Contextual Cluster-Based Glow-Worm Swarm Optimization (GSO) Coupled Wireless Sensor Networks for Smart Cities
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SP2023/074
Application of Machine and Process Control Advanced Methods
PubMed
37514936
PubMed Central
PMC10384778
DOI
10.3390/s23146639
PII: s23146639
Knihovny.cz E-zdroje
- Klíčová slova
- cluster head, glow-worm, multi-parameters, optimization and heterogeneous, retransmission ratio,
- Publikační typ
- časopisecké články MeSH
The cluster technique involves the creation of clusters and the selection of a cluster head (CH), which connects sensor nodes, known as cluster members (CM), to the CH. The CH receives data from the CM and collects data from sensor nodes, removing unnecessary data to conserve energy. It compresses the data and transmits them to base stations through multi-hop to reduce network load. Since CMs only communicate with their CH and have a limited range, they avoid redundant information. However, the CH's routing, compression, and aggregation functions consume power quickly compared to other protocols, like TPGF, LQEAR, MPRM, and P-LQCLR. To address energy usage in wireless sensor networks (WSNs), heterogeneous high-power nodes (HPN) are used to balance energy consumption. CHs close to the base station require effective algorithms for improvement. The cluster-based glow-worm optimization technique utilizes random clustering, distributed cluster leader selection, and link-based routing. The cluster head routes data to the next group leader, balancing energy utilization in the WSN. This algorithm reduces energy consumption through multi-hop communication, cluster construction, and cluster head election. The glow-worm optimization technique allows for faster convergence and improved multi-parameter selection. By combining these methods, a new routing scheme is proposed to extend the network's lifetime and balance energy in various environments. However, the proposed model consumes more energy than TPGF, and other protocols for packets with 0 or 1 retransmission count in a 260-node network. This is mainly due to the short INFO packets during the neighbor discovery period and the increased hop count of the proposed derived pathways. Herein, simulations are conducted to evaluate the technique's throughput and energy efficiency.
Department of Biosciences Saveetha School of Engineering Saveetha Nagar Thandalam 602105 India
Department of Computer Science Aligarh Muslim University Aligarh 202001 India
Department of Computer Science and Engineering Sharnbasva University Kalaburagi 585105 India
Department of R and D Bond Marine Consultancy London EC1V 2NX UK
School of Computing Mohan Babu University Tirupati 517102 India
Zobrazit více v PubMed
Chen J., Wang Q., Peng W., Xu H., Li X., Xu W. Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Trans. Intell. Transp. Syst. 2022;23:18855–18863. doi: 10.1109/TITS.2022.3161977. DOI
Li B., Zhang M., Rong Y., Han Z. Transceiver optimization for wireless powered time-division duplex MU-MIMO systems: Non-robust and robust designs. IEEE Trans. Wirel. Commun. 2021;21:4594–4607. doi: 10.1109/TWC.2021.3131595. DOI
Huang C., Han Z., Li M., Wang X., Zhao W. Sentiment evolution with interaction levels in blended learning environments: Using learning analytics and epistemic network analysis. Australas. J. Educ. Technol. 2021;37:81–95. doi: 10.14742/ajet.6749. DOI
