Mechanical and Fatigue Properties of Diamond-Reinforced Cu and Al Metal Matrix Composites Prepared by Cold Spray

. 2022 ; 31 (1-2) : 217-233. [epub] 20220126

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37520916

Diamond-reinforced metal matrix composites (DMMC) prepared by cold spray are emerging materials simultaneously featuring outstanding thermal conductivity and wear resistance. In our paper, their mechanical and fatigue properties relevant to perspective engineering applications were investigated using miniature bending specimens. Two different diamond mass concentrations (20 and 50%) embedded in two metal matrices (Al-lighter than diamond, Cu-heavier than diamond) were compared with the respective cold-sprayed pure metals, as well as bulk Al and Cu references. The pure Al, Cu coatings showed properties typical for cold spray deposits, i.e., decreased elastic moduli (50 GPa for Al, 80 GPa for Cu), limited ductility (< 1 × 10-3) and low fracture toughness (3.8 MPa·m0.5 for Al, 5.6 MPa·m0.5 for Cu) when compared to the bulks. Significantly improved properties (strain at fracture, ultimate strength, fatigue crack growth resistance, fracture toughness) were then observed for the produced DMMC. The improvement can be explained by a combination of two factors: changes in the properties of the metallic matrix triggered by the reinforcement particles peening effect and stress redistribution due to the particles presence.

Zobrazit více v PubMed

S.V. Kidalov and F.M. Shakhov, Thermal Conductivity of Diamond Composites, Materials, 2009, 2(4), p 2467–2495. 10.3390/MA2042467

S. Yin et al., Advanced Diamond-Reinforced Metal Matrix Composites via Cold Spray: Properties and Deposition Mechanism, Compos. B Eng., 2017, 113, p 44–54. 10.1016/j.compositesb.2017.01.009

A.M. Abyzov et al., Diamond-Tungsten Based Coating-Copper Composites with High Thermal Conductivity Produced by Pulse Plasma Sintering, Mater. Des., 2015, 76, p 97–109. 10.1016/j.matdes.2015.03.056

J. Li, H. Zhang, Y. Zhang, Z. Che and X. Wang, Microstructure and Thermal Conductivity of Cu/diamond Composites with Ti-coated Diamond Particles Produced by Gas Pressure Infiltration, J. Alloy. Compd., 2015, 647, p 941–946. 10.1016/j.jallcom.2015.06.062

K. Venkateswarlu et al., Abrasive Wear Behavior of Thermally Sprayed Diamond Reinforced Composite Coating Deposited with Both Oxy-acetylene and HVOF Techniques, Wear, 2009, 266, p 995–1002. 10.1016/j.wear.2009.02.001

W.Z. Shao, V.V. Ivanov, L. Zhen, Y.S. Cui and Y. Wang, A Study on Graphitization of Diamond in Copper–Diamond Composite Materials, Mater. Lett., 2004, 58(1–2), p 146–149. 10.1016/S0167-577X(03)00433-6

I.A. Ibrahim, F.A. Mohamed and E.J. Lavernia, Particulate Reinforced Metal Matrix Composites—A Review, J. Mater. Sci., 1991, 26(5), p 1137–1156. 10.1007/BF00544448

H.J. Kim, D.H. Jung, J.H. Jang and C.H. Lee, Study on Metal/Diamond Binary Composite Coatings by Cold Spray, Mater. Sci. Forum, 2007, 534–536, p 441–444. 10.4028/WWW.SCIENTIFIC.NET/MSF.534-536.441

Luzin, V. et al., in Cold-Spray Coatings (Springer International Publishing, 2017), pp. 451–480

S. Yin et al., Metallurgical Bonding Between Metal Matrix and Core-Shelled Reinforcements in Cold Sprayed Composite Coating, Scripta Mater., 2020, 177, p 49–53. 10.1016/j.scriptamat.2019.09.023

B.Y. Zong, F. Zhang, G. Wang and L. Zuo, Strengthening Mechanism of Load Sharing of Particulate Reinforcements in a Metal Matrix Composite, J. Mater. Sci., 2007, 42(12), p 4215–4226. 10.1007/S10853-006-0674-7/FIGURES/12

P.J. Withers, W.M. Stobbs and O.B. Pedersen, The Application of the Eshelby Method of Internal Stress Determination to Short Fibre Metal Matrix Composites, Acta Metall., 1989, 37(11), p 3061–3084. 10.1016/0001-6160(89)90341-6

T. Christman, A. Needleman and S. Suresh, An Experimental and Numerical Study of Deformation in Metal-Ceramic Composites, Acta Metall., 1989, 37(11), p 3029–3050. 10.1016/0001-6160(89)90339-8

N. Fan et al., A New Strategy for Strengthening Additively Manufactured Cold Spray Deposits Through In-process Densification, Addit. Manuf., 2020, 36, 101626. 10.1016/J.ADDMA.2020.101626

O. Kovarik, J. Siegl, J. Cizek, T. Chraska and J. Kondas, Fracture Toughness of Cold Sprayed Pure Metals, J. Therm. Spray Technol., 2019, 29, p 147–157. 10.1007/s11666-019-00956-z

A. Migliori, & J.L. Sarrao, Resonant Ultrasound Spectroscopy, (Willey)

P. Sedlák, H. Seiner, J. Zídek, M. Janovská and M. Landa, Determination of All 21 Independent Elastic Coefficients of Generally Anisotropic Solids by Resonant Ultrasound Spectroscopy: Benchmark Examples, Exp. Mech., 2014, 54, p 1073–1085. 10.1007/s11340-014-9862-6

H. Seiner et al., Application of Ultrasonic Methods to Determine Elastic Anisotropy of Polycrystalline Copper Processed by Equal-Channel Angular Pressing, Acta Mater., 2010, 58(1), p 235–247. 10.1016/J.ACTAMAT.2009.08.071

Cizek, J. et al., Measurement of Mechanical and Fatigue Properties Using Unified, Simple-Geometry Specimens: Cold Spray Additively Manufactured Pure Metals. Surf. Coat. Technol.,412, (2021). Doi:10.1016/j.surfcoat.2021.126929.

