What is the role of current mass spectrometry in pharmaceutical analysis?
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
37503656
DOI
10.1002/mas.21858
Knihovny.cz E-zdroje
- Klíčová slova
- biopharmaceutical, gas chromatography, genotoxic impurity, liquid chromatography, mass spectrometry, pharmaceutical analysis,
- MeSH
- biologické přípravky * chemie MeSH
- hmotnostní spektrometrie metody MeSH
- léčivé přípravky MeSH
- objevování léků * MeSH
- vyvíjení léků MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- biologické přípravky * MeSH
- léčivé přípravky MeSH
The role of mass spectrometry (MS) has become more important in most application domains in recent years. Pharmaceutical analysis is specific due to its stringent regulation procedures, the need for good laboratory/manufacturing practices, and a large number of routine quality control analyses to be carried out. The role of MS is, therefore, very different throughout the whole drug development cycle. While it dominates within the drug discovery and development phase, in routine quality control, the role of MS is minor and indispensable only for selected applications. Moreover, its role is very different in the case of analysis of small molecule pharmaceuticals and biopharmaceuticals. Our review explains the role of current MS in the analysis of both small-molecule chemical drugs and biopharmaceuticals. Important features of MS-based technologies being implemented, method requirements, and related challenges are discussed. The differences in analytical procedures for small molecule pharmaceuticals and biopharmaceuticals are pointed out. While a single method or a small set of methods is usually sufficient for quality control in the case of small molecule pharmaceuticals and MS is often not indispensable, a large panel of methods including extensive use of MS must be used for quality control of biopharmaceuticals. Finally, expected development and future trends are outlined.
Department of Analytical Chemistry Faculty of Chemical Engineering UCT Prague Prague Czech Republic
Department of Development Zentiva k s Praha Praha Czech Republic
Zobrazit více v PubMed
Abd Allah FI, Almrasy AA, Abdelhmaid A, Abd‐Elmegid OA, Alkashlan A, El‐Attar A. Development and validation of a ultraperformance liquid chromatography‐tandem mass spectrometry method for quantifying free and total dabigatran in human plasma: An application for a bioequivalence study. Biomedical Chromatography. 2022;36(7):e5382.
Abdel‐Rehim M, Pedersen‐Bjergaard S, Abdel‐Rehim A, Lucena R, Moein MM, Cárdenas S, Miró M. Microextraction approaches for bioanalytical applications: An overview. Journal of Chromatography A. 2020;1616:460790.
Aebersold R, Mann M. Mass spectrometry‐based proteomics. Nature. 2003;422(6928):198–207.
Akkapeddi P, Azizi SA, Freedy AM, Cal P, Gois PMP, Bernardes GJL. Construction of homogeneous antibody‐drug conjugates using site‐selective protein chemistry. Chemical Science. 2016;7(5):2954–2963.
Al‐Hroub H, Alkhawaja B, Alkhawaja E, Arafat T. Sensitive and rapid HPLC‐UV method with back‐extraction step for the determination of sildenafil in human plasma. Journal of Chromatography B‐Analytical Technologies in the Biomedical and Life Sciences. 2016;1009‐1010:1–6.
Alkhateeb Y, Jarrar QB, Abas F, Rukayadi Y, Tham CL, Hay YK, Shaari K. Pharmacokinetics and metabolism of liposome‐encapsulated 2,4,6‐trihydroxygeranylacetophenone in rats using high‐resolution Orbitrap liquid chromatography mass spectrometry. Molecules. 2020;25(13):3069.
Alvarez M, Tremintin G, Wang J, Eng M, Kao Y‐H, Jeong J, Ling VT, Borisov OV. On‐line characterization of monoclonal antibody variants by liquid chromatography‐mass spectrometry operating in a two‐dimensional format. Analytical Biochemistry. 2011;419(1):17–25.
Apffel A, Fischer S, Goldberg G, Goodley PC, Kuhlmann FE. Enhanced sensitivity for peptide mapping with electrospray liquid chromatography‐mass spectrometry in the presence of signal suppression due to trifluoroacetic acid‐containing mobile phases. Journal of Chromatography A. 1995;712(1):177–190.
Arakawa T, Ejima D, Li T, Philo JS. The critical role of mobile phase composition in size exclusion chromatography of protein pharmaceuticals. Journal of Pharmaceutical Sciences. 2010;99(4):1674–1692.
Archer‐Hartmann SA, Crihfield CL, Holland LA. Online enzymatic sequencing of glycans from Trastuzumab by phospholipid‐assisted capillary electrophoresis. Electrophoresis. 2011;32(24):3491–3498.
Arosio P, Rima S, Morbidelli M. Aggregation mechanism of an IgG2 and two IgG1 monoclonal antibodies at low pH: From oligomers to larger aggregates. Pharmaceutical Research. 2013;30(3):641–654.
Bagatela BS, Lopes AP, Cabral EC, Perazzo FF, Ifa DR. High‐performance thin‐layer chromatography/desorption electrospray ionization mass spectrometry imaging of the crude extract from the peels of Citrus aurantium L. (Rutaceae). Rapid Communications in Mass Spectrometry. 2015;29(16):1530–1534.
Barry JA, Groseclose MR, Robichaud G, Castellino S, Muddiman DC. Assessing drug and metabolite detection in liver tissue by UV‐MALDI and IR‐MALDESI mass spectrometry imaging coupled to FT‐ICR MS. International Journal of Mass Spectrometry. 2015;377:448–455.
Beccaria M, Cabooter D. Current developments in LC‐MS for pharmaceutical analysis. Analyst. 2020;145(4):1129–1157.
Beck A, Wagner‐Rousset E, Bussat MC, Lokteff M, Klinguer‐Hamour C, Haeuw J‐F, Goetsch L, Wurch T, Van Dorsselaer A, Corvaïa N. Trends in glycosylation, glycoanalysis and glycoengineering of therapeutic antibodies and Fc‐fusion proteins. Current Pharmaceutical Biotechnology. 2008;9(6):482–501.
Beckonert O, Keun HC, Ebbels TM, Bundy J, Holmes E, Lindon JC, Nicholson JK. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature protocols. 2007;2(11):2692–2703.
Beng H, Hu J, Zhang R, Huang Y, Chen X, Tan W. Quantitative DESI mass spectrometry imaging of lung distribution of inhaled drug. Journal of Drug Delivery Science and Technology. 2021;66:102794.
Biermann M, Bardl B, Vollstadt S, Linnemann J, Knüpfer U, Seidel G, Horn U. Simultaneous analysis of the non‐canonical amino acids norleucine and norvaline in biopharmaceutical‐related fermentation processes by a new ultra‐high performance liquid chromatography approach. Amino Acids. 2013;44(4):1225–1231.
Bigge JC, Patel TP, Bruce JA, Goulding PN, Charles SM, Parekh RB. Nonselective and efficient fluorescent labeling of glycans using 2‐amino benzamide and anthranilic acid. Analytical Biochemistry. 1995;230(2):229–238.
Bingol K, Bruschweiler‐Li L, Li DW, Zhang B, Xie MZ, Bruschweiler R. Emerging new strategies for successful metabolite identification in metabolomics. Bioanalysis. 2016;8(6):557–573.
Bioavailability and Bioequivalence Requirements; Code of Federal Regulations; Title 21, Volume 5; 21CFR320.
Bobaly B, Sipko E, Fekete J. Challenges in liquid chromatographic characterization of proteins. Journal of Chromatography B‐Analytical Technologies in the Biomedical and Life Sciences. 2016;1032:3–22.
Bobaly B, Beck A, Fekete J, Guillarme D, Fekete S. Systematic evaluation of mobile phase additives for the LC‐MS characterization of therapeutic proteins. Talanta. 2015;136:60–67.
Bobaly B, Lauber M, Beck A, Guillarme D, Fekete S. Utility of a high coverage phenyl‐bonding and wide‐pore superficially porous particle for the analysis of monoclonal antibodies and related products. Journal of Chromatography A. 2018;1549:63–76.
Bobaly B, D'Atri V, Lauber M, Beck A, Guillarme D, Fekete S. Characterizing various monoclonal antibodies with milder reversed phase chromatography conditions. Journal of Chromatography B‐Analytical Technologies in the Biomedical and Life Sciences. 2018;1096:1–10.
Bongers J, Cummings JJ, Ebert MB, Federici MM, Gledhill L, Gulati D, Hilliard GM, Jones BH, Lee KR, Mozdzanowski J, Naimoli M, Burman S. Validation of a peptide mapping method for a therapeutic monoclonal antibody: What could we possibly learn about a method we have run 100 times? Journal of Pharmaceutical and Biomedical Analysis. 2000;21(6):1099–1128.
Bouvier ESP, Koza SM. Advances in size‐exclusion separations of proteins and polymers by UHPLC. Trends in Analytical Chemistry. 2014;63:85–94.
Bush DR, Zang L, Belov AM, Ivanov AR, Karger BL. High‐resolution CZE‐MS quantitative characterization of intact biopharmaceutical Proteins: Proteoforms of Interferon‐beta1. Analytical Chemistry. 2016;88(2):1138–1146.
Cai Y, Cole RB. Stabilization of anionic adducts in negative ion electrospray mass spectrometry. Analytical Chemistry. 2002;74(5):985–991.
Calleri E, Temporini C, Perani E, De Palma A, Lubda D, Mellerio G, Sala A, Galliano M, Caccialanza G, Massolini G. Trypsin‐based monolithic bioreactor coupled on‐line with LC/MS/MS system for protein digestion and variant identification in standard solutions and serum samples. Journal of Proteome Research. 2005;4(2):481–490.
Camperi J, Dai L, Guillarme D, Stella C. Fast and automated characterization of monoclonal antibody minor variants from cell cultures by combined protein‐A and multidimensional LC/MS methodologies. Analytical Chemistry. 2020;92(12):8506–8513.
Camperi J, Guillarme D, Lei M, Stella C. Automated middle‐up approach for the characterization of biotherapeutic products by combining on‐line hinge‐specific digestion with RPLC‐HRMS analysis. Journal of Pharmaceutical and Biomedical Analysis. 2020;182:113130.
Camperi J, Guillarme D, Stella C. Targeted bottom‐up characterization of recombinant monoclonal antibodies by multidimensional LC/MS. Analytical Chemistry. 2020;92(19):13420–13426.
Camperi J, Goyon A, Guillarme D, Zhang K, Stella C. Multi‐dimensional LC‐MS: The next generation characterization of antibody‐based therapeutics by unified online bottom‐up, middle‐up and intact approaches. Analyst. 2021;146(3):747–769.
Carpenter JF, Randolph TW, Jiskoot W, Crommelin DJA, Middaugh CR, Winter G. Potential inaccurate quantitation and sizing of protein aggregates by size exclusion chromatography: Essential need to use orthogonal methods to assure the quality of therapeutic protein products. Journal of Pharmaceutical Sciences. 2010;99(5):2200–2208.
Carrara SC, Ulitzka M, Grzeschik J, Kornmann H, Hock B, Kolmar H. From cell line development to the formulated drug product: The art of manufacturing therapeutic monoclonal antibodies. International Journal of Pharmaceutics. 2021;594:120164.
Carrizo D, Nerín I, Domeño C, Alfaro P, Nerín C. Direct screening of tobacco indicators in urine and saliva by atmospheric pressure solid analysis probe coupled to quadrupole‐time of flight mass spectrometry (ASAP‐MS‐Q‐TOF‐). Journal of Pharmaceutical and Biomedical Analysis. 2016;124:149–156.
Castro‐Puyana M, García‐Ruiz C, Cifuentes A, Crego AL, Marina ML. Identification and quantitation of cis‐ketoconazole impurity by capillary zone electrophoresis–mass spectrometry. Journal of Chromatography A. 2006;1114(1):170–177.
Catai JR, Sastre Torano J, Jongen PM, de Jong GJ, Somsen GW. Analysis of recombinant human growth hormone by capillary electrophoresis with bilayer‐coated capillaries using UV and MS detection. Journal of Chromatography B‐Analytical Technologies in the Biomedical and Life Sciences. 2007;852(1–2):160–166.