Ghaffari A. An Energy Efficient Routing Protocol for Wireless Sensor Networks using A-star Algorithm. J. Appl. Res. 2014;12:815–822. doi: 10.1016/S1665-6423(14)70097-5. DOI
Mukherjee S., Amin R., Biswas G.P. Design of Routing Protocol for Multi-Sink Based Wireless Sensor Networks. J. Wirel. Netw. 2019;25:4331–4347. doi: 10.1007/s11276-019-02095-3. DOI
Jiang H., Xiao Z., Li Z., Xu J., Zeng F., Wang D. An Energy-Efficient Framework for Internet of Things Underlaying Heterogeneous Small Cell Networks. IEEE Trans. Mob. Comput. 2022;21:31–43. doi: 10.1109/TMC.2020.3005908. DOI
El-Fouly F.H., Ramadan R.A. Energy Efficient Environment-Aware Fusion Based Reliable Routing in Wireless Sensor Networks. IEEE Access. 2020;8:112145–112159. doi: 10.1109/ACCESS.2020.3003155. DOI
El-Fouly F.H., Ramadan R.A. Real-Time Energy-Efficient Reliable Traffic Aware Routing for Industrial Wireless Sensor Networks. IEEE Access. 2020;8:58130–58145. doi: 10.1109/ACCESS.2020.2980682. DOI
Chen Y., Zhu L., Hu Z., Chen S., Zheng X. Risk Propagation in Multilayer Heterogeneous Network of Coupled System of Large Engineering Project. J. Manag. Eng. 2022;38:4022003. doi: 10.1061/(ASCE)ME.1943-5479.0001022. DOI
Zhang W., Liu Y., Han G., Feng Y., Zhao Y. An Energy Efficient and QoS Aware Routing Algorithm Based on Data Classification for Industrial Wireless Sensor Networks. IEEE Access. 2018;6:46495–46504. doi: 10.1109/ACCESS.2018.2866165. DOI
Tavallaie O., Naji H.R., Sabaei M., Arastouie N.R.-T., Aware E. Routing for Industrial Wireless Sensor Networks. Wireless Pers. Commun. 2017;95:4601–4621. doi: 10.1007/s11277-017-4109-3. DOI
Liu G. Data Collection in MI-Assisted Wireless Powered Underground Sensor Networks: Directions, Recent Advances, and Challenges. IEEE Commun. Mag. 2021;59:132–138. doi: 10.1109/MCOM.001.2000921. DOI
Chen S., Huang Q., Zhang Y., Li X. Double Sink Energy Hole Avoidance Strategy for Wireless Sensor Network. EURASIP J. Wirel. Commun. Netw. 2020;2020:226. doi: 10.1186/s13638-020-01837-8. DOI
Ni Q., Guo J., Wu W., Wang H. Influence-Based Community Partition with Sandwich Method for Social Networks. IEEE Trans. Comput. Soc. Syst. 2022;10:819–830. doi: 10.1109/TCSS.2022.3148411. DOI
Fu X., Yang Y., Postolache O. Sustainable Multipath Routing Protocol for Multi-Sink Wireless Sensor Networks in Harsh Environments. IEEE Trans. Sustain. Comput. 2020;6:168–181. doi: 10.1109/TSUSC.2020.2976096. DOI
Shi Y., Hu J., Wu Y., Ghosh B.K. Intermittent output tracking control of heterogeneous multi-agent systems over wide-area clustered communication networks. Nonlinear Anal. Hybrid Syst. 2023;50:101387. doi: 10.1016/j.nahs.2023.101387. DOI
Li D., Ge S.S., Lee T.H. Fixed-Time-Synchronized Consensus Control of Multiagent Systems. IEEE Trans. Control Netw. Syst. 2021;8:89–98. doi: 10.1109/TCNS.2020.3034523. DOI
Fu X., Fortino G., Pace P., Aloi G., Li W. Environment-fusion multipath routing protocol for wireless sensor networks. Inf. Fusion. 2020;53:4–19. doi: 10.1016/j.inffus.2019.06.001. DOI
Rajendran S., N. G., Čep R., R. C. N., Pal S., Kalita K. A conceptual comparison of six nature-inspired metaheuristic algorithms in process optimization. Processes. 2022;10:197. doi: 10.3390/pr10020197. DOI
Shankar R., Ganesh N., Čep R., Narayanan R.C., Pal S., Kalita K. Hybridized Particle Swarm—Gravitational Search Algorithm for Process Optimization. Processes. 2022;10:616. doi: 10.3390/pr10030616. DOI
