Influence of Asafoetida Extract on the Virulence of the Entomopathogenic Nematode Steinernema carpocapsae and Its Symbiotic Bacterium Xenorhabdus nematophila in the Host Pyrrhocoris apterus
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
8J21FR021
Ministry of Education Youth and Sports
RVO: 60077344
Czech Academy of Sciences
GACR 22-185975
Czech Science Foundation
PubMed
37512851
PubMed Central
PMC10385281
DOI
10.3390/microorganisms11071678
PII: microorganisms11071678
Knihovny.cz E-resources
- Keywords
- P. apterus, Steinernema carpocapsae, Xenorhabdus nematophila, asafoetida, immunity, phenol oxidase (PO), pro-phenol oxidase (PPO), virulence,
- Publication type
- Journal Article MeSH
Nematode-microbe symbiosis plays a key role in determining pathogenesis against pests. The modulation of symbiotic bacteria may affect the virulence of entomopathogenic nematodes (EPNs) and the biological management of pests. We tested the influence of asafoetida (ASF) extract on the virulence of Steinernema carpocapsae and its symbiotic bacterium, Xenorhabdus nematophila, in Pyrrhocoris apterus. A total of 100 mg of ASF killed 30% of EPNs in 48 h, while P. apterus remained unaffected. The EPNs pre-treated with 100 mg of ASF influenced P. apterus's mortality by 24-91.4% during a period of 24 to 72 h. The topical application of ASF acted as a deterrent to S. carpocapsae, lowering host invasion to 70% and delaying infectivity with 30% mortality for 168 h. Interestingly, Steinernema's symbiotic bacterium, Xenorhabdus, remained unaffected by ASF. An in vitro turbidity test containing 100 mg of ASF in a medium increased the growth rate of Xenorhabdus compared to a control. A disc diffusion assay confirmed the non-susceptibility of Xenorhabdus to ASF compared to a positive control, streptomycin. Pro-phenol oxidase (PPO) and phenol oxidase (PO) upregulation showed that ASF influences immunity, while EPN/ASF showed a combined immunomodulatory effect in P. apterus. We report that ASF modulated the virulence of S. carpocapsae but not that of its symbiotic bacterium, X. nematophila, against P. apterus.
See more in PubMed
Brivio M.F., Mastore M. Nematobacterial Complexes and Insect Hosts: Different Weapons for the Same War. Insects. 2018;9:117. doi: 10.3390/insects9030117. PubMed DOI PMC
Kim Y., Ji D., Cho S., Park Y. Two Groups of Entomopathogenic Bacteria, Photorhabdus and Xenorhabdus, Share an Inhibitory Action against Phospholipase A2 to Induce Host Immunodepression. J. Invertebr. Pathol. 2005;89:258–264. doi: 10.1016/j.jip.2005.05.001. PubMed DOI
Elbrense H., Elmasry A.M.A., Seleiman M.F., Al-Harbi M.S., Abd El-Raheem A.M. Can Symbiotic Bacteria (Xenorhabdus and Photorhabdus) Be More Efficient than Their Entomopathogenic Nematodes against Pieris rapae and Pentodon algerinus Larvae? Biology. 2021;10:999. doi: 10.3390/biology10100999. PubMed DOI PMC
Garriga A., Mastore M., Morton A., Garcia del Pino F., Brivio M.F. Immune Response of Drosophila suzukii Larvae to Infection with the Nematobacterial Complex Steinernema carpocapsae–Xenorhabdus nematophila. Insects. 2020;11:210. doi: 10.3390/insects11040210. PubMed DOI PMC
Periago M.V., Bethony J.M. Hookworm Virulence Factors: Making the Most of the Host. Microbes Infect. 2012;14:1451–1464. doi: 10.1016/j.micinf.2012.09.002. PubMed DOI
Simões N., Caldas C., Rosa J.S., Bonifassi E., Laumond C. Pathogenicity Caused by High Virulent and Low Virulent Strains of Steinernema Carpocapsae to Galleria Mellonella. J. Invertebr. Pathol. 2000;75:47–54. doi: 10.1006/jipa.1999.4899. PubMed DOI
Shaik H.A., Mishra A., Hussein H.M., Skoková Habuštová O., Sehnal F. Competitive interactions between entomopatho genic nematodes and parasitoid venom. J. Appl. Entomol. 2020;144:481–490. doi: 10.1111/jen.12750. DOI