Catai JR, Tervahauta HA, de Jong GJ, Somsen GW. Noncovalently bilayer‐coated capillaries for efficient and reproducible analysis of proteins by capillary electrophoresis. Journal of Chromatography A. 2005;1083(1–2):185–192.
Catai JR, Torano JS, de Jong GJ, Somsen GW. Capillary electrophoresis‐mass spectrometry of proteins at medium pH using bilayer‐coated capillaries. Analyst. 2007;132(1):75–81.
Chaitra VM, Ahmed SS, Annegowda HV, Chetan IA, Ramesh B, Majumder M. A simultaneous liquid chromatographic analysis of niclosamide and bicalutamide in rat plasma by protein precipitation extraction. Annales Pharmaceutiques Françaises. 2022;80(5):678–686.
Chan CC, Bolgar MS, Dalpathado D, Lloyd DK. Mitigation of signal suppression caused by the use of trifluoroacetic acid in liquid chromatography mobile phases during liquid chromatography/mass spectrometry analysis via post‐column addition of ammonium hydroxide. Rapid Communications in Mass Spectrometry. 2012;26(12):1507–1514.
Chau CH, Steeg PS, Figg WD. Antibody‐drug conjugates for cancer. Lancet. 2019;394(10200):793–804.
Chelius D, Xiao G, Nichols AC, Vizel A, He B, Dillon TM, Rehder DS, Pipes GD, Kraft E, Oroska A, Treuheit MJ, Bondarenko PV. Automated tryptic digestion procedure for HPLC/MS/MS peptide mapping of immunoglobulin gamma antibodies in pharmaceutics. Journal of Pharmaceutical and Biomedical Analysis. 2008;47(2):285–294.
Chen B, Lin Z, Alpert AJ, Fu C, Zhan Q, Pritts WA, Ge Y. Online hydrophobic interaction chromatography–mass spectrometry for the analysis of intact monoclonal antibodies. Analytical Chemistry. 2018;90(12):7135–7138.
Chen H, Talaty NN, Takáts Z, Cooks RG. Desorption electrospray ionization mass spectrometry for high‐throughput analysis of pharmaceutical samples in the ambient environment. Analytical Chemistry. 2005;77(21):6915–6927.
Chen J, Liu Z, Wang F, Mao J, Zhou Y, Liu J, Zou H, Zhang Y. Enhancing the performance of LC‐MS for intact protein analysis by counteracting the signal suppression effects of trifluoroacetic acid during electrospray. Chemical Communications. 2015;51(79):14758–14760.
Chen Y, Li J, Schmitz OJ. Development of an at‐column dilution modulator for flexible and precise control of dilution factors to overcome mobile phase incompatibility in comprehensive two‐dimensional liquid chromatography. Analytical Chemistry. 2019;91(15):10251–10257.
Chernetsova ES, Morlock GE. Determination of drugs and drug‐like compounds in different samples with direct analysis in real‐time mass spectrometry. Mass Spectrometry Reviews. 2011;30(5):875–883.
Chernetsova ES, Abramovich RA, Revel'skii IA. DART mass spectrometry: Rapid analysis of soft medicinal formulations. J Pharmaceutical Chemistry Journal. 2012;45(11):698–700.
Chernetsova ES, Bochkov PO, Ovcharov MV, Zhokhov SS, Abramovich RA. DART mass spectrometry: A fast screening of solid pharmaceuticals for the presence of an active ingredient, as an alternative for IR spectroscopy. Drug Testing and Analysis. 2010;2(6):292–294.
Chirino AJ, Mire‐Sluis A. Characterizing biological products and assessing comparability following manufacturing changes. Nature Biotechnology. 2004;22(11):1383–1391.
Cody RB, Laramée JA, Durst HD. Versatile new ion source for the analysis of materials in open air under ambient conditions. Analytical Chemistry. 2005;77(8):2297–2302.
Comamala G, Wagner C, de la Torre PS, Jakobsen RU, Hilger M, Brouwer H‐J, Rand KD. Hydrogen/deuterium exchange mass spectrometry with improved electrochemical reduction enables comprehensive epitope mapping of a therapeutic antibody to the cysteine‐knot containing vascular endothelial growth factor. Analytica Chimica Acta. 2020;1115:41–51.
Committee for medicinal products for human use. Guideline on bioanalytical method validation. London, UK: EMA; 2011.
Cooks RG, Ouyang Z, Takats Z, Wiseman JM. Ambient mass spectrometry. Science. 2006;311(5767):1566–1570.
Cortese M, Gigliobianco MR, Magnoni F, Censi R, Di Martino P. Compensate for or minimize matrix effects? Strategies for overcoming matrix effects in liquid chromatography‐mass spectrometry technique: A tutorial review. Molecules. 2020;25(13):3047.
Culzoni MJ, Dwivedi P, Green MD, Newton PN, Fernández FM. Ambient mass spectrometry technologies for the detection of falsified drugs. Medicinal Chemistry Communications. 2014;5(1):9–19.
D'Atri V, Causon T, Hernandez‐Alba O, Mutabazi A, Veuthey J‐L, Cianferani S, Guillarme D. Adding a new separation dimension to MS and LC–MS: What is the utility of ion mobility spectrometry? Journal of Separation Science. 2018;41(1):20–67.
Davit BM, Conner DP, Fabian‐Fritsch B, Haidar SH, Jiang X, Patel DT, Seo PRH, Suh K, Thompson CL, Yu LX. Highly variable drugs: Observations from bioequivalence data submitted to the FDA for new generic drug applications. The AAPS Journal. 2008;10(1):148–156.
Dear GJ, Munoz‐Muriedas J, Beaumont C, Roberts A, Kirk J, Williams JP, Campuzano I. Sites of metabolic substitution: Investigating metabolite structures utilising ion mobility and molecular modelling. Rapid Communications in Mass Spectrometry. 2010;24(21):3157–3162.
DeArmond PD, Bunch DR. Quantitation of non‐derivatized free amino acids for detecting inborn errors of metabolism by incorporating mixed‐mode chromatography with tandem mass spectrometry. Journal of Mass Spectrometry and Advances in the Clinical Lab. 2022;25:1–11.
Debaene F, Bœuf A, Wagner‐Rousset E, Colas O, Ayoub D, Corvaïa N, Van Dorsselaer A, Beck A, Cianférani S. Innovative native MS methodologies for antibody drug conjugate characterization: High‐resolution native MS and IM‐MS for average DAR and DAR distribution assessment. Analytical Chemistry. 2014;86(21):10674–10683.
Devine PWA, Fisher HC, Calabrese AN, Whelan F, Higazi DR, Potts JR, Lowe DC, Radford SE Ashcroft AE. Investigating the structural compaction of biomolecules upon transition to the gas‐phase using ESI‐TWIMS‐MS. Journal of The American Society for Mass Spectrometry. 2017;28(9):1855–1862.
Dick, Jr. LW, Mahon D, Qiu D, Cheng KC. Peptide mapping of therapeutic monoclonal antibodies: Improvements for increased speed and fewer artifacts. Journal of Chromatography B‐Analytical Technologies in the Biomedical and Life Sciences. 2009;877(3):230–236.
Dong MW. Tryptic mapping by reversed‐phase liquid chromatography. Advances in Chromatography. 1992;32:21–51.
Douša M, Jireš J. HILIC‐MS determination of dimethylamine in the active pharmaceutical ingredients and in the dosage forms of metformin. Journal of Pharmaceutical and Biomedical Analysis. 2020;191:113573.
Douša M, Slavíková M, Kubelka T, Černý J, Gibala P, Zezula J. HPLC/UV/MS method application for the separation of obeticholic acid and its related compounds in development process and quality control. Journal of Pharmaceutical and Biomedical Analysis. 2018;149:214–224.
Douša M, Klvaňa R, Doubský J, Srbek J, Richter J, Exner M, Gibala P. HILIC–MS determination of genotoxic impurity of 2‐chloro‐N‐(2‐chloroethyl)ethanamine in the vortioxetine manufacturing process. Journal of Chromatographic Science. 2016;54(2):119–124.
Douša M, Srbek J, Rádl S, Cerný J, Klecán O, Havlíček J, Tkadlecová M, Pekárek T, Gibala P, Nováková L. Identification, characterization, synthesis and HPLC quantification of new process‐related impurities and degradation products in retigabine. Journal of Pharmaceutical and Biomedical Analysis. 2014;94:71–76.
Dubbelman A‐C, Cuyckens F, Dillen L, Gross G, Vreeken RJ, Hankemeier T. Mass spectrometric recommendations for Quan/Qual analysis using liquid‐chromatography coupled to quadrupole time‐of‐flight mass spectrometry. Analytica Chimica Acta. 2018;1020:62–75.
Duerr C, Friess W. Antibody‐drug conjugates‐stability and formulation. Europian Journal of Pharmaceutics and Biopharmaceutics. 2019;139:168–176.
Dunn ZD, Desai J, Leme GM, Stoll DR, Richardson DD. Rapid two‐dimensional protein‐A size exclusion chromatography of monoclonal antibodies for titer and aggregation measurements from harvested cell culture fluid samples. mAbs. 2020;12(1):1702263.
Eckard AD, Dupont DR, Young JK. Development of two analytical methods based on reverse phase chromatographic and SDS‐PAGE gel for assessment of deglycosylation yield in N‐glycan mapping. BioMed Research International. 2018;2018:3909674.
Ehkirch A, D'Atri V, Rouviere F, Hernandez‐Alba O, Goyon A, Sarrut M, Beck A, Guillarme D, Heinisch S, Cianferani S. An online four‐dimensional HIC×SEC‐IM×MS methodology for proof‐of‐concept characterization of antibody‐drug conjugates. Analytical Chemistry. 2018;90(3):1578–1586.
Ehkirch A, Goyon A, Hernandez‐Alba O, Rouviere F, D'Atri V, Dreyfus C, Haeuw J‐F, Diemer H, Beck A, Heinisch S, Guillarme D, Cianferani S. A novel online four‐dimensional SECxSEC‐IMxMS methodology for characterization of monoclonal antibody size variants. Analytical Chemistry. 2018;90(23):13929–13937.
Ehkirch A, Hernandez‐Alba O, Colas O, Beck A, Guillarme D, Cianferani S. Hyphenation of size exclusion chromatography to native ion mobility mass spectrometry for the analytical characterization of therapeutic antibodies and related products. Journal of Chromatography B‐Analytical Technologies in the Biomedical and Life Sciences. 2018;1086:176–183.
EMA. 2022; http://www.ema.europa.eu/ema/. Accessed 22.11.2022.
den Engelsman J, Garidel P, Smulders R, Koll H, Smith B, Bassarab S, Seidl A, Hainzl O, Jiskoot W. Strategies for the assessment of protein aggregates in pharmaceutical biotech product development. Pharmaceutical Research. 2011;28(4):920–933.
Ermer J. Validation in pharmaceutical analysis. Part I: An integrated approach. Journal of Pharmaceutical and Biomedical Analysis. 2001;24(5):755–767.
Ermer J, Vogel M. Applications of hyphenated LC‐MS techniques in pharmaceutical analysis. Biomedical Chromatography. 2000;14(6):373–383.
Erngren I, Haglöf J, Engskog MKR, Nestor M, Hedeland M, Arvidsson T, Pettersson C. Adduct formation in electrospray ionisation‐mass spectrometry with hydrophilic interaction liquid chromatography is strongly affected by the inorganic ion concentration of the samples. Journal of Chromatography A. 2019;1600:174–182.
European Medicines Agency, Guideline on clinical development of fixed combination medicinal products, EMA/CHMP/158268/2017. 2017.
European Medicines Agency, Guideline on the Investigation of Bioequivalence, CPMP/EWP/QWP/1401/98 Rev. 1/. 2010.
European Medicines Agency, QRD general principles regarding the SmPC information for a generic/hybrid/biosimilar product, EMA/627621/2011 rev.1. 2018.