Joshi M., Kalita K., Jangir P., Ahmadianfar I., Chakraborty S. A Conceptual Comparison of Dragonfly Algorithm Variants for CEC-2021 Global Optimization Problems. Arab. J. Sci. Eng. 2022;48:1563–1593. doi: 10.1007/s13369-022-06880-9. DOI
McCune R., Madey G. Control of Artifial Swarms with DDDAS. Procedia Comput. Sci. 2014;29:1171–1181. doi: 10.1016/j.procs.2014.05.105. DOI
Nayyar A., Singh R. Ant Colony Optimization (ACO) based Routing Protocols for Wireless Sensor Networks: A survey. Int. J. Adv. 2017;8:148–155. doi: 10.14569/IJACSA.2017.080220. DOI
Zhong Q., Han S., Shi K., Zhong S., Kwon O.-M. Co-Design of Adaptive Memory Event-Triggered Mechanism and Aperiodic Intermittent Controller for Nonlinear Networked Control Systems. IEEE Trans. Circuits Syst. II Express Briefs. 2022;69:4979–4983. doi: 10.1109/TCSII.2022.3188036. DOI
Zenggang X., Mingyang Z., Xuemin Z., Sanyuan Z., Fang X., Xiaochao Z., Yunyun W., Xiang L. Social Similarity Routing Algorithm based on Socially Aware Networks in the Big Data Environment. J. Signal Process. Syst. 2022;94:1253–1267. doi: 10.1007/s11265-022-01790-3. DOI
Xiong Z., Li X., Zhang X., Deng M., Xu F., Zhou B., Zeng M. A Comprehensive Confirmation-based Selfish Node Detection Algorithm for Socially Aware Networks. J. Signal Process. Syst. 2023:1–19. doi: 10.1007/s11265-023-01868-6. DOI
Li B., Tan Y., Wu A.-G., Duan G.-R. A Distributionally Robust Optimization Based Method for Stochastic Model Predictive Control. IEEE Trans. Autom. Control. 2021;67:5762–5776. doi: 10.1109/TAC.2021.3124750. DOI
Mottola L., Picco G.P. MUSTER: Adaptive Energy-Aware Multisink Routing in Wireless Sensor Networks. IEEE Trans. Mob. Comput. 2010;10:1694–1709. doi: 10.1109/TMC.2010.250. DOI
Tan D.D., Kim D.-S. Dynamic traffic-aware routing algorithm for multi-sink wireless sensor networks. Wirel. Networks. 2013;20:1239–1250. doi: 10.1007/s11276-013-0672-z. DOI
Cao K., Ding H., Li W., Lv L., Gao M., Gong F., Wang B. On the Ergodic Secrecy Capacity of Intelligent Reflecting Surface Aided Wireless Powered Communication Systems. IEEE Wirel. Commun. Lett. 2022;11:2275–2279. doi: 10.1109/LWC.2022.3199593. DOI
Cao B., Zhao J., Gu Y., Fan S., Yang P. Security-Aware Industrial Wireless Sensor Network Deployment Optimization. IEEE Trans. Ind. Inform. 2020;16:5309–5316. doi: 10.1109/TII.2019.2961340. DOI
Wang Z., Zhao D., Guan Y. Flexible-constrained time-variant hybrid reliability-based design optimization. Struct. Multidiscip. Optim. 2023;66:89. doi: 10.1007/s00158-023-03550-8. DOI
Tshiamo S., Yim F.H., Misfa S. Energy-efficient 5G cloud RAN with virtual BBU server consolidation and base station sleeping. Comput. Netw. 2020;177:2.
Muhammad K.S., Luca R., Stefan W., Mohamad A. ML-Based Massive MIMO Channel Prediction: Does It Work on Real-World Data? IEEE Wirel. Commun. Lett. 2022;11:811–815.
Li Z., Kong Y., Jiang C. A Transfer Double Deep Q Network Based DDoS Detection Method for Internet of Vehicles. IEEE Trans. Veh. Technol. 2023;72:5317–5331. doi: 10.1109/TVT.2022.3233880. DOI
Namrata S., Swapnil A., Tanya A., Pavan K.M.-V. Based Resource Allocation Scheme for 5G CRAN Networks; Proceedings of the 2018 3rd International Conference and Workshops on Recent Advances and Innovations in Engineering (ICRAIE); Jaipur, India. 22–25 November 2018; pp. 22–25.