Zhang X., Machado R.A., Van Doan C., Arce C.C., Hu L., Robert C.A. Entomopathogenic Nematodes Increase Predation Success by Inducing Cadaver Volatiles That Attract Healthy Herbivores. eLife. 2019;8:e46668. doi: 10.7554/eLife.46668. PubMed DOI PMC
Lu D., Macchietto M., Chang D., Barros M.M., Baldwin J., Mortazavi A., Dillman A.R. Activated Entomopathogenic Nematode Infective Juveniles Release Lethal Venom Proteins. PLoS Pathog. 2017;13:e1006302. doi: 10.1371/journal.ppat.1006302. PubMed DOI PMC
Sisay B., Tefera T., Wakgari M., Ayalew G., Mendesil E. The Efficacy of Selected Synthetic Insecticides and Botanicals against Fall Armyworm, Spodoptera frugiperda, in Maize. Insects. 2019;10:45. doi: 10.3390/insects10020045. PubMed DOI PMC
Mishra A., Shaik H.A., Sinha R.K., Shah B.R. Andrographolide: A Herbal-Chemosynthetic Approach for Enhancing Immunity, Combating Viral Infections, and Its Implication on Human Health. Molecules. 2021;26:7036. doi: 10.3390/molecules26227036. PubMed DOI PMC
Filgueiras C.C., Willett D.S. Non-Lethal Effects of Entomopathogenic Nematode Infection. Sci. Rep. 2021;11:17090. doi: 10.1038/s41598-021-96270-2. PubMed DOI PMC
Shakeri M. Proceeding on Evaluation of Finding and Current Problems Associated with Spectrobates Ceratoniae Management in Pomegranate. Ministry of Jihad-e-Agriculture, Organization of Research and Education; Tehran, Iran: 2004. A review on investigations on pomegranate neck worm in Iran; pp. 20–45.
Noonari A.M., Abro G.H., Khuhro R.D., Buriro A.S. Efficacy of biopesticides for management of sucking insect pests of cotton, Gossipium hirsutum (L.) J. Basic Appl. Sci. 2016;12:306–313.
Shaik H.A., Mishra A., Sehnal F. Silk recycling in larvae of the wax moth, galleria mellonella (lepidoptera: Pyralidae) Eur. J. Entomol. 2017;114:61–65. doi: 10.14411/eje.2017.009. DOI
El Deeb H.K., Al Khadrawy F.M., Abd El-Hameid A.K. Inhibitory Effect of Ferula asafoetida L. (Umbelliferae) on Blastocystis Sp. Subtype 3 Growth In Vitro. Parasitol. Res. 2012;111:1213–1221. doi: 10.1007/s00436-012-2955-1. PubMed DOI
Gautam U.K., Bohatá A., Shaik H.A., Zemek R., Kodrík D. Adipokinetic Hormone Promotes Infection with Entomopathogenic Fungus Isaria Fumosorosea in the Cockroach Periplaneta Americana. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020;229:108677. doi: 10.1016/j.cbpc.2019.108677. PubMed DOI
Seal D.R., Baniya A.B., Dyrdahl-Young R., Hochmuth R.C., Leppla N.C., Fenneman D.K., Broughton R.D.T., DiGennaro P. Wireworm (Coleoptera: Elateridae) Species Composition and Management in Sweet Potato Grown in North Florida Using Chemical Insecticides and Entomopathogenic Nematodes. Environ. Entomol. 2020;49:1415–1426. doi: 10.1093/ee/nvaa113. PubMed DOI
Farhadi A., Youssefi M.R., Abouhosseini Tabari M. Evaluation of the anticestode and antinematode effects of the methanol extract of Ferula asafoetida on experimentally infected rats. J. Babol Univ. Med. Sci. 2016;18:47–51.
Tavassoli M., Jalilzadeh-Amin G., Fard V.R.B., Esfandiarpour R. The In Vitro Effect of Ferula asafoetida and Allium sativum Extracts on Strongylus spp. Ann. Parasitol. 2018;64:59–63. PubMed
Baloch G.N., Tariq S., Ehteshamul-Haque S., Athar M., Sultana V., Ara J. Management of Root Diseases of Eggplant and Watermelon with the Application of Asafoetida and Seaweeds. J. Appl. Bot. Food Qual. 2013;86:138–142. doi: 10.5073/JABFQ.2013.086.019. DOI
Gautam U.K., Hlávková D., Shaik H.A., Karaca I., Karaca G., Sezen K., Kodrík D. Adipokinetic Hormones Enhance the Efficacy of the Entomopathogenic Fungus Isaria fumosorosea in Model and Pest Insects. Pathogens. 2020;9:801. doi: 10.3390/pathogens9100801. PubMed DOI PMC
Kaya H.K., Stock S.P. Manual of Techniques in Insect Pathology. Academic Press; Cambridge, MA, USA: 1997. Chapter VI—Techniques in insect nematology.