Farnan D, Moreno GT. Multiproduct high‐resolution monoclonal antibody charge variant separations by pH gradient ion‐exchange chromatography. Analytical Chemistry. 2009;81(21):8846–8857.
Farsang E, Guillarme D, Veuthey JL, Beck A, Lauber M, Schmudlach A, Fekete S. Coupling non‐denaturing chromatography to mass spectrometry for the characterization of monoclonal antibodies and related products. Journal of Pharmaceutical and Biomedical Analysis. 2020;185:113207.
Faserl K, Sarg B, Maurer V, Lindner HH. Exploiting charge differences for the analysis of challenging post‐translational modifications by capillary electrophoresis‐mass spectrometry. Journal of Chromatography A. 2017;1498:215–223.
FDA. 2022; http://www.fda.gov/. Accessed 22.11.2022.
Fekete S, Beck A, Fekete J, Guillarme D. Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part I: Salt gradient approach. Journal of Pharmaceutical and Biomedical Analysis. 2015a;102:33–44.
Fekete S, Beck A, Fekete J, Guillarme D. Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, Part II: pH gradient approach. Journal of Pharmaceutical and Biomedical Analysis. 2015b;102:282–289.
Fekete S, Beck A, Guillarme D. Characterization of cation exchanger stationary phases applied for the separations of therapeutic monoclonal antibodies. Journal of Pharmaceutical and Biomedical Analysis. 2015c;111:169–176.
Fekete S, Guillarme D, Sandra P, Sandra K. Chromatographic, electrophoretic, and mass spectrometric methods for the analytical characterization of protein biopharmaceuticals. Analytical Chemistry. 2016;88(1):480–507.
Fekete S, Rudaz S, Veuthey JL, Guillarme D. Impact of mobile phase temperature on recovery and stability of monoclonal antibodies using recent reversed‐phase stationary phases. Journal of Separation Science. 2012;35(22):3113–3123.
Focosi D, McConnell S, Casadevall A, Cappello E, Valdiserra G, Tuccori M. Monoclonal antibody therapies against SARS‐CoV‐2. The Lancet Infectious Diseases. 2022;22(11):e311–e326.
Fountoulakis M, Lahm HW. Hydrolysis and amino acid composition analysis of proteins. Journal of Chromatography A. 1998;826(2):109–134.
Fussl F, Strasser L, Carillo S, Bones J. Native LC‐MS for capturing quality attributes of biopharmaceuticals on the intact protein level. Current Opinion in Biotechnology. 2021;71:32–40.
Gabrielson JP, Brader ML, Pekar AH, Mathis KB, Winter G, Carpenter JF, Randolph TW. Quantitation of aggregate levels in a recombinant humanized monoclonal antibody formulation by size‐exclusion chromatography, asymmetrical flow field flow fractionation, and sedimentation velocity. Journal of Pharmaceutical Sciences. 2007;96(2):268–279.
Galgatte UC, Jamdade VR, Aute PP, Chaudhari PD. Study on requirements of bioequivalence for registration of pharmaceutical products in USA, Europe and Canada. Saudi Pharmaceutical Journal. 2014;22(5):391–402.
Gandhi AV, Pothecary MR, Bain DL, Carpenter JF. Some lessons learned from a comparison between sedimentation velocity analytical ultracentrifugation and size exclusion chromatography to characterize and quantify protein aggregates. Journal of Pharmaceutical Sciences. 2017;106(8):2178–2186.
Garcia MC. The effect of the mobile phase additives on sensitivity in the analysis of peptides and proteins by high‐performance liquid chromatography‐electrospray mass spectrometry. Journal of Chromatography B‐Analytical Technologies in the Biomedical and Life Sciences. 2005;825(2):111–123.
Garcia MC, Hogenboom AC, Zappey H, Irth H. Effect of the mobile phase composition on the separation and detection of intact proteins by reversed‐phase liquid chromatography‐electrospray mass spectrometry. Journal of Chromatography A. 2002;957(2):187–199.
Garcia X, Sabate MD, Aubets J, Jansat JM, Sentellas S. Ion mobility‐mass spectrometry for bioanalysis. Separations. 2021;8(3):33.
Garcia‐Perez I, Posma JM, Serrano‐Contreras JI, Boulangé CL, Chan Q, Frost G, Stamler J, Elliot P, Lindon JC, Holmes E, Nicholson JK. Identifying unknown metabolites using NMR‐based metabolic profiling techniques. Nature Protocols. 2020;15(8):2538–2567.
Gass DT, Quintero AV, Hatvany JB, Gallagher ES. Metal adduction in mass spectrometric analyses of carbohydrates and glycoconjugates. Mass Spectrometry Reviews. 2022;e21801. https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/mas.21801
Géhin C, Holman SW. Advances in high‐resolution mass spectrometry applied to pharmaceuticals in 2020: A whole new age of information. Analytical Science Advances. 2021;2(3–4):142–156.
Goli VAR, Butreddy A. Biosimilar monoclonal antibodies: Challenges and approaches towards formulation. Chemico‐Biological Interactions. 2022;366:110116.
Gomez N, Subramanian J, Ouyang J, Nguyen MDH, Hutchinson M, Sharma VK, Lin AA, Yuk IH. Culture temperature modulates aggregation of recombinant antibody in cho cells. Biotechnology and Bioengineering. 2012;109(1):125–136.
Goyon A, Beck A, Colas O, Sandra K, Guillarme D, Fekete S. Evaluation of size exclusion chromatography columns packed with sub‐3 μm particles for the analysis of biopharmaceutical proteins. Journal of Chromatography A. 2017;1498:80–89.
Goyon A, Dai L, Chen T, Wei B, Yang F, Andersen N, Kopf R, Leiss M, Mølhøj M, Guillarme D, Stella C. From proof of concept to the routine use of an automated and robust multi‐dimensional liquid chromatography‐mass spectrometry workflow applied for the charge variant characterization of therapeutic antibodies. Journal of Chromatography A. 2020;1615:460740.
Goyon A, D'Atri V, Colas O, Fekete S, Beck A, Guillarme D. Characterization of 30 therapeutic antibodies and related products by size exclusion chromatography: Feasibility assessment for future mass spectrometry hyphenation. Journal of Chromatography B‐Analytical Technologies in the Biomedical and Life Sciences. 2017;1065:35–43.
Goyon A, Kim M, Dai L, Cornell C, Jacobson F, Guillarme D, Stella C. Streamlined characterization of an antibody–drug conjugate by two‐dimensional and four‐dimensional liquid chromatography/mass spectrometry. Analytical Chemistry. 2019;91(23):14896–14903.
Granborg JR, Handler AM, Janfelt C. Mass spectrometry imaging in drug distribution and drug metabolism studies—Principles, applications and perspectives. Trends in Analytical Chemistry. 2022;146:116482.
Grimalt S, Pozo ÓJ, Marín JM, Sancho JV, Hernández F. Evaluation of different quantitative approaches for the determination of noneasily ionizable molecules by different atmospheric pressure interfaces used in liquid chromatography tandem mass spectrometry: Abamectin as case of study. Journal of the American Society for Mass Spectrometry. 2005;16(10):1619–1630.
Gross JH. Direct analysis in real time—A critical review on DART‐MS. Analytical and Bioanalytical Chemistry. 2014;406(1):63–80.
Gstöttner C, Klemm D, Haberger M, Bathke A, Wegele H, Bell C, Kopf R. Fast and automated characterization of antibody variants with 4D HPLC/MS. Analytical Chemistry. 2018;90(3):2119–2125.
Gstottner C, Vergoossen DLE, Wuhrer M, Huijbers MGM, Dominguez‐Vega E. Sheathless CE‐MS as a tool for monitoring exchange efficiency and stability of bispecific antibodies. Electrophoresis. 2021;42(1–2):171–176.
Guidance for industry, Bioanalytical method validation; Department of Health and Human Science. New York, USA: FDA;2018a.
Guidance for Industry, Drug Substance Chemistry, Manufacturing, and Controls Information, U.S. Department of Health and Human Services, Food and Drug Administration, Center of Veterinary Medicine. New York, USA: FDA;2010a.
Guo JX, Kumar S, Chipley M, Marcq O, Gupta D, Jin Z, Tomar DS, Swabowski C, Smith J, Starkey JA, Singh SK. Characterization and higher‐order structure assessment of an interchain cysteine‐based ADC: Impact of drug loading and distribution on the mechanism of aggregation. Bioconjugate Chemistry. 2016;27(3):604–615.
Hahne H, Pachl F, Ruprecht B, Maier SK, Klaeger S, Helm D, Médard G, Wilm M, Lemeer S, Kuster B. DMSO enhances electrospray response, boosting sensitivity of proteomic experiments. Nature Methods. 2013;10(10):989–991.
Hajba L, Csanky E, Guttman A. Liquid phase separation methods for N‐glycosylation analysis of glycoproteins of biomedical and biopharmaceutical interest. A critical review. Analytica Chimica Acta. 2016;943:8–16.
Hanczko R, Jambor A, Perl A, Molnar‐Perl I. Advances in the omicron‐phthalaldehyde derivatizations comeback to the omicron‐phthalaldehyde‐ethanethiol reagent. Journal of Chromatography A. 2007;1163(1–2):25–42.
Hanko VP, Rohrer JS. Determination of amino acids in cell culture and fermentation broth media using anion‐exchange chromatography with integrated pulsed amperometric detection. Analytical Biochemistry. 2004;324(1):29–38.
Harris RP, Kilby PM. Amino acid misincorporation in recombinant biopharmaceutical products. Current Opinion in Biotechnology. 2014;30:45–50.
Harry EL, Reynolds JC, Bristow AWT, Wilson ID, Creaser CS. Direct analysis of pharmaceutical formulations from non‐bonded reversed‐phase thin‐layer chromatography plates by desorption electrospray ionisation ion mobility mass spectrometry. Rapid Communications in Mass Spectrometry. 2009;23(17):2597–2604.
Hassan M, Alshana U. Switchable‐hydrophilicity solvent liquid–liquid microextraction of non‐steroidal anti‐inflammatory drugs from biological fluids prior to HPLC‐DAD determination. Journal of Pharmaceutical and Biomedical Analysis. 2019;174:509–517.
Higel F, Seidl A, Sorgel F, Friess W. N‐glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. European Journal of Pharmaceutics and Biopharmaceutics. 2016;100:94–100.
Higel F, Sandl T, Kao CY, Pechinger N, Sörgel F, Friess W, Wolschin F, Seidl A. N‐glycans of complex glycosylated biopharmaceuticals and their impact on protein clearance. European Journal of Pharmaceutics and Biopharmaceutics. 2019;139:123–131.
Hong P, Koza S, Bouvier ES. Size‐exclusion chromatography for the analysis of protein biotherapeutics and their aggregates. Journal of Liquid Chromatography and Related Technologies. 2012;35(20):2923–2950.
Hong A, Lee HH, Heo CE, Cho Y, Kim S, Kang D, Kim HI. Distinct fragmentation pathways of anticancer drugs induced by charge‐carrying cations in the gas phase. Journal of the American Society for Mass Spectrometry. 2017;28(4):628–637.
Houde D, Berkowitz SA, Engen JR. The utility of hydrogen/deuterium exchange mass spectrometry in biopharmaceutical comparability studies. Journal of Pharmaceutical Sciences. 2011;100(6):2071–2086.
Howlett SE, Steiner RR. Validation of thin layer chromatography with AccuTOF‐DART™ detection for forensic drug analysis*. Journal of Forensic Sciences. 2011;56(5):1261–1267.
Hsu F‐F, Bohrer A, Turk J. Formation of lithiated adducts of glycerophosphocholine lipids facilitates their identification by electrospray ionization tandem mass spectrometry. Journal of the American Society for Mass Spectrometry. 1998;9(5):516–526.
https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:C:2013:223:FULL:EN:PDF. Accessed 22.5.2023.
