Association between polymorphism rs2421943 of the insulin-degrading enzyme and schizophrenia: Preliminary report
Language English Country United States Media print-electronic
Document type Journal Article
Grant support
NT14504
Agentura Pro Zdravotnický Výzkum České Republiky
NV18-04-00455
Agentura Pro Zdravotnický Výzkum České Republiky
GP309/09/P361
Grantová Agentura České Republiky
PubMed
37515308
PubMed Central
PMC10492455
DOI
10.1002/jcla.24949
Knihovny.cz E-resources
- Keywords
- candidate gene analyses, genetic association study, insulin-degrading enzyme (IDE), miRNA, schizophrenic disorder, single nucleotide polymorphism (SNP),
- MeSH
- Alzheimer Disease * genetics metabolism MeSH
- Diabetes Mellitus, Type 2 * epidemiology genetics MeSH
- Genotype MeSH
- Insulysin * genetics metabolism MeSH
- Polymorphism, Single Nucleotide genetics MeSH
- Humans MeSH
- Schizophrenia * genetics MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Insulysin * MeSH
BACKGROUND: Insulin-degrading enzyme (IDE) is an important gene in studies of the pathophysiology of type 2 diabetes mellitus (T2DM). Recent studies have suggested a possible link between type 2 diabetes mellitus (T2DM) and the pathophysiology of schizophrenia (SZ). At the same time, significant changes in insulin-degrading enzyme (IDE) gene expression have been found in the brains of people with schizophrenia. These findings highlight the need to further investigate the role of IDE in schizophrenia pathogenesis. METHODS: We enrolled 733 participants from the Czech Republic, including 383 patients with schizophrenia and 350 healthy controls. Our study focused on the single nucleotide polymorphism (SNP) rs2421943 in the IDE gene, which has previously been associated with the pathogenesis of Alzheimer's disease. The SNP was analyzed using the PCR-RFLP method. RESULTS: The G allele of the rs2421943 polymorphism was found to significantly increase the risk of developing SZ (p < 0.01) when a gender-based analysis showed that both AG and GG genotypes were associated with a more than 1.55 times increased risk of SZ in females (p < 0.03) but not in males. Besides, we identified a potential binding site at the G allele locus for has-miR-7110-5p, providing a potential mechanism for the observed association. CONCLUSION: Our results confirm the role of the IDE gene in schizophrenia pathogenesis and suggest that future research should investigate the relationship between miRNA and estrogen influence on IDE expression in schizophrenia pathogenesis.
See more in PubMed
Jablensky A. Epidemiology of schizophrenia: the global burden of disease and disability. Eur Arch Psychiatry Clin Neurosci. 2000;250(6):274‐285. PubMed
Perälä J, Suvisaari J, Saarni SI, et al. Lifetime prevalence of psychotic and bipolar I disorders in a general population. Arch Gen Psychiatry. 2007;64(1):19‐28. PubMed
Janoutová J, Janácková P, Serý O, et al. Epidemiology and risk factors of schizophrenia. Neuro Endocrinol Lett. 2016;37(1):1‐8. PubMed
Leucht S, Cipriani A, Spineli L, et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple‐treatments meta‐analysis. Lancet. 2013;382(9896):951‐962. PubMed
Heald A, Pendlebury J, Anderson S, et al. Lifestyle factors and the metabolic syndrome in schizophrenia: a cross‐sectional study. Ann Gen Psychiatry. 2017;15(16):12. PubMed PMC
Nishtala PS, Chyou TY. Real‐world risk of diabetes with antipsychotic use in older new Zealanders: a case‐crossover study. Eur J Clin Pharmacol. 2017;73(2):233‐239. PubMed
Lotta LA, Gulati P, Day FR, et al. Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance. Nat Genet. 2017;49(1):17‐26. PubMed PMC
Iwani NAKZ, Jalaludin MY, Zin RMWM, et al. Triglyceride to HDL‐C ratio is associated with insulin resistance in overweight and obese children. Sci Rep. 2017;6(7):40055. PubMed PMC
