E. J. M. M. McDonald R. Desnoyers, Failure modes and mechanisms in gray cast iron pipes. In: Underground Infrastructure Research, CRC Press, (2001).

A. B. Paradkar, An evaluation of failure modes for cast iron and ductile iron water pipes. (2013), [Online]. Available: https://rc.library.uta.edu/uta-ir/handle/10106/11660

Larry W. Mays, Reliability analysis of water distribution systems. ASCE; 1989.

Kleiner Y, Rajani B. Comprehensive review of structural deterioration of water mains: Statistical models. Urban Water. 2001;3(3):131–150. doi: 10.1016/S1462-0758(01)00033-4. DOI

Rezaei H, Ryan B, Stoianov I. Pipe failure analysis and impact of dynamic hydraulic conditions in water supply networks. Proc. Eng. 2015;119:253–262. doi: 10.1016/j.proeng.2015.08.883. DOI

Tabesh M, Soltani J, Farmani R, Savic D. Assessing pipe failure rate and mechanical reliability of water distribution networks using data-driven modeling. J. Hydroinf. 2009;11(1):1–17. doi: 10.2166/hydro.2009.008. DOI

Seo J, Koo M, Kim K, Koo J. A study on the probability of failure model based on the safety factor for risk assessment in a water supply network. Proc. Eng. 2015;119:206–215. doi: 10.1016/j.proeng.2015.08.877. DOI

Giudicianni C, Herrera M, Di Nardo A, Carravetta A, Ramos HM, Adeyeye K. Zero-net energy management for the monitoring and control of dynamically-partitioned smart water systems. J Clean Prod. 2020;252:119745. doi: 10.1016/j.jclepro.2019.119745. DOI

Wilson D, Filion YR, Moore ID. Identifying factors that influence the factor of safety and probability of failure of large-diameter, cast iron water mains with a mechanistic, stochastic model: A case study in the city of Hamilton. Proc. Eng. 2015;119:130–138. doi: 10.1016/j.proeng.2015.08.863. DOI

RStudio Team, RStudio: integrated development environment for R. Boston, MA, (2015). [Online]. Available: http://www.rstudio.com/

A. Kiyan, M. Gheibi, M. Akrami, R. Moezzi, K. Behzadian, and H. Taghavian, The operation of urban water treatment plants: A Review of smart dashboard frameworks. Environ. Ind. Lett., (2023) 10.15157/EIL.2023.1.1.28-45.

M. Gheibi, B. Chahkandi, K. Behzadian, M. Akrami, and R. Moezzi, Evaluation of ceramic water filters’ performance and analysis of managerial insights by SWOT matrix. Environ. Ind. Lett., (2023), 10.15157/EIL.2023.1.1.1-9.

Rego FC, Rocha MS. Climatic patterns in the mediterranean region. Ecol. Med. 2014;40(1):49–59. doi: 10.3406/ecmed.2014.1269. DOI

Żywiec J, Piegdoń I, Tchórzewska-Cieślak B. Failure analysis of the water supply network in the aspect of climate changes on the example of the central and eastern Europe region. Sustainability. 2019;11(24):6886. doi: 10.3390/su11246886. DOI

M. Nakhaei, M. Akrami, M. Gheibi, P. Daniel Urbina Coronado, M. Hajiaghaei-Keshteli, and J. Mahlknecht, A novel framework for technical performance evaluation of water distribution networks based on the water-energy nexus concept. Energy Conv. Manag, vol. 273, p. 116422, (2022) 10.1016/j.enconman.2022.116422

Microsoft Excel. London: SAGE Publications, Ltd., (2021).