Huang J‐T, Alquier L, Kaisa JP, Reed G, Gilmor T, Vas G. Method development and validation for the determination of 2,4,6‐tribromoanisole, 2,4,6‐tribromophenol, 2,4,6‐trichloroanisole, and 2,4,6‐trichlorophenol in various drug products using stir bar sorptive extraction and gas chromatography–tandem mass spectrometry detection. Journal of Chromatography A. 2012;1262:196–204.
Huang M‐Z, Cheng S‐C, Cho Y‐T, Shiea J. Ambient ionization mass spectrometry: A tutorial. Analytica Chimica Acta. 2011;702(1):1–15.
Iavarone AT, Jurchen JC, Williams ER. Supercharged protein and peptide ions formed by electrospray ionization. Analytical Chemistry. 2001;73(7):1455–1460.
Impact of the Article 5(3) Scientific Opinion on Nitrosamines in Human Medicinal Products on the Opinion Adopted Pursuant to Article 31 of Directive 2001/83/EC for Angiotensin‐II‐ Receptor Antagonists (Sartans) Containing a Tetrazole Group (Candesartan, Irbesartan, Losartan, Olmesartan, Valsartan) Procedure no: EMEA/H/A‐31/1471. 2020a.
International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline, ICH guideline M10 on bioanalytical method validation and study sample analysis. 2019a.
International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline, M7: Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk. 2014b.
International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline, M9: Guideline on biopharmaceutics classification system‐based biowaivers. 2020b.
International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline, Q11: Development and manufacture of drug substances (chemical entities and biotechnological/biological entities). 2011.
International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline, Q1A (R2): Stability testing of new drug substances and products. 2003a.
International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline, Q1C: Stability testing for new dosage forms. 1996.
International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline, Q2 (R1): Validation of analytical procedures: Text and methodology. 2005a.
International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline, Q3A(R2): Impurities in new drug substances. 2002.
International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline, Q3B(R2): Impurities in new drug products. 2003b.
International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline, Q3C(R6): Impurities: Guideline for residual solvents. 2016.
International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline, Q3D: Guideline for elemental impurities. 2014a.
International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline, Q5A(R1): Viral safety evaluation of biotechnology products derived from cell lines of human or animal origin. 1999c.
International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline, Q5B: Analysis of the expression construct in cells used for production of r‐DNA derived protein products. 1995a.
International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline, Q5C: Stability testing of Biotechnological/Biological Products. 1995b.
International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline, Q5D: Derivation and characterisation of cell substrates used for production of biotechnological/biological products. 1997a.
International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline, Q5E: Comparability of biotechnological/biological products subjects to changes in their manufacturing procedure. 1997b.
International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline, Q6A(R2): Test procedures and acceptance criteria for new drug substances and new drug products: Chemical Substances. 1999b.
International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline, Q6B: Specifications: Test procedures and acceptance criteria for biotechnological/biological products. 1999a.
International Conference on Harmonization of technical requirements for registration of pharmaceuticals for human use, ICH harmonized tripartite guideline, Q8 (R2): Pharmaceutical development, 2006.
International Council for Harmonization (ICH) Guideline: M7(R1) Assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk. 2018b.
Jakes C, Fussl F, Zaborowska I, Bones J. Rapid analysis of biotherapeutics using protein A chromatography coupled to orbitrap mass spectrometry. Analytical Chemistry. 2021;93(40):13505–13512.
Jensen PH, Karlsson NG, Kolarich D, Packer NH. Structural analysis of N‐ and O‐glycans released from glycoproteins. Nature Protocols. 2012;7(7):1299–1310.
Jing Y. Identification of cell culture conditions to control protein aggregation of IgG fusion proteins expressed in Chinese hamster ovary cells. Process Biochemistry. 2012;47:69–75.
Kadian N, Raju KS, Rashid M, Malik MY, Taneja I, Wahajuddin M. Comparative assessment of bioanalytical method validation guidelines for pharmaceutical industry. Journal of Pharmaceutical and Biomedical Analysis. 2016;126:83–97.
Kaltashov IA, Bobst CE, Pawlowski J, Wang G. Mass spectrometry‐based methods in characterization of the higher order structure of protein therapeutics. Journal of Pharmaceutical and Biomedical Analysis. 2020;184:113169.
Kamoda S, Ishikawa R, Kakehi K. Capillary electrophoresis with laser‐induced fluorescence detection for detailed studies on N‐linked oligosaccharide profile of therapeutic recombinant monoclonal antibodies. Journal of Chromatography A. 2006;1133(1–2):332–339.
Kashimura A, Tanaka K, Sato H, Kaji H, Tanaka M. Imaging mass spectrometry for toxicity assessment: A useful technique to confirm drug distribution in histologically confirmed lesions. Journal of Toxicologic Pathology. 2018;31(3):221–227.
Kaufmann A, Butcher P, Maden K, Walker S, Widmer M. Comprehensive comparison of liquid chromatography selectivity as provided by two types of liquid chromatography detectors (high‐resolution mass spectrometry and tandem mass spectrometry): “Where is the crossover point?”. Analytica Chimica Acta. 2010;673(1):60–72.
Kauppila TJ, Wiseman JM, Ketola RA, Kotiaho T, Cooks RG, Kostiainen R. Desorption electrospray ionization mass spectrometry for the analysis of pharmaceuticals and metabolites. Rapid Communications in Mass Spectrometry. 2006;20(3):387–392.
Kaur H. Characterization of glycosylation in monoclonal antibodies and its importance in therapeutic antibody development. Critical Reviews in Biotechnology. 2021a;41(2):300–315.
Kaur H. Capillary electrophoresis and the biopharmaceutical industry: Therapeutic protein analysis and characterization. Trends in Analytical Chemistry 2021b;144: 116407.
Khadim A, Usama Yaseen Jeelani S, Akhtar N, Ali A, Shah SMZ, Zareena B, Tehreem S, Uddin J, El‐Seedi HR, Musharraf SG. Investigation of fragmentation behaviors of steroidal drugs with Li+, Na+, K+ adducts by tandem mass spectrometry aided with computational analysis. Arabian Journal of Chemistry. 2022;15(7):103939.
Khaled A, Belinato JR, Pawliszyn J. Rapid and high‐throughput screening of multi‐residue pharmaceutical drugs in bovine tissue using solid phase microextraction and direct analysis in real time‐tandem mass spectrometry (SPME‐DART‐MS/MS). Talanta. 2020;217:121095.
Khalikova MA, Skarbalius L, Naplekov DK, Jadeja S, Svec F, Lenco J. Evaluation of strategies for overcoming trifluoroacetic acid ionization suppression resulted in single‐column intact level, middle‐up, and bottom‐up reversed‐phase LC‐MS analyses of antibody biopharmaceuticals. Talanta. 2021;233:122512.
Khanal DD, Baghdady YZ, Figard BJ, Schug KA. Supercharging and multiple reaction monitoring of high‐molecular‐weight intact proteins using triple quadrupole mass spectrometry. Rapid Communications in Mass Spectrometry. 2019;33(9):821–830.
Kind T, Fiehn O. Advances in structure elucidation of small molecules using mass spectrometry. Bioanalytical Reviews. 2010;2(1):23–60.
de Kleijne VH, Heijboer AC, de Jonge R, Ackermans MT. Supercharging reagents in LC‐MS/MS hormone analyses: Enhancing ionization, not limit of quantification. Journal of Chromatography B‐Analytical Technologies in the Biomedical and Life Sciences. 2022;1204:123337.
Kromidas S. Optimization in HPLC: Concepts and strategies. (1st ed.) Weinheim: Wiley‐VCH; 2021.
Kruve A, Kaupmees K. Adduct formation in ESI/MS by mobile phase additives Journal of the American Society for Mass Spectrometry. 2017;28(5):887–894.
Kryndushkin D, Rao VA. Comparative effects of metal‐catalyzed oxidizing systems on carbonylation and integrity of therapeutic proteins. Pharmaceutical Research. 2016;33(2):526–539.
Kucwaj‐Brysz K, Kurczab R, Żesławska E, Lubelska A, Marć MA, Latacz G, Satala G, Nitek W, Kieć‐Kononowicz K, Handzlik J. The role of aryl‐topology in balancing between selective and dual 5‐HT 7 R/5‐HT 1A actions of 3, 5‐substituted hydantoins. Medical Chemistry Communications. 2018;9(6):1033–1044.
Kueltzo LA, Wang W, Randolph TW, Carpenter JF. Effects of solution conditions, processing parameters, and container materials on aggregation of a monoclonal antibody during freeze‐thawing. Journal of Pharmaceutical Sciences. 2008;97(5):1801–1812.
Kuhlmann FE, Apffel A, Fischer SM, Goldberg G, Goodley PC. Signal enhancement for gradient reverse‐phase high‐performance liquid chromatography‐electrospray ionization mass spectrometry analysis with trifluoroacetic and other strong acid modifiers by postcolumn addition of propionic acid and isopropanol. Journal of the American Society for Mass Spectrometry. 1995;6(12):1221–1225.
Kushnir MM, Rockwood AL, Nelson GJ, Yue B, Urry FM. Assessing analytical specificity in quantitative analysis using tandem mass spectrometry. Clinical Biochemistry. 2005;38(4):319–327.
Lakbub JC, Shipman JT, Desaire H. Recent mass spectrometry‐based techniques and considerations for disulfide bond characterization in proteins. Analytical and Bioanalytical Chemistry. 2018;410(10):2467–2484.
Lakka NS, Kuppan C, Ravinathan P, Palakurthi AK. Development and validation of liquid chromatography–tandem mass spectrometry method for the estimation of a potential genotoxic impurity 2‐(2‐chloroethoxy)ethanol in hydroxyzine. Biomedical Chromatography. 2022;36(5):e5325.
Lardeux H, Duivelshof BL, Colas O, Beck A, McCalley DV, Guillarme D, D'Atri V. Alternative mobile phase additives for the characterization of protein biopharmaceuticals in liquid chromatography–mass spectrometry. Analytica Chimica Acta. 2021;1156:338347.
Lauber MA, Yu YQ, Brousmiche DW, Hua Z, Koza SM, Magnelli P, Guthrie E, Taron CH, Fountain KJ. Rapid preparation of released N‐glycans for HILIC analysis using a labeling reagent that facilitates sensitive fluorescence and ESI‐MS detection. Analytical Chemistry. 2015;87(10):5401–5409.
Lazar AC, Wang L, Blattler WA, Amphlett G, Lambert JM, Zhang W. Analysis of the composition of immunoconjugates using size‐exclusion chromatography coupled to mass spectrometry. Rapid Communications in Mass Spectrometry. 2005;19(13):1806–1814.
Leblanc Y, Faid V, Lauber MA, Wang Q, Bihoreau N, Chevreux G. A generic method for intact and subunit level characterization of mAb charge variants by native mass spectrometry. Journal of Chromatography B‐Analytical Technologies in the Biomedical and Life Sciences. 2019;1133:121814.
Lee DH, Hwang SH, Park S, Lee J, Oh HB, Han SB, Liu K‐H, Lee Y‐M, Pyo HS, Hong J. A solvent‐free headspace GC/MS method for sensitive screening of N‐nitrosodimethylamine in drug products. Analytical Methods. 2021;13(30):3402–3409.
Lenco J, Semlej T, Khalikova MA, Fabrik I, Svec F. Sense and nonsense of elevated column temperature in proteomic bottom‐up LC‐MS analyses. Journal of Proteome Research. 2021;20(1):420–432.
Lermyte F, Tsybin YO, O'Connor PB, Loo JA. Top or middle? Up or down? Toward a standard lexicon for protein top‐down and allied mass spectrometry approaches. Journal of the American Society for Mass Spectrometry. 2019;30(7):1149–1157.
Lewis DA, Guzzetta AW, Hancock WS, Costello M. Characterization of humanized anti‐TAC, an antibody directed against the interleukin 2 receptor, using electrospray ionization mass spectrometry by direct infusion, LC/MS, and MS/MS. Analytical Chemistry. 1994;66(5):585–595.