Perry BI, McIntosh G, Weich S, Singh S, Rees K. The association between first‐episode psychosis and abnormal glycaemic control: systematic review and meta‐analysis. Lancet Psychiatry. 2016;3(11):1049‐1058. PubMed
Pillinger T, Beck K, Stubbs B, Howes OD. Cholesterol and triglyceride levels in first‐episode psychosis: systematic review and meta‐analysis. Br J Psychiatry. 2017;211(6):339‐349. PubMed PMC
Lin PI, Shuldiner AR. Rethinking the genetic basis for comorbidity of schizophrenia and type 2 diabetes. Schizophr Res. 2010;123(2–3):234‐243. PubMed
Liu Y, Li Z, Zhang M, Deng Y, Yi Z, Shi T. Exploring the pathogenetic association between schizophrenia and type 2 diabetes mellitus diseases based on pathway analysis. BMC Med Genomics. 2013;6(Suppl 1):S17. PubMed PMC
Sbardella D, Tundo GR, Coletta A, et al. The insulin‐degrading enzyme is an allosteric modulator of the 20S proteasome and a potential competitor of the 19S. Cell Mol Life Sci. 2018;75(18):3441‐3456. PubMed PMC
Farris W, Mansourian S, Chang Y, et al. Insulin‐degrading enzyme regulates the levels of insulin, amyloid beta‐protein, and the beta‐amyloid precursor protein intracellular domain in vivo. Proc Natl Acad Sci U S A. 2003;100(7):4162‐4167. PubMed PMC
Tang WJ. Targeting insulin‐degrading enzyme to treat type 2 diabetes mellitus. Trends Endocrinol Metab. 2016;27(1):24‐34. PubMed PMC
Roth RA, Mesirow ML, Yokono K, Baba S. Degradation of insulin‐like growth factors I and II by a human insulin degrading enzyme. Endocr Res. 1984;10(2):101‐112. PubMed
Safavi A, Miller BC, Cottam L, Hersh LB. Identification of gamma‐endorphin‐generating enzyme as insulin‐degrading enzyme. Biochemistry. 1996;35(45):14318‐14325. PubMed
Bernstein HG, Ernst T, Lendeckel U, et al. Reduced neuronal expression of insulin‐degrading enzyme in the dorsolateral prefrontal cortex of patients with haloperidol‐treated, chronic schizophrenia. J Psychiatr Res. 2009;43(13):1095‐1105. PubMed
Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2017;9(7):a028035. PubMed PMC
Shen Y, Joachimiak A, Rosner MR, Tang WJ. Structures of human insulin‐degrading enzyme reveal a new substrate recognition mechanism. Nature. 2006;443(7113):870‐874. PubMed PMC
Kurochkin IV, Guarnera E, Berezovsky IN. Insulin‐degrading enzyme in the fight against Alzheimer's disease. Trends Pharmacol Sci. 2018;39(1):49‐58. PubMed
Šerý O, Zeman T, Hálová A, et al. Polymorphism Rs2421943 of the insulin‐degrading enzyme gene and the risk of late‐onset Alzheimer's disease. Curr Alzheimer Res. 2022;19(3):236‐245. PubMed
Yang YW, Hsieh TF, Li CI, et al. Increased risk of Parkinson disease with diabetes mellitus in a population‐based study. Medicine (Baltimore). 2017;96(3):e5921. PubMed PMC
Zhao Z, Ksiezak‐Reding H, Riggio S, Haroutunian V, Pasinetti GM. Insulin receptor deficits in schizophrenia and in cellular and animal models of insulin receptor dysfunction. Schizophr Res. 2006;84(1):1‐14. PubMed
Rudovich N, Pivovarova O, Fisher E, et al. Polymorphisms within insulin‐degrading enzyme (IDE) gene determine insulin metabolism and risk of type 2 diabetes. J Mol Med (Berl). 2009;87(11):1145‐1151. PubMed
Bartl J, Scholz CJ, Hinterberger M, et al. Disorder‐specific effects of polymorphisms at opposing ends of the insulin degrading Enzymegene. BMC Med Genet. 2011;12(1):151. PubMed PMC
Lecrubier Y, Sheehan D, Weiller E, et al. The MINI international neuropsychiatric interview (MINI). A short diagnostic structured interview: reliability and validity according to the CIDI. Eur Psychiatry. 1997;12(5):224‐231.
R Core Team . R: A Language and Environment for Statistical Computing. R Core Team; 2013.
Morris JA, Gardner MJ. Calculating confidence intervals for relative risks (odds ratios) and standardised ratios and rates. Br Med J (Clin Res Ed). 1988;296(6632):1313‐1316. PubMed PMC
Giner G, Smyth GK. Statmod: probability calculations for the inverse Gaussian distribution. The R Journal. 2016;8(1):339.