Shaik H.A., Mishra A., Sehadová H., Kodrík D. Responses of Sericotropin to Toxic and Pathogenic Challenges: Possible Role in Defense of the Wax Moth Galleria Mellonella. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2020;227:108633. doi: 10.1016/j.cbpc.2019.108633. PubMed DOI
Panwar R., Rana S., Dhawan D.K., Prasad K.K. Chemopreventive Efficacy of Different Doses of Ferula asafoetida Oleo-Gum-Resin against 1,2-Dimethylhydrazine (DMH) Induced Rat Colon Carcinogenesis. J. Phytopharm. 2016;4:282–286. doi: 10.31254/phyto.2015.4602. DOI
Abd-Elgawad M.M.M. Optimizing sampling and extraction methods for plant-parasitic and entomopathogenic nematodes. Plants. 2021;10:629. doi: 10.3390/plants10040629. PubMed DOI PMC
Wouts W.M. Mass Production of the Entomogenous Nematode Heterorhabditis Heliothidis (Nematoda: Heterorhabditidae) on Artificial Media. J. Nematol. 1981;13:467–469. PubMed PMC
Mahar A.N., Munir M., Elawad S., Gowen S.R., Hague N.G.M. Pathogenicity of Bacterium, Xenorhabdus Nematophila Isolated from Entomopathogenic Nematode (Steinernema Carpocapsae) and Its Secretion against Galleria Mellonella Larvae. J. Zhejiang Univ. Sci. B. 2005;6:457–463. doi: 10.1631/jzus.2005.B0457. PubMed DOI PMC
Cornet S., Franceschi N., Bollache L., Rigaud T., Sorci G. Variation and Covariation in Infectivity, Virulence and Immunodepression in the Host-Parasite Association Gammarus Pulex-Pomphorhynchus Laevis. Proc. Biol. Sci. 2009;276:4229–4236. doi: 10.1098/rspb.2009.1299. PubMed DOI PMC
Stoscheck C.M. Quantitation of Protein. Methods Enzymol. 1990;182:50–68. PubMed
Golden J.W., Riddle D.L. A Pheromone Influences Larval Development in the Nematode Caenorhabditis Elegans. Science. 1982;218:578–580. doi: 10.1126/science.6896933. PubMed DOI
Tsang W.Y., Sayles L.C., Grad L.I., Pilgrim D.B., Lemire B.D. Mitochondrial Respiratory Chain Deficiency in Caenorhabditis Elegans Results in Developmental Arrest and Increased Life Span. J. Biol. Chem. 2001;276:32240–32246. doi: 10.1074/jbc.M103999200. PubMed DOI
Rea S.L., Ventura N., Johnson T.E. Relationship between Mitochondrial Electron Transport Chain Dysfunction, Development, and Life Extension in Caenorhabditis Elegans. PLoS Biol. 2007;5:e259. doi: 10.1371/journal.pbio.0050259. PubMed DOI PMC
Iranshahi M., Amin G.R., Amini M., Shafiee A. Sulfur Containing Derivatives from Ferula Persica Var. Latisecta. Phytochemistry. 2003;63:965–966. doi: 10.1016/S0031-9422(03)00296-6. PubMed DOI
Sahebkar A., Iranshahi M. Biological Activities of Essential Oils from the Genus Ferula (Apiaceae) Asian Biomed. 2010;4:835–847. doi: 10.2478/abm-2010-0110. DOI
Zuckerman B.M. Hypotheses and Possibilities of Intervention in Nematode Chemoresponses. J. Nematol. 1983;15:173–182. PubMed PMC
Zuckerman B.M., Jansson H.-B. Nematode Chemotaxis and Possible Mechanisms of Host/prey Recognition. Annu. Rev. Phytopathol. 1984;22:95–113. doi: 10.1146/annurev.py.22.090184.000523. DOI
Butcher R.A. Decoding chemical communication in nematodes. Nat. Prod. Rep. 2017;34:472–477. doi: 10.1039/C7NP00007C. PubMed DOI PMC
Haseeb M.A., Fried B. Chemical Communication in Helminths. Adv. Parasitol. 1988;27:169–207. PubMed
Singh C., Parmar R. Antimicrobial Activity of Resin of Asafoetida (Hing) against Certain Human Pathogenic Bacteria. Adv. Biores. 2018;9:161–164.
Divya K., Ramalakshmi K., Murthy P.S., Jagan Mohan Rao L. Volatile Oils from Ferula asafoetida Varieties and Their Antimicrobial Activity. Lebenson. Wiss. Technol. 2014;59:774–779. doi: 10.1016/j.lwt.2014.07.013. DOI
Mishra N., Behal K.K. Antimicrobial activity of some spices against selected microbes. Int. J. Pharm. Pharm. Sci. 2010;2:187–196.
Moghadam D.H., Sani A.M., Sangatash M.M. Effect of Oleo-Gum Resin of Ferula asafoetida on Growth of Some Food and Crop Contaminating Microbes. Int. J. Adv. Biol. Biomed. Res. 2014;2:2788–2794.