Li H, d'Anjou M. Pharmacological significance of glycosylation in therapeutic proteins. Current Opinion in Biotechnology. 2009;20(6):678–684.
Li JL, Li W, Dai XJ, Zhong DF, Ding YP, Chen XY. Bioequivalence of paclitaxel protein‐bound particles in patients with breast cancer: Determining total and unbound paclitaxel in plasma by rapid equilibrium dialysis and liquid chromatography‐tandem mass spectrometry. Drug Design, Development and Therapy. 2019;13:1739–1749.
Liigand P, Liigand J, Kaupmees K, Kruve A. 30 Years of research on ESI/MS response: Trends, contradictions and applications. Analytica Chimica Acta. 2021;1152:238117.
Lim H‐H, Oh Y‐S, Shin H‐S. Determination of N‐nitrosodimethylamine and N‐nitrosomethylethylamine in drug substances and products of sartans, metformin and ranitidine by precipitation and solid phase extraction and gas chromatography–tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis. 2020;189:113460.
Lingg N, Berndtsson M, Hintersteiner B, Schuster M, Bardor M, Jungbauer A. Highly linear pH gradients for analyzing monoclonal antibody charge heterogeneity in the alkaline range: Validation of the method parameters. Journal of Chromatography A. 2014;1373:124–130.
Lingg N, Tan E, Hintersteiner B, Bardor M, Jungbauer A. Highly linear pH gradients for analyzing monoclonal antibody charge heterogeneity in the alkaline range. Journal of Chromatography A. 2013;1319:65–71.
Liu D, Huang JP, Gao SS, Jin HT, He JM. A temporo‐spatial pharmacometabolomics method to characterize pharmacokinetics and pharmacodynamics in the brain microregions by using ambient mass spectrometry imaging. Acta Pharmaceutica Sinnica B. 2022;12(8):3341–3353.
Liu DT. Glycoprotein pharmaceuticals: Scientific and regulatory considerations, and the US Orphan Drug Act. Trends in Biotechnology. 1992;10(4):114–120.
Liu H, Gaza‐Bulseco G, Chumsae C. Analysis of reduced monoclonal antibodies using size exclusion chromatography coupled with mass spectrometry. Journal of the American Society for Mass Spectrometry. 2009;20(12):2258–2264.
Liu L. Antibody glycosylation and its impact on the pharmacokinetics and pharmacodynamics of monoclonal antibodies and Fc‐fusion proteins. Journal of Pharmaceutical Sciences. 2015;104(6):1866–1884.
Liu P, Zhu X, Wu W, Ludwig R, Song H, Li R, Zhou J, Tao L, Leone AM. Subunit mass analysis for monitoring multiple attributes of monoclonal antibodies. Rapid Communications in Mass Spectrometry. 2019;33(1):31–40.
Liu T. Analytical tools for antibody drug conjugates: From in vitro to in vivo. Trends in Analytical Chemistry. 2022a;152,116621.
Liu X. Mass spectrometry‐based analysis of IgG glycosylation and its applications. International Journal of Mass Spectrometry 2022b;474:116799.
Liu Y, Hu C‐Q. Preliminary identification and quantification of residual solvents in pharmaceuticals using the parallel dual‐column system. Journal of Chromatography A. 2007;1175(2):259–266.
Liu Y, Su C, Zhang Y, Li Y, Gu J, Wang E, Sun D. High‐throughput and trace analysis of diazepam in plasma using DART‐MS/MS and its pharmacokinetic application. Analytical Biochemistry. 2021;635:114435.
Loos G, Van Schepdael A, Cabooter D. Quantitative mass spectrometry methods for pharmaceutical analysis. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences. 2016;374(2079):20150366.
Louw S, Njoroge M, Chigorimbo‐Murefu N, Chibale K. Comparison of electrospray ionisation, atmospheric pressure chemical ionisation and atmospheric pressure photoionisation for the identification of metabolites from labile artemisinin‐based anti‐malarial drugs using a QTRAP® mass spectrometer. Rapid Communications in Mass Spectrometry. 2012;26(20):2431–2442.
Lundell N, Schreitmuller T. Sample preparation for peptide mapping—A pharmaceutical quality‐control perspective. Analytical Biochemistry. 1999;266(1):31–47.
Ma J, Gao Y, Sun Y, Ding D, Zhang Q, Sun B, Wang M, Sun J, He Z. Tissue distribution and dermal drug determination of indomethacin transdermal‐absorption patches. Drug Delivery and Translational Research. 2017;7(5):617–624.
Mallavarapu R, Katari NK, Dongala T, Anand K, Marisetti VM. Low‐level determination of 4‐chlorobutyl‐(S)‐[4‐chloro‐2‐(4‐cyclopropyl‐1,1,1‐trifluoro‐2‐hydroxy‐but‐3yn‐2‐yl)phenyl] car‐bamate (4‐CTHC) in efavirenz drug substance by LC–MS. Biomedical Chromatography. 2021;35(7):e5086.
Marakova K, Rai AJ, Schug KA. Effect of difluoroacetic acid and biological matrices on the development of a liquid chromatography‐triple quadrupole mass spectrometry method for determination of intact growth factor proteins. Journal of Separation Science. 2020;43(9–10):1663–1677.
Margaryan T, Mikayelyan A, Zakaryan H, Armoudjian Y, Alaverdyan H. Simultaneous determination of triamterene and hydrochlorothiazide in human plasma by liquid chromatography tandem mass spectrometry and its application to a bioequivalence study. SN Applied Sciences. 2019;1(6):653.
Marino K, Bones J, Kattla JJ, Rudd PM. A systematic approach to protein glycosylation analysis: A path through the maze. Nature Chemical Biology. 2010;6(10):713–723.
Massolini G, Calleri E. Immobilized trypsin systems coupled on‐line to separation methods: Recent developments and analytical applications. Journal of Separation Science. 2005;28(1):7–21.
Mazurek S, Szostak R. Quantification of atorvastatin calcium in tablets by FT‐Raman spectroscopy. Journal of Pharmaceutical and Biomedical Analysis. 2009;49(1):168–172.
McCarthy S. Multiple attribute monitoring of biopharmaceuticals using mass detection, Waters Webcasts. https://www.waters.com/blog/multiple-attribute-monitoring-of-biopharmaceuticals-using-mass-detection/. Accessed 29.5.2023.
Mention A. Coronavirus: A catalyst for change and innovation. Journal of Innovation Management. 2020;8(1):1–5.
Miladinovic SM, Fornelli L, Lu Y, Piech KM, Girault HH, Tsybin YO. In‐spray supercharging of peptides and proteins in electrospray ionization mass spectrometry. Analytical Chemistry. 2012;84(11):4647–4651.
Mirzajani R, Kardani F. Fabrication of ciprofloxacin molecular imprinted polymer coating on a stainless steel wire as a selective solid‐phase microextraction fiber for sensitive determination of fluoroquinolones in biological fluids and tablet formulation using HPLC‐UV detection. Journal of Pharmaceutical and Biomedical Analysis. 2016;122:98–109.
Mittermayr S, Bones J, Guttman A. Unraveling the glyco‐puzzle: Glycan structure identification by capillary electrophoresis. Analytical Chemistry. 2013;85(9):4228–4238.
Miyamoto K, Mizuno H, Sugiyama E, Toyo'oka T, Todoroki K. Machine learning guided prediction of liquid chromatography–mass spectrometry ionization efficiency for genotoxic impurities in pharmaceutical products. Journal of Pharmaceutical and Biomedical Analysis. 2021;194:113781.
Moein MM, El Beqqali A, Abdel‐Rehim M. Bioanalytical method development and validation: Critical concepts and strategies. Journal of Chromatography B‐Analytical Technologies in the Biomedical and Life Sciences. 2017;1043:3–11.
Mohamed HE, Mohamed AA, Al‐Ghobashy MA, Fathalla FA, Abbas SS. Stability assessment of antibody‐drug conjugate Trastuzumab emtansine in comparison to parent monoclonal antibody using orthogonal testing protocol. Journal of Pharmaceutical and Biomedical Analysis. 2018;150:268–277.
Molnarova K, Duris A, Jecmen T, Kozlik P. Comparison of human IgG glycopeptides separation using mixed‐mode hydrophilic interaction/ion‐exchange liquid chromatography and reversed‐phase mode. Analytical and Bioanalytical Chemistry. 2021;413(16):4321–4328.
Molnar‐Perl I. Advancement in the derivatizations of the amino groups with the o‐phthaldehyde‐thiol and with the 9‐fluorenylmethyloxycarbonyl chloride reagents. Journal of Chromatography B‐Analytical Technologies in the Biomedical and Life Sciences. 2011;879(17–18):1241–1269.
Montanari S, Davani L, Terenzi C, Maltoni M, Andrisano V, De Simone A, Ricci M. Fentanyl pharmacokinetics in blood of cancer patients by gas chromatography–mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis. 2022;219:114913.
Moorthy MK, Ali SM, Reddy GVS. Development and validation of LC–QTOF–MS/MS method for the identification and determination of low levels of a genotoxic impurity, 4,6‐dichloro‐5‐nitro‐2‐(propylthio)pyrimidine in ticagrelor API. Biomedical Chromatography. 2022;36(4):e5336.
Morato NM, Cooks RG. Inter‐platform assessment of performance of high‐throughput desorption electrospray ionization mass spectrometry. Talanta Open. 2021;4:100046.
Morelle W, Michalski JC. Analysis of protein glycosylation by mass spectrometry. Nature Protocols. 2007;2(7):1585–1602.
Morgan TE, Jakes C, Brouwer H‐J, Millán‐Martín S, Chervet J‐P, Carillo S, Bones J. Inline electrochemical reduction of NISTmAb for middle‐up subunit liquid chromatography‐mass spectrometry analysis. Analyst. 2021;146(21):6547–6555.
Mosekiemang TT, Stander MA, de Villiers A. Ultra‐high pressure liquid chromatography coupled to travelling wave ion mobility‐time of flight mass spectrometry for the screening of pharmaceutical metabolites in wastewater samples: Application to antiretrovirals. Journal of Chromatography A. 2021;1660:462650.
Mouchahoir T, Schiel JE, Rogers R, Heckert A, Place NJ, Ammerman A, Li X, Robinson T, Schmidt B, Chumsae CM, Li X, Manuilov AV, Yan B, Staples GO, Ren D, Veach AJ, Wang D, Yared Wael, Sosic Z, Wang Y, Zang L, Leone AM, Liu P, Ludwig R, Tao L, Wu W, Cansizoglu A, Hanneman A, Adams GW, Perdivara I, Walker H, Wilson M, Brandenburg A, DeGraan‐Weber N, Gotta S, Shambaugh J, Alvarez M, Yu XC, Cao L, Shao C, Mahan A, Nanda H, Nields K, Nightlinger N, Niu B, Wang J, Xu W, Leo G, Sepe N, Liu Y‐H, Patel BA, Richardson D, Wang Y, Tizabi D, Borisov OV, Lu Y, Maynard EL, Gruhler A, Haselmann KF, Krogh TN, Sönksten CP, Letarte S, Shen S, Boggio K, Johnson K, Ni W, Patel H, Ripley D, Rouse JC, Zhang Y, Daniels C, Dawdy A, Frise O, Powers TW, Sperry JB, Woods J, Carlson E, Sen I, Skliton SJ, Busch M, Lund A, Stapels M, Guo X, Heidelberger S, Kaluarachchi H, McCarthy S, Kim J, Zhen J, Zhou Y, Rogstad S, Wang X, Fang J, Chen W, Yu YQ, Hoogerheide JG, Scott R, Yuan H. Attribute analytics performance metrics from the MAM consortium interlaboratory study. Journal of the American Society for Mass Spectrometry. 2022;33(9):1659–1677.
Mullangi S, Ravindhranath K, Panchakarla RK. LC–MS/MS method for the quantification of potential genotoxic impurity 4‐phenoxyphenyl‐boronic acid in ibrutinib. Journal of the Iranian Chemical Society. 2021;18(6):1381–1389.