Fishilevich S, Nudel R, Rappaport N, et al. GeneHancer: genome‐wide integration of enhancers and target genes in GeneCards. Database (Oxford). 2017;1(2017):bax028. PubMed PMC
Kozomara A, Birgaoanu M, Griffiths‐Jones S. miRBase: from microRNA sequences to function. Nucleic Acids Res. 2019;47(D1):D155‐D162. PubMed PMC
Tokar T, Pastrello C, Rossos AEM, et al. mirDIP 4.1‐integrative database of human microRNA target predictions. Nucleic Acids Res. 2018;46(D1):D360‐D370. PubMed PMC
Miranda KC, Huynh T, Tay Y, et al. A pattern‐based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006;126(6):1203‐1217. PubMed
Borges DO, Patarrão RS, Ribeiro RT, et al. Loss of postprandial insulin clearance control by insulin‐degrading enzyme drives dysmetabolism traits. Metabolism. 2021;1(118):154735. PubMed
Markham JA. Sex steroids and schizophrenia. Rev Endocr Metab Disord. 2012;13(3):187‐207. PubMed
Nawka A, Kalisova L, Raboch J, et al. Gender differences in coerced patients with schizophrenia. BMC Psychiatry. 2013;13(1):257. PubMed PMC
Frydecka D, Misiak B, Pawlak‐Adamska E, et al. Sex differences in TGFB‐β signaling with respect to age of onset and cognitive functioning in schizophrenia. Neuropsychiatr Dis Treat. 2015;11:575‐584. PubMed PMC
Li R, Ma X, Wang G, Yang J, Wang C. Why sex differences in schizophrenia? J Transl Neurosci (Beijing). 2016;1(1):37‐42. PubMed PMC
Zhao L, Yao J, Mao Z, Chen S, Wang Y, Brinton RD. 17β‐estradiol regulates insulin‐degrading enzyme expression via an ERβ/PI3‐K pathway in hippocampus: relevance to Alzheimer's prevention. Neurobiol Aging. 2011;32(11):1949‐1963. https://pubmed.ncbi.nlm.nih.gov/20053478/ PubMed PMC
Kullmann S, Heni M, Hallschmid M, Fritsche A, Preissl H, Häring HU. Brain insulin resistance at the crossroads of metabolic and cognitive disorders in humans. Physiol Rev. 2016;96(4):1169‐1209. PubMed
Altar CA, Vawter MP, Ginsberg SD. Target identification for CNS diseases by transcriptional profiling. Neuropsychopharmacology. 2009;34(1):18‐54. PubMed PMC
Mowry BJ, Ewen KR, Nancarrow DJ, et al. Second stage of a genome scan of schizophrenia: study of five positive regions in an expanded sample. Am J Med Genet. 2000;96(6):864‐869. PubMed
Lerer B, Segman RH, Hamdan A, et al. Genome scan of Arab Israeli families maps a schizophrenia susceptibility gene to chromosome 6q23 and supports a locus at chromosome 10q24. Mol Psychiatry. 2003;8(5):488‐498. PubMed
Devlin B, Klei L, Myles‐Worsley M, et al. Genetic liability to schizophrenia in oceanic Palau: a search in the affected and maternal generation. Hum Genet. 2007;121(6):675‐684. PubMed
Caravaggio F, Hahn M, Nakajima S, Gerretsen P, Remington G, Graff‐Guerrero A. Reduced insulin‐receptor mediated modulation of striatal dopamine release by basal insulin as a possible contributing factor to hyperdopaminergia in schizophrenia. Med Hypotheses. 2015;85(4):391‐396. PubMed PMC
Agarwal SM, Kowalchuk C, Castellani L, et al. Brain insulin action: implications for the treatment of schizophrenia. Neuropharmacology. 2020;15(168):107655. PubMed
Martín‐Martín Y, Pérez‐García A, Torrecilla‐Parra M, et al. New insights on the regulation of the insulin‐degrading enzyme: role of microRNAs and RBPs. Cell. 2022;11(16):2538. PubMed PMC
Shi Q, Ge D, Yang Q, Wang L, Fu J. MicroRNA profiling of cerebrospinal fluid from patients with intracerebral haemorrhage. Front Lab Med. 2018;2(4):141‐145.
Priyanka P, Panagal M, Sivakumar P, et al. Identification, expression, and methylation of miR‐7110 and its involvement in type 1 diabetes mellitus. Gene Rep. 2018;1(11):229‐234.