W. Bajjali, Arcgis for environmental and water issues. New York, NY: Springer Science+Business Media, (2017).

Shahsavar MM, Akrami M, Gheibi M, Kavianpour B, Fathollahi-Fard AM, Behzadian K. Constructing a smart framework for supplying the biogas energy in green buildings using an integration of response surface methodology, artificial intelligence and petri net modelling. Energy Conv. Manag. 2021;248:114794. doi: 10.1016/j.enconman.2021.114794. DOI

Arab M, et al. A soft-sensor for sustainable operation of coagulation and flocculation units. Eng. Appl. Artif. Intell. 2022;115:105315. doi: 10.1016/j.engappai.2022.105315. DOI

Gheibi M, Karrabi M, Eftekhari M. Designing a smart risk analysis method for gas chlorination units of water treatment plants with combination of failure mode effects analysis, shannon entropy, and petri net modeling. Ecotoxicol. Environ. Saf. 2019;171:600–608. doi: 10.1016/j.ecoenv.2019.01.032. PubMed DOI

Akbarian H, Jalali FM, Gheibi M, Hajiaghaei-Keshteli M, Akrami M, Sarmah AK. A sustainable decision support system for soil bioremediation of toluene incorporating UN sustainable development goals. Environ. Pollut. 2022;307:119587. doi: 10.1016/j.envpol.2022.119587. PubMed DOI

Zabihi O, Siamaki M, Gheibi M, Akrami M, Hajiaghaei-Keshteli M. A smart sustainable system for flood damage management with the application of artificial intelligence and multi-criteria decision-making computations. Int. J. Disaster Risk Reduct. 2023;84:103470. doi: 10.1016/j.ijdrr.2022.103470. DOI

Sadeghioon AM, Metje N, Chapman D, Anthony C. Water pipeline failure detection using distributed relative pressure and temperature measurements and anomaly detection algorithms. Urban Water J. 2018;15(4):287–295. doi: 10.1080/1573062X.2018.1424213. DOI

Bakker M, Jung D, Vreeburg J, Van De Roer M, Lansey K, Rietveld L. Detecting pipe bursts using heuristic and CUSUM methods. Proc. Eng. 2014;70:85–92. doi: 10.1016/j.proeng.2014.02.011. DOI

Gamboa-Medina MM, Reis LFR, Guido RC. feature extraction in pressure signals for leak detection in water networks. Proc. Eng. 2014;70:688–697. doi: 10.1016/j.proeng.2014.02.075. DOI

Sala D, Kołakowski P. Detection of leaks in a small-scale water distribution network based on pressure data—experimental verification. Proc. Eng. 2014;70:1460–1469. doi: 10.1016/j.proeng.2014.02.161. DOI

Aldaghi A, Gheibi M, Akrami M, Hajiaghaei-Keshteli M. A smart simulation-optimization framework for solar-powered desalination systems. Groundw. Sustain. Dev. 2022;19:100861. doi: 10.1016/j.gsd.2022.100861. DOI

Hazewinkel M., Encyclopaedia of mathematics. Dordrecht: Springer Netherlands, (1994). 10.1007/978-94-009-5983-5.

H. Omori, Y. Maeda, N. Miyazaki, and A. Yoshioka, Singular Systems of Exponential Functions. In: Noncommutative Differential Geometry and Its Applications to Physics, Y. Maeda, H. Moriyoshi, H. Omori, D. Sternheimer, T. Tate, and S. Watamura, Eds., Dordrecht: Springer Netherlands, (2001), pp 169–186, 10.1007/978-94-010-0704-7_11.

M. Salo, Distributions and the fourier transform. In: Encyclopedia of Applied and Computational Mathematics, B. Engquist, Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, (2015), pp. 370–375. 10.1007/978-3-540-70529-1_156.

X. Zhang et al., Gaussian distribution In: Encyclopedia of Machine Learning, C. Sammut and G. I. Webb, Eds., Boston, MA: Springer US, (2011), pp. 425–428. 10.1007/978-0-387-30164-8_323.

P. Suganya, G. Swaminathan, B. Anoop, S. P. S. Prabhakaran, and M. Kavitha, Prediction model for evaluating the raw water quality parameters and its significance in pipe failures of nuclear power plant. In Climate Change and Water Security, S. Kolathayar, A. Mondal, and S. C. Chian, Eds., Singapore: Springer Singapore, (2022), pp. 335–345. 10.1007/978-981-16-5501-2_27.