Murisier A. Boosting the liquid chromatography separation of complex bispecific antibody products by using the multi‐isocratic elution mode. Separations 2022;9(9):243.
Naldi M, Cernigoj U, Strancar A, Bartolini M. Towards automation in protein digestion: Development of a monolithic trypsin immobilized reactor for highly efficient on‐line digestion and analysis. Talanta. 2017;167:143–157.
Narayanam M, Handa T, Sharma P, Jharja S, Muthe PK, Dappili PK, Shah RP, Singh S. Critical practical aspects in the application of liquid chromatography–mass spectrometric studies for the characterization of impurities and degradation products. Journal of Pharmaceutical and Biomedical Analysis. 2014;87:191–217.
Nguyen JM, Smith J, Rzewuski S, Legido‐Quigley C, Lauber MA. High sensitivity LC‐MS profiling of antibody‐drug conjugates with difluoroacetic acid ion pairing. mAbs. 2019;11(8):1358–1366.
Nishidate M, Hayashi M, Aikawa H, Tanaka K, Nakada N, Miura S‐I, Ryu S, Higashi T, Ikarashi Y, Fujiwara Y, Hamada A. Applications of MALDI mass spectrometry imaging for pharmacokinetic studies during drug development. Drug Metabolism and Pharmacokinetics. 2019;34(4):209–216.
Nishidate M, Yamamoto K, Masuda C, Aikawa H, Hayashi M, Kawanishi T, Hamada A. MALDI mass spectrometry imaging of erlotinib administered in combination with bevacizumab in xenograft mice bearing B901L, EGFR‐mutated NSCLC cells. Scientific Reports. 2017;7(1):16763.
Nohmi T. Thresholds of genotoxic and non‐genotoxic carcinogens. Toxicology Research. 2018;34(4):281–290.
Nováková L, Douša M. Modern HPLC Separation in Theory and Practice, part I: Theory. (2nd ed.) Tisk Centrum s. r. o.; 2021.
Nováková L, Douša M, Pekárek T, Mitašík L. Pharmaceutical Analysis Overview. In: Worsfold P, Townshend A, Poole C, Miro M, editors. Encyclopedia of Analytical Science, (3rd ed.). Vol. 8. Elsevier; 2019:200–218.
Nováková L, Vlčková H. A review of current trends and advances in modern bio‐analytical methods: Chromatography and sample preparation. Analytica Chimica Acta. 2009;656(1):8–35.
Nshanian M, Lakshmanan R, Chen H, Ogorzalek Loo RR, Loo JA. Enhancing sensitivity of liquid chromatography‐mass spectrometry of peptides and proteins using supercharging agents. International Journal of Mass Spectrometry. 2018;427:157–164.
Nyadong L, Harris GA, Balayssac S, Galhena AS, Malet‐Martino M, Martino R, Parry RM, Wang MD, Fernández FM, Gilard V. Combining two‐dimensional diffusion‐ordered nuclear magnetic resonance spectroscopy, imaging desorption electrospray ionization mass spectrometry, and direct analysis in real‐time mass spectrometry for the integral investigation of counterfeit pharmaceuticals. Analytical Chemistry. 2009;81(12):4803–4812.
Opuni KF, Togoh G, Frimpong‐Manso S, Adu‐Amoah D, Alkanji O, Boateng KP. Scientific African. 2021;13:e00825.
Pan LY, Salas‐Solano O, Valliere‐Douglass JF. Conformation and dynamics of interchain cysteine‐linked antibody‐drug conjugates as revealed by hydrogen/deuterium exchange mass spectrometry. Analytical Chemistry. 2014;86(5):2657–2664.
Park R, Choi WG, Lee MS, Cho Y‐Y, Lee JY, Kang HC, Sohn CH, Song I‐S, Lee HS. Pharmacokinetics of α‐amanitin in mice using liquid chromatography‐high resolution mass spectrometry and in vitro drug‐drug interaction potentials. Journal of Toxicology and Environmental Health, Part A, Current. 2021;84(20):821–835.
Pasquini B, Gotti R, Villar‐Navarro M, Douša M, Renai L, Del Bubba M, Orlandini S, Furlanetto S. Analytical quality by design in the development of a solvent‐modified micellar electrokinetic chromatography method for the determination of sitagliptin and its related compounds. Journal of Pharmaceutical and Biomedical Analysis. 2021;202:114163.
Pérez Pavón JL, del Nogal Sánchez M, García Pinto C, Fernández Laespada ME, Cordero BM. Use of mass spectrometry methods as a strategy for detection and determination of residual solvents in pharmaceutical products. Analytical Chemistry. 2006;78(14):4901–4908.
Periat A, Krull IS, Guillarme D. Applications of hydrophilic interaction chromatography to amino acids, peptides, and proteins. Journal of Separation Science. 2015;38(3):357–367.
Petersson P, Haselmann K, Buckenmaier S. Multiple heart‐cutting two dimensional liquid chromatography mass spectrometry: Towards real time determination of related impurities of bio‐pharmaceuticals in salt based separation methods. Journal of Chromatography A. 2016;1468:95–101.
Ph. Eur. 11.1.
Ph. Eur. 11.1., 2.2.43. Mass Spectrometry, Council of Europe, Strasbourg.
Ph. Eur., Supplement 5.3, Somatropin for injection, fifth ed., Council of Europe, Strasbourg. In:2005a:3619–3621.
Ph. Eur., vol. 2, Erythropoietin concentrated solution, fifth ed., Council of Europe, Strasbourg. In:2005b:1528–1529.
Philo JS. A critical review of methods for size characterization of non‐particulate protein aggregates. Current Pharmaceutical Biotechnology. 2009;10(4):359–372.
Piestansky J, Galba J, Olesova D, Kovacech B, Kovac A. Determination of immunogenic proteins in biopharmaceuticals by UHPLC‐MS amino acid analysis. BMC Chemistry. 2019;13:64.
Pilely K, Johansen MR, Lund RR, Kofoed T, Jørgensen TK, Skriver L, Mørtz E. Monitoring process‐related impurities in biologics‐host cell protein analysis. Analytical and Bioanalytical Chemistry. 2022;414(2):747–758.
Pitman CN, LaCourse WR. Desorption atmospheric pressure chemical ionization: A review. Analytica Chimica Acta. 2020;1130:146–154.
Pitt JJ. Principles and applications of liquid chromatography‐mass spectrometry in clinical biochemistry. Clinical Biochemist Reviews. 2009;30(1):19–34.
Planinc A, Bones J, Dejaegher B, Van Antwerpen P, Delporte C. Glycan characterization of biopharmaceuticals: Updates and perspectives. Analytica Chimica Acta. 2016;921:13–27.
Pot S, Gstöttner C, Heinrich K, Hoelterhoff S, Grunert I, Leiss M, Bathke A, Domínguez‐Vega E. Fast analysis of antibody‐derived therapeutics by automated multidimensional liquid chromatography–mass spectrometry. Analytica Chimica Acta. 2021;1184:339015.
Pramanik BN, Mirza UA, Ing YH, Liu Y‐H, Bartner PL, Weber PC, Bose AK. Microwave‐enhanced enzyme reaction for protein mapping by mass spectrometry: A new approach to protein digestion in minutes. Protein Science. 2002;11(11):2676–2687.
Prasaja B, Harahap Y, Lusthom W, Sofiana A, Safira F, Sandra M, Puspanegara G. Study on bioequivalence of beraprost in healthy volunteers by liquid chromatography with tandem mass spectrometry. Biomedical Chromatography. 2019;33(2):e4403.
Prinsen H, Schiebergen‐Bronkhorst BGM, Roeleveld MW, Jans JJM, de Sain‐van der Velden MGM, Visser G, van Hasselt PM, Verhoeven‐Duif NM. Rapid quantification of underivatized amino acids in plasma by hydrophilic interaction liquid chromatography (HILIC) coupled with tandem mass‐spectrometry. Journal of Inherited Metabolic Disease. 2016;39(5):651–660.
Procedure under Article 5(3) of Regulation EC (No) 726/2004: Nitrosamine Impurities in Human Medicinal Products. 2020a.
Qian J, Gu SZ, Yan YJ. Determination of rivaroxaban in rat plasma by ultra‐high‐performance liquid chromatography‐Q‐Orbitrap high‐resolution mass spectrometry and its application to a pharmacokinetic study. Biomedical Chromatography. 2022;36(12):e5491.
Qiu F, Norwood DL. Identification of pharmaceutical impurities. Journal of Liquid Chromatography & Related Technologies. 2007;30(5–7):877–935.
Qu M, An B, Shen S, Zhang M, Shen X, Duan X, Balthasar JP, Qu J. Qualitative and quantitative characterization of protein biotherapeutics with liquid chromatography‐mass spectrometry. Mass Spectrometry Reviews. 2017;36(6):734–754.
Raposo F, Barcelo D. Challenges and strategies of matrix effects using chromatography‐mass spectrometry: An overview from research versus regulatory viewpoints. Trends in Analytical Chemistry. 2021;134:116068.
Rea JC, Moreno GT, Lou Y, Farnan D. Validation of a pH gradient‐based ion‐exchange chromatography method for high‐resolution monoclonal antibody charge variant separations. Journal of Pharmaceutical and Biomedical Analysis. 2011;54(2):317–323.
Redman EA, Mellors JS, Starkey JA, Ramsey JM. Characterization of intact antibody drug conjugate variants using microfluidic capillary electrophoresis‐mass spectrometry. Analytical Chemistry. 2016;88(4):2220–2226.
Referral under Article 31 of Directive 2001/83/EC Angiotensin‐II‐Receptor Antagonists (Sartans) Containing a Tetrazole Group. 2019b.
Ren D, Pipes GD, Liu D, Shih L‐Y, Nichols AC, Treuheit MJ, Brems DN, Bondarenko PV. An improved trypsin digestion method minimizes digestion‐induced modifications on proteins. Analytical Biochemistry. 2009;392(1):12–21.
Reusch D, Haberger M, Falck D, Peter B, Maier B, Gassner J, Hook M, Wagner K, Bonnington L, Bulau P, Wuhrer M. Comparison of methods for the analysis of therapeutic immunoglobulin G Fc‐glycosylation profiles‐Part 2: Mass spectrometric methods. mAbs. 2015;7(4):732–742.
Reusch D, Haberger M, Maier B, Maier M, Kloseck R, Zimmermann B, Hook M, Szabo Z, Tep S, Wegstein J, Alt N, Bulau P, Wuhrer M. Comparison of methods for the analysis of therapeutic immunoglobulin G Fc‐glycosylation profiles—part 1: Separation‐based methods. mAbs. 2015b;7(1):167–179.
Reusch D, Tejada ML. Fc glycans of therapeutic antibodies as critical quality attributes. Glycobiology. 2015;25(12):1325–1334.
Rigas PG. Post‐column labeling techniques in amino acid analysis by liquid chromatography. Analytical and Bioanalytical Chemistry. 2013;405(25):7957–7992.
Rodriguez EL, Poddar S, Iftekhar S, Suh K, Woolfork AG, Ovbude S, Pekarek A, Walters M, Lott S, Hage DS. Affinity chromatography: A review of trends and developments over the past 50 years. Journal of Chromatography B‐Analytical Technologies in the Biomedical and Life Sciences. 2020;1157:122332.
Rogers RS, Abernathy M, Richardson DD, Rouse JC, Sperry JB, Swann P, Wypych J, Yu C, Zang L, Deshpande R. A View on the importance of “multi‐attribute method” for measuring purity of biopharmaceuticals and improving overall control strategy. AAPS Journal. 2017;20(1):7.
Rogers RS, Nightlinger NS, Livingston B, Campbell P, Bailey R, Balland A. Development of a quantitative mass spectrometry multi‐attribute method for characterization, quality control testing and disposition of biologics. mAbs. 2015;7(5):881–890.