Bajracharya R., Shrestha R., Ali R., Musaddiq A., Kim S.W. LWA in 5G: State-of-the-Art Architecture, Opportunities, and Research Challenges. IEEE Commun. Mag. 2018;56:134–141. doi: 10.1109/MCOM.2018.1701177. DOI
Mao Y., Zhu Y., Tang Z., Chen Z. A Novel Airspace Planning Algorithm for Cooperative Target Localization. Electronics. 2022;11:2950. doi: 10.3390/electronics11182950. DOI
Liu Q., Han T., Ansari N. Energy-Efficient On-Demand Resource Provisioning in Cloud Radio Access Networks. IEEE Trans. Green Commun. Netw. 2019;3:1142–1151. doi: 10.1109/TGCN.2019.2926287. DOI
Zhao Z., Verma G., Rao C., Swami A., Segarra S. Link Scheduling using Graph Neural Networks. arXiv. 2022 doi: 10.1109/TWC.2022.3222781.2109.05536 DOI
Zhang X., Jia M., Gu X., Guo Q. An Energy-Efficient Resource Allocation Scheme Based on Cloud-Computing in H-CRAN. IEEE Internet Things J. 2019;6:4968–4976. doi: 10.1109/JIOT.2019.2894000. DOI
Lin X., Wang S. Efficient remote radio head switching scheme in cloud radio access network: A load balancing perspective; Proceedings of the IEEE INFOCOM 2017-IEEE Conference on Computer Communications; Atlanta, GA, USA. 1–4 May 2017; pp. 1–9.
Kumar N., Ahmad A. Cooperative evolution of support vector machine empowered knowledge-based radio resource management for 5G C-RAN. Ad Hoc Netw. 2022;136:10296. doi: 10.1016/j.adhoc.2022.102960. DOI
Naveed A.C., Mudassar A., Saad Q., Muhammad I., Muhammad N., Qamar F. Energy Efficient Resource Allocation for Energy Harvesting Aided H-CRAN. IEEE Access. 2018;6:43990–44001.
Li Y. Predicting potential customers of 5G services via ADTree; Proceedings of the 6th International Conference on Intelligent Computing and Signal Processing (ICSP); Xi’an, China. 9–11 April 2021; pp. 9–11.
Xenofon F., Bozidar R.C. Teaching the 5G vRAN to share compute; Proceedings of the ACM SIGCOMM; New York, NY, USA. 23–27 August 2021; pp. 23–27.
Asokan R., Preethi P. Deep Learning Applications and Intelligent Decision Making in Engineering. IGI Global; Hershey, PA, USA: 2021. Deep learning with conceptual view in meta data for content categorization; pp. 176–191.
Preethi P., Asokan R. Neural network oriented roni prediction for embedding process with hex code encryption in dicom images; Proceedings of the 2020 2nd International Conference on Advances in Computing, Communication Control and Networking (ICACCCN); Greater Noida, India. 18–19 December 2020; pp. 18–19.
Preethi P., Asokan R. A High Secure Medical Image Storing and Sharing in Cloud Environment Using Hex Code Cryptography Method—Secure Genius. J. Med. Imaging Heal. Inform. 2019;9:1337–1345. doi: 10.1166/jmihi.2019.2757. DOI
Bai D.P., Preethi P. Security Enhancement of Health Information Exchange Based on Cloud Computing System. Int. J. Sci. Eng. Res. 2016;4:79–82.
Xin C., Xie B., Shen C.-C. A novel layered graph model for topology formation and routing in dynamic spectrum access networks; Proceedings of the First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005 (DySPAN 2005); Baltimore, MD, USA. 8–11 November 2005.
Loyola-González O. Black-Box vs. White-Box: Understanding Their Advantages and Weaknesses from A Practical Point of View. IEEE Access. 2019;7:154096–154113. doi: 10.1109/ACCESS.2019.2949286. DOI
Rodríguez-Ruiz J., Monroy R., Medina-Pérez M.A., Loyola-González O., Cervantes B. Cluster validation in clustering-based one-class classification. Expert Syst. 2019;36:e12475. doi: 10.1111/exsy.12475. DOI