G. Herrera and P. Morillo, Benchmarking of supervised machine learning algorithms in the early failure prediction of a water pumping system. In: Communication, Smart Technologies and Innovation for Society, Á. Rocha, P. C. López-López, and J. P. Salgado-Guerrero, Eds., Singapore: Springer Singapore, (2022), pp. 535–546. 10.1007/978-981-16-4126-8_48.

Assad A, Bouferguene A. Data mining algorithms for water main condition prediction—comparative analysis. J. Water Resour. Plan Manag. 2022;148(2):4021101. doi: 10.1061/(ASCE)WR.1943-5452.0001512. DOI

Fan X, Wang X, Zhang X, (Bill) Yu X. Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors. Reliab. Eng. Syst. Saf. 2022;219:108185. doi: 10.1016/j.ress.2021.108185. DOI

T. A. Severini, Likelihood methods in statistics, no. 22. In: Oxford statistical science series. Oxford ; New York: Oxford University Press, (2000).

Cassa AM, Van Zyl JE. Predicting the leakage exponents of elastically deforming cracks in pipes. Proc. Eng. 2014;70:302–310. doi: 10.1016/j.proeng.2014.02.034. DOI

Schouwenaars R, Jacobo VH, Ramos E, Ortiz A. Slow crack growth and failure induced by manufacturing defects in HDPE-tubes. Eng. Fail. Anal. 2007;14(6):1124–1134. doi: 10.1016/j.engfailanal.2006.11.066. DOI

Barton NA, Farewell TS, Hallett SH, Acland TF. Improving pipe failure predictions: Factors affecting pipe failure in drinking water networks. Water Res. 2019;164:114926. doi: 10.1016/j.watres.2019.114926. PubMed DOI

S. Rehab-Bekkouche, W. Ghabeche, M. Kaddeche, N. Kiass, and K. Chaoui, Mechanical behaviour of machined polyethylene filaments subjected to aggressive chemical environments. Mechanics, vol. 77, no. 3, pp. 40–46, Jun. 2009, [Online]. Available: https://mechanika.ktu.lt/index.php/Mech/article/view/15233

Alimi L, Chaoui K, Ghabeche W, Chaoui W. Short-term HDPE pipe degradation upon exposure to aggressive environments. Matér. Tech. 2013;101(7):701. doi: 10.1051/mattech/2013083. DOI

Ghabeche W, Alimi L, Chaoui K. Degradation of plastic pipe surfaces in contact with an aggressive acidic environment. Energy Proc. 2015;74:351–364. doi: 10.1016/j.egypro.2015.07.625. DOI

Giraldo-González MM, Rodríguez JP. Comparison of statistical and machine learning models for pipe failure modeling in water distribution networks. Water (Basel) 2020;12(4):1153. doi: 10.3390/w12041153. DOI

Barton NA, Farewell TS, Hallett SH. Using generalized additive models to investigate the environmental effects on pipe failure in clean water networks. NPJ Clean Water. 2020;3(1):31. doi: 10.1038/s41545-020-0077-3. DOI

Boxall JB, O’Hagan A, Pooladsaz S, Saul AJ, Unwin DM. Estimation of burst rates in water distribution mains. Proc. Inst. Civil Eng. Water Manag. 2007;160(2):73–82. doi: 10.1680/wama.2007.160.2.73. DOI

Hekmati N, Rahman MM, Gorjian N, Rameezdeen R, Chow CWK. Relationship between environmental factors and water pipe failure: An open access data study. SN Appl. Sci. 2020;2(11):1806. doi: 10.1007/s42452-020-03581-6. DOI

Robles-Velasco A, Cortés P, Muñuzuri J, Onieva L. Prediction of pipe failures in water supply networks using logistic regression and support vector classification. Reliab Eng. Syst. 2020 doi: 10.1016/j.ress.2019.106754. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...