Rogstad S, Faustino A, Ruth A, Keire D, Boyne M, Park J. A retrospective evaluation of the use of mass spectrometry in FDA biologics license applications. Journal of the American Society for Mass Spectrometry. 2017;28(5):786–794.
Rogstad S, Yan H, Wang X, Powers D, Brorson K, Damdinsuren B, Lee S. Multi‐attribute method for quality control of therapeutic proteins. Analytical Chemistry. 2019;91(22):14170–14177.
Ross DH, Xu LB. Determination of drugs and drug metabolites by ion mobility‐mass spectrometry: A review. Analytica Chimica Acta. 2021;1154:338270.
Roy J. Pharmaceutical impurities—A mini‐review. AAPS PharmSciTech. 2002;3(2):1–8.
Rudd PM, Dwek RA. Rapid, sensitive sequencing of oligosaccharides from glycoproteins. Current Opinion in Biotechnology. 1997;8(4):488–497.
Ruhaak LR, Zauner G, Huhn C, Bruggink C, Deelder AM, Wuhrer M. Glycan labeling strategies and their use in identification and quantification. Analytical and Bioanalytical Chemistry. 2010;397(8):3457–3481.
Sahin E, Weiss WF, Kroetsch AM, King KR, Kessler RK, Das TK, Roberts CJ. Aggregation and pH‐temperature phase behavior for aggregates of an IgG2 antibody. Journal of Pharmaceutical Sciences. 2012;101(5):1678–1687.
Sandra K, Steenbeke M, Vandenheede I, Vanhoenacker G, Sandra P. The versatility of heart‐cutting and comprehensive two‐dimensional liquid chromatography in monoclonal antibody clone selection. Journal of Chromatography A. 2017;1523:283–292.
Sandra K, Vandenheede I, Sandra P. Modern chromatographic and mass spectrometric techniques for protein biopharmaceutical characterization. Journal of Chromatography A. 2014;1335:81–103.
Sarrut M, Corgier A, Fekete S, Guillarme D, Lascoux D, Janin‐Bussat M‐C, Beck A, Heinisch S. Analysis of antibody‐drug conjugates by comprehensive on‐line two‐dimensional hydrophobic interaction chromatography x reversed phase liquid chromatography hyphenated to high resolution mass spectrometry. I−Optimization of separation conditions. Journal of Chromatography B‐Analytical Technologies in the Biomedical and Life Sciences. 2016;1032:103–111.
Saurina J, Sentellas S. Liquid chromatography coupled to mass spectrometry for metabolite profiling in the field of drug discovery. Expert Opinion on Drug Discovery. 2019;14(5):469–483.
Schaefer H, Chamrad DC, Marcus K, Reidegeld KA, Bluggel M, Meyer HE. Tryptic transpeptidation products observed in proteome analysis by liquid chromatography‐tandem mass spectrometry. Proteomics. 2005;5(4):846–852.
Schellinger AP, Stoll DR, Carr PW. High‐speed gradient elution reversed‐phase liquid chromatography of bases in buffered eluents. Part I. Retention repeatability and column re‐equilibration. Journal of Chromatography A. 2008a;1192(1):41–53.
Schellinger AP, Stoll DR, Carr PW. High‐speed gradient elution reversed‐phase liquid chromatography of bases in buffered eluents. Part II. Full equilibrium. Journal of Chromatography A. 2008b;1192(1):54–61.
Scott RPW. Solute–solvent interactions on the surface of reverse phases. Interactive characteristics of some short‐chain aliphatic moderators having different functional groups. Faraday Symposia of the Chemical Society. 1980;15:69–82.
Shabir GA. Validation of high‐performance liquid chromatography methods for pharmaceutical analysis: Understanding the differences and similarities between validation requirements of the US Food and Drug Administration, the US Pharmacopeia and the International Conference on Harmonization. Journal of Chromatography A. 2003;987(1):57–66.
Shamsi SA, Akter F. Capillary electrophoresis mass spectrometry: Developments and applications for enantioselective analysis from 2011‐2020. Molecules. 2022;27(13):4126.
Shi YH, Rhodes NR, Abdolvahabi A, Kohn T, Cook NP, Marti AA, Shaw BF. Deamidation of asparagine to aspartate destabilizes Cu, Zn superoxide dismutase, accelerates fibrillization, and mirrors ALS‐linked mutations. Journal of the American Chemical Society. 2013;135(42):15897–15908.
Shimizu A, Ohe T, Chiba M. A novel method for the determination of the site of glucuronidation by ion mobility spectrometry‐mass spectrometry. Drug Metabolism and Disposition. 2012;40(8):1456–1459.
Shou WZ, Naidong W. Simple means to alleviate sensitivity loss by trifluoroacetic acid (TFA) mobile phases in the hydrophilic interaction chromatography‐electrospray tandem mass spectrometric (HILIC‐ESI/MS/MS) bioanalysis of basic compounds. Journal of Chromatography B‐Analytical Technologies in the Biomedical and Life Sciences. 2005;825(2):186–192.
Shrivastava A, Joshi S, Guttman A, Rathore AS. N‐Glycosylation of monoclonal antibody therapeutics: A comprehensive review on significance and characterization. Analytica Chimica Acta. 2022;1209:339828.
Silver AB, Leonard EK, Gould JR, Spangler JB. Engineered antibody fusion proteins for targeted disease therapy. Trends in Pharmacological Sciences. 2021;42(12):1064–1081.
Sinclair AM, Elliott S. Glycoengineering: The effect of glycosylation on the properties of therapeutic proteins. Journal of Pharmaceutical Sciences. 2005;94(8):1626–1635.
Sisco E, Burns A, Schneider E, Bobka L, Ikpeama I. A template for the validation of DART‐MS for qualitative seized drugs analysis. Forensic Chemistry. 2022;29:100415.
Smoluch M, Mielczarek P, Silberring J. Plasma‐based ambient ionization mass spectrometry in bioanalytical sciences. Mass Spectrometry Reviews. 2016;35(1):22–34.
Sokolowska I, Mo J, Rahimi Pirkolachahi F, McVean C, Meijer LAT, Switzar L, Balog C, Lewis MJ, Hu P. Implementation of a high‐resolution liquid chromatography‐mass spectrometry method in quality control laboratories for release and stability testing of a commercial antibody product. Analytical Chemistry. 2020;92(3):2369–2373.
Sola RJ, Rodriguez‐Martinez JA, Griebenow K. Modulation of protein biophysical properties by chemical glycosylation: Biochemical insights and biomedical implications. Cellular and Molecular Life Sciences. 2007;64(16):2133–2152.
Song T, Ozcan S, Becker A, Lebrilla CB. In‐depth method for the characterization of glycosylation in manufactured recombinant monoclonal antibody drugs. Analytical Chemistry. 2014;86(12):5661–5666.
Srbek J, Klejdus B, Douša M, Břicháč J, Stasiak P, Reitmajer J, Nováková L. Direct analysis in real time—High resolution mass spectrometry as a valuable tool for the pharmaceutical drug development. Talanta. 2014;130:518–526.
Staub A, Giraud S, Saugy M, Rudaz S, Veuthey JL, Schappler J. CE‐ESI‐TOF/MS for human growth hormone analysis. Electrophoresis. 2010;31(2):388–395.
Staub A, Guillarme D, Schappler J, Veuthey JL, Rudaz S. Intact protein analysis in the biopharmaceutical field. Journal of Pharmaceutical and Biomedical Analysis. 2011;55(4):810–822.
Staub A, Rudaz S, Veuthey JL, Schappler J. Multiple injection technique for the determination and quantitation of insulin formulations by capillary electrophoresis and time‐of‐flight mass spectrometry. Journal of Chromatography A. 2010;1217(51):8041–8047.
Stepanova S, Kasicka V. Applications of capillary electromigration methods for separation and analysis of proteins (2017‐mid 2021)—A review. Analytica Chimica Acta. 2022;1209:339447.
Stoll D, Danforth J, Zhang K, Beck A. Characterization of therapeutic antibodies and related products by two‐dimensional liquid chromatography coupled with UV absorbance and mass spectrometric detection. Journal of Chromatography B‐Analytical Technologies in the Biomedical and Life Sciences. 2016;1032:51–60.
Stolz A, Jooß K, Höcker O, Römer J, Schlecht J, Neusüß C. Recent advances in capillary electrophoresis‐mass spectrometry: Instrumentation, methodology and applications. Electrophoresis. 2019;40(1):79–112.
Sturm RM, Jones BR, Mulvana DE, Lowes S. HRMS using a Q‐exactive series mass spectrometer for regulated quantitative bioanalysis: How, when, and why to implement. Bioanalysis. 2016;8(16):1709–1721.
Sun M, Liu DQ, Kord AS. A systematic method development strategy for determination of pharmaceutical genotoxic impurities. Organic Process Research & Development. 2010;14(4):977–985.
Switzar L, Giera M, Niessen WM. Protein digestion: An overview of the available techniques and recent developments. Journal of Proteome Research. 2013;12(3):1067–1077.
Szabo Z, Guttman A, Bones J, Shand RL, Meh D, Karger BL. Ultrasensitive capillary electrophoretic analysis of potentially immunogenic carbohydrate residues in biologics: Galactose‐alpha‐1,3‐galactose containing oligosaccharides. Molecular Pharmaceutics. 2012;9(6):1612–1619.
Szigeti M, Guttman A. Automated N‐glycosylation sequencing of biopharmaceuticals by capillary electrophoresis. Scientific Reports. 2017;7(1):11663.
Takáts Z, Wiseman JM, Gologan B, Cooks RG. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science. 2004;306(5695):471–473.
Tankiewicz M, Namieśnik J, Sawicki W. Analytical procedures for quality control of pharmaceuticals in terms of residual solvents content: Challenges and recent developments. Trends in Analytical Chemistry. 2016;80:328–344.
Tanner L, Haynes RK, Wiesner L. An in vitro ADME and in vivo pharmacokinetic study of novel TB‐active decoquinate derivatives. Frontiers in Pharmacology. 2019;10:120.
Tantipolphan R, Romeijn S, Engelsman J, Torosantucci R, Rasmussen T, Jiskoot W. Elution behavior of insulin on high‐performance size exclusion chromatography at neutral pH. Journal of Pharmaceutical and Biomedical Analysis. 2010;52(2):195–202.
Thakur D, Rejtar T, Karger BL, Washburn NJ, Bosques CJ, Gunay NS, Shriver Z, Venkataraman G. Profiling the glycoforms of the intact alpha subunit of recombinant human chorionic gonadotropin by high‐resolution capillary electrophoresis‐mass spectrometry. Analytical Chemistry. 2009;81(21):8900–8907.
Themelis T, Gotti R, Gatti R. A novel hydrophilic interaction liquid chromatography method for the determination of underivatized amino acids in alimentary supplements. Journal of Pharmaceutical and Biomedical Analysis. 2017;145:751–757.
Thompson TN. Early ADME in support of drug discovery: The role of metabolic stability studies. Current Drug Metabolism. 2000;1(3):215–241.
Thunig J, Hansen SH, Janfelt C. Analysis of secondary plant metabolites by indirect desorption electrospray ionization imaging mass spectrometry. Analytical Chemistry. 2011;83(9):3256–3259.
Toth CA, Kuklenyik Z, Jones JI, Parks BA, Gardner MS, Schieltz DM, Rees JC, Andrews ML, McWilliams LG, Pirkle JL, Barr JR. On‐column trypsin digestion coupled with LC‐MS/MS for quantification of apolipoproteins. Journal of Proteomics. 2017;150:258–267.
Townsend JA, Keener JE, Miller ZM, Prell JS, Marty MT. Imidazole derivatives improve charge reduction and stabilization for native mass spectrometry. Analytical Chemistry. 2019;91(22):14765–14772.
Tzur Y, Markovich A, Lichtenstein RG. A two‐dimensional array for simultaneous sequencing of N‐ and o‐glycans and their glycoforms on specific glycosylation sites. Journal of Proteome Research. 2008;7(3):1188–1198.
Urakami K, Higashi A, Umemoto K, Godo M. Matrix media selection for the determination of residual solvents in pharmaceuticals by static headspace gas chromatography. Journal of Chromatography A. 2004;1057(1–2):203–210.
USP–NF 2022; Issue 1.
Valeja SG, Tipton JD, Emmett MR, Marshall AG. New reagents for enhanced liquid chromatographic separation and charging of intact protein ions for electrospray ionization mass spectrometry. Analytical Chemistry. 2010;82(17):7515–7519.
Valliere‐Douglass JF, McFee WA, Salas‐Solano O. Native intact mass determination of antibodies conjugated with monomethyl auristatin E and F at interchain cysteine residues. Analytical Chemistry. 2012;84(6):2843–2849.
Varadi C, Lew C, Guttman A. Rapid magnetic bead‐based sample preparation for automated and high throughput N‐glycan analysis of therapeutic antibodies. Analytical Chemistry. 2014;86(12):5682–5687.
Vas G, Vékey K. Solid‐phase microextraction: A powerful sample preparation tool prior to mass spectrometric analysis. Journal of Mass Spectrometry. 2004;39(3):233–254.
Vazquez‐Rey M, Lang DA. Aggregates in monoclonal antibody manufacturing processes. Biotechnology andl Bioengineering. 2011;108(7):1494–1508.
Verscheure L, Oosterlynck M, Cerdobbel A, Sandra P, Lynen F, Sandra K. Middle‐up characterization of monoclonal antibodies by online reduction liquid chromatography‐mass spectrometry. Journal of Chromatography A. 2021;1637:461808.
Verscheure L, Vanhoenacker G, Schneider S, Merchiers T, Storms J, Sandra P, Lynen F, Sandra K. 3D‐LC‐MS with (2)D multimethod option for fully automated assessment of multiple attributes of monoclonal antibodies directly from cell culture supernatants. Analytical Chemistry. 2022;94(17):6502–6511.
Viaene J, Lanckmans K, Dejaegher B, Mangelings D, Vander Heyden Y. Comparison of a triple‐quadrupole and a quadrupole time‐of‐flight mass analyzer to quantify 16 opioids in human plasma. Journal of Pharmaceutical and Biomedical Analysis. 2016;127:49–59.
Vilches AP, Norstrom SH, Bylund D. Direct analysis of free amino acids by mixed‐mode chromatography with tandem mass spectrometry. Journal of Separation Science. 2017;40(7):1482–1492.
Wafer L, Kloczewiak M, Luo Y. Quantifying trace amounts of aggregates in biopharmaceuticals using analytical ultracentrifugation sedimentation velocity: Bayesian analyses and F statistics. AAPS Journal. 2016;18(4):849–860.
Wagh A, Song H, Zeng M, Tao L, Das TK. Challenges and new frontiers in analytical characterization of antibody‐drug conjugates. mAbs. 2018;10(2):222–243.
Wagner BM. Tools to improve protein separations. LC‐GC North America 2015;33:856–865.
Wagner‐Rousset E, Fekete S, Morel‐Chevillet L, Colas O, Corvaïa N, Cianférani S, Guillarme D, Beck A. Development of a fast workflow to screen the charge variants of therapeutic antibodies. Journal of Chromatography A. 2017;1498:147–154.
Waitt GM, Xu R, Wisely GB, Williams JD. Automated in‐line gel filtration for native state mass spectrometry. Journal of the American Society for Mass Spectrometry. 2008;19(2):239–245.
Wakankar A, Chen Y, Gokarn Y, Jacobson FS. Analytical methods for physicochemical characterization of antibody‐drug conjugates. mAbs. 2011;3(2):161–172.
Walsh G. Post‐translational modifications of protein biopharmaceuticals. Drug Discovery Today. 2010;15(17–18):773–780.
Walsh SJ, Omarjee S, Galloway W, Kwan TT‐L, Sore HF, Parker JS, Hyvönen M, Carroll JS, Spring DR. A general approach for the site‐selective modification of native proteins, enabling the generation of stable and functional antibody‐drug conjugates. Chemical Science. 2019;10(3):694–700.
Wang C, Chen S, Brailsford JA, Yamniuk AP, Tymiak AA, Zhang Y. Characterization and quantification of histidine degradation in therapeutic protein formulations by size exclusion‐hydrophilic interaction two dimensional‐liquid chromatography with stable‐isotope labeling mass spectrometry. Journal of Chromatography A. 2015;1426:133–139.
Wang HL, Levi MS, Del Grosso AV, McCormick WM, Bhattacharyya L. An improved size exclusion‐HPLC method for molecular size distribution analysis of immunoglobulin G using sodium perchlorate in the eluent. Journal of Pharmaceutical and Biomedical Analysis. 2017;138:330–343.
Wang M, Wang D, Gao C, Li X, Sha L, Zhao Q, Gao H, Wu Z. Pharmacokinetic and tissue distribution studies of cassane diterpenoids, in rats through an ultra‐high‐performance liquid chromatography‐Q exactive hybrid quadrupole‐Orbitrap high‐resolution accurate mass spectrometry. Biomedical Chromatography. 2019;33(10):e4610.
Wang S, Xing T, Liu AP, He Z, Yan Y, Daly TJ, Li N. Simple approach for improved LC‐MS analysis of protein biopharmaceuticals via modification of desolvation gas. Analytical Chemistry. 2019;91(4):3156–3162.
Wang T, Chu L, Li W, Lawson K, Apostol I, Eris T. Application of a quantitative LC‐MS multiattribute method for monitoring site‐specific glycan heterogeneity on a monoclonal antibody containing two N‐linked glycosylation sites. Analytical Chemistry. 2017;89(6):3562–3567.
Wang W, Roberts CJ. Protein aggregation—Mechanisms, detection, and control. International Journal of Pharmaceutics. 2018;550(1–2):251–268.
Wang Y, Zhao L, Li T, Yang W, Li Q, Sun L, Ding L. Pharmacokinetics and tissue distribution study of clevidipine and its primary metabolite H152/81 in rats. Biomedical Chromatography. 2018;32(2):e4048.
Wei B, Han G, Tang J, Sandoval W, Zhang YT. Native hydrophobic interaction chromatography hyphenated to mass spectrometry for characterization of monoclonal antibody minor variants. Analytical Chemistry. 2019;91(24):15360–15364.
Wen B, Zhu M. Applications of mass spectrometry in drug metabolism: 50 years of progress. Drug Metabolism Reviews. 2015;47(1):71–87.
Weston DJ. Ambient ionization mass spectrometry: Current understanding of mechanistic theory; analytical performance and application areas. Analyst. 2010;135(4):661–668.
WHO Information Note: Update on Nitrosamine Impurities. 2019; https://www.who.int/medicines/publications/drugalerts/InformationNote_Nitrosamine-impurities/en/. Accessed 27.3.2020.
Wichitnithad W, Nantaphol S, Vicheantawatchai P, Kiatkumjorn T, Wangkangwan W, Rojsitthisak P. Development and validation of liquid chromatography‐tandem mass spectrometry method for simple analysis of sumatriptan and its an application in bioequivalence study. Pharmaceuticals. 2020;13(2):21.
Wichitnithad W, Sudtanon O, Srisunak P, Cheewatanakornkool K, Nantaphol S, Rojsitthisak P. Development of a sensitive headspace gas chromatography–mass spectrometry method for the simultaneous determination of nitrosamines in Losartan active pharmaceutical ingredients. ACS Omega. 2021;6(16):11048–11058.
Williams A, Read EK, Agarabi CD, Lute S, Brorson KA. Automated 2D‐HPLC method for characterization of protein aggregation with in‐line fraction collection device. Journal of Chromatography B‐Analytical Technologies in the Biomedical and Life Sciences. 2017;1046:122–130.
Wiseman JM, Puolitaival SM, Takáts Z, Cooks RG, Caprioli RM. Mass spectrometric profiling of intact biological tissue by using desorption electrospray ionization. Angewandte Chemie International Edition. 2005;44(43):7094–7097.
Woods RJ, Xie MH, Von Kreudenstein TS, Ng GY, Dixit SB. LC‐MS characterization and purity assessment of a prototype bispecific antibody. mAbs. 2013;5(5):711–722.
Wysocki J, Dong MW. Ultraviolet detectors: Perspectives, principles, and practice. LCGC North America. 2019;37(10):750–759.
Xu W, Jimenez RB, Mowery R, Luo H, Cao M, Agarwal N, Ramos I, Wang X, Wang J. A quadrupole Dalton‐based multi‐attribute method for product characterization, process development, and quality control of therapeutic proteins. mAbs. 2017;9(7):1186–1196.
Yan Y, Xing T, Wang S, Daly TJ, Li N. Coupling mixed‐mode size exclusion chromatography with native mass spectrometry for sensitive detection and quantitation of homodimer impurities in bispecific IgG. Analytical Chemistry. 2019;91(17):11417–11424.
Yang J, Marzan TA, Ye W, Sommers CD, Rodriguez JD, Keire DA. A cautionary tale: Quantitative LC‐HRMS analytical procedures for the analysis of N‐nitrosodimethylamine in metformin. The AAPS Journal. 2020;22(4):89.
Yang Y, Deng J. Analysis of pharmaceutical products and herbal medicines using ambient mass spectrometry. Trends in Analytical Chemistry. 2016;82:68–88.
Yaripour S, Mohammadi A, Esfanjani I, Walker RB, Nojavan S. Quantitation of zolpidem in biological fluids by electro‐driven microextraction combined with HPLC‐UV analysis.EXCLI Journal Experimental and Clinical Sciences. 2018;17:349–361.
Yates, 3rd JR, Speicher S, Griffin PR, Hunkapiller T. Peptide mass maps: A highly informative approach to protein identification. Analytical Biochemistry. 1993;214(2):397–408.
Zhang L, Luo S, Zhang B. Glycan analysis of therapeutic glycoproteins. mAbs. 2016;8(2):205–215.
Zhang X, Jia B, Huang K, Hu B, Chen R, Chen H. Tracing origins of complex pharmaceutical preparations using surface desorption atmospheric pressure chemical ionization mass spectrometry. Analytical Chemistry. 2010;82(19):8060–8070.
Zhang X, Kew K, Reisdorph R, Sartain M, Powell R, Armstrong M, Quinn K, Cruickshank‐Quinn C, Walmsley S, Bokatzian S, Darland E, Rain M, Imatani K, Reisdorph N. Performance of a high‐pressure liquid chromatography‐ion mobility‐mass spectrometry system for metabolic profiling. Analytical Chemistry. 2017;89(12):6384–6391.
Zhang Y, Guo J. Characterization and QC of biopharmaceuticals by MS‐based ‘multi‐attribute method’: Advantages and challenges. Bioanalysis. 2017;9(6):499–502.
Zhang Z, Pan H, Chen X. Mass spectrometry for structural characterization of therapeutic antibodies. Mass Spectrometry Reviews. 2009;28(1):147–176.
Zhang Z, Shah B, Guan X. Reliable LC‐MS multiattribute method for biotherapeutics by run‐time response calibration. Analytical Chemistry. 2019;91(8):5252–5260.
Zhou YP, Liu AJ, Jia RR, Wu M, Wu N, Liu C, Han Z, Hu H, Wang H, He Q. Determination of isosorbide‐5‐mononitrate in human plasma by high‐performance liquid chromatography‐tandem mass spectrometry and its application to a bioequivalence study. Journal of Analytical Methods in Chemistry. 2020;2020:1753265.
Zhou Z, Zhang J, Xing J, Bai Y, Liao Y, Liu H. Membrane‐based continuous remover of trifluoroacetic acid in mobile phase for LC‐ESI‐MS analysis of small molecules and proteins. Journal of the American Society for Mass Spectrometry. 2012;23(7):1289–1292.
Zhu M, Zhang H, Humphreys WG. Drug metabolite profiling and identification by high‐resolution mass spectrometry. Journal of Biological Chemistry. 2011;286(29):25419–25425.