H. Herbert, Ueber den Zusammenhang der Biegungselastizität des Gußeisens mit seiner Zug- und Druckelastizität, Forschungsarbeiten auf dem Gebiete des Ingenieurwesens, 1910 10.1007/978-3-662-02218-4_2

J. Blaber, B. Adair and A. Antoniou, Ncorr: Open-Source 2D Digital Image Correlation Matlab Software, Exp. Mech., 2015, 55(6), p 1105–1122. 10.1007/s11340-015-0009-1

R.A. Mayville and I. Finnie, Uniaxial Stress–Strain Curves from a Bending Test, Exp. Mech., 1982, 22(6), p 197–201. 10.1007/BF02326357

O. Kovarik, A. Materna, J. Siegl, J. Cizek and J. Klecka, Fatigue Crack Growth in Plasma-Sprayed Refractory Materials, J. Therm. Spray Technol., 2019, 28(1–2), p 87–97. 10.1007/s11666-018-0790-3

Ľ Ambriško and L. Pešek, Measurement of the Steady State Tearing in Thin Sheets Using the Contactless System, Metall. Res. Technol, 2020, 117, p 310. 10.1051/metal/2020032

T.H. Becker, M. Mostafavi, R.B. Tait and T.J. Marrow, An Approach to Calculate the J-Integral by Digital Image Correlation Displacement Field Measurement, Fatigue Fract. Eng. Mater. Struct., 2012, 35(10), p 971–984. 10.1111/j.1460-2695.2012.01685.x

I. Jandejsek, L. Gajdoš, M. Šperl and D. Vavřík, Analysis of Standard Fracture Toughness Test Based on Digital Image Correlation Data, Eng. Fract. Mech., 2017, 182, p 607–620. 10.1016/j.engfracmech.2017.05.045

X. Song et al., Residual Stresses in Single Particle Splat of Metal Cold Spray Process—Numerical Simulation and Direct Measurement, Mater. Lett., 2018, 230, p 152–156. 10.1016/j.matlet.2018.07.117

Y. Zou et al., Dynamic Recrystallization in the Particle/Particle Interfacial Region of Cold-Sprayed Nickel Coating: Electron Backscatter Diffraction Characterization, Scripta Mater., 2009, 61(9), p 899–902. 10.1016/J.SCRIPTAMAT.2009.07.020

R.K. Roy, Recrystallization Behavior of Commercial Purity Aluminium Alloys, Light Metal Alloys Appl., 2014 10.5772/58385

G. Benchabane, Z. Boumerzoug, I. Thibon and T. Gloriant, Recrystallization of Pure Copper Investigated by Calorimetry and Microhardness, Mater. Charact., 2008, 59(10), p 1425–1428. 10.1016/J.MATCHAR.2008.01.002

B.D. Cullity, Elements of X-ray Diffraction (Addison-Wesley Publishing Company, Inc, Reading, 1978)

L. He and M. Hassani, A Review of the Mechanical and Tribological Behavior of Cold Spray Metal Matrix Composites, J. Therm. Spray Technol., 2020, 29, p 1565–1608. 10.1007/s11666-020-01091-w

L. Weng, Y. Shen, T. Fan and J. Xu, A Study of Interface Damage on Mechanical Properties of Particle-Reinforced Composites, JOM, 2015, 67, p 1499–1504. 10.1007/s11837-015-1413-9

J.K. Shang and R.O. Ritchie, On the Particle-Size Dependence of Fatigue-Crack Propagation Thresholds in SiC-Particulate-Reinforced Aluminum-Alloy Composites: Role of Crack Closure and Crack Trapping, Acta Metall., 1989, 37(8), p 2267–2278. 10.1016/0001-6160(89)90154-5

C. Li and F. Ellyin, On Crack Phases of Particulate-Reinforced Metal Matrix Composites, Fatigue Fract. Eng. Mater. Struct., 1995, 18(11), p 1299–1309. 10.1111/J.1460-2695.1995.TB00856.X

T. Ungár, G. Tichy, J. Gubicza and R.J. Hellmig, Correlation Between Subgrains and Coherently Scattering Domains, Powder Diffr., 2005, 20, p 366–375. 10.1154/1.2135313

S. Dey, N. Gayathri, M. Bhattacharya and P. Mukherjee, In Situ XRD Studies of the Process Dynamics During Annealing in Cold-Rolled Copper, Metall. and Mater. Trans. A, 2016, 47, p 6281–6291. 10.1007/s11661-016-3768-0

S. Kumar, S.K. Reddy and S.V. Joshi, Microstructure and Performance of Cold Sprayed Al-SiC Composite Coatings with High Fraction of Particulates, Surf. Coat. Technol., 2017, 318, p 62–71. 10.1016/j.surfcoat.2016.11.047

C. Smithells, Smithells Metals Reference Book, Elsevier Butterworth-Heinemann, Amsterdam Boston, 2004.

S.F. Ferdous and A. Adnan, Mode-I Fracture Toughness Prediction of Diamond at the Nanoscale, J. Nanomech. Micromech., 2017, 7, p 04017010. 10.1061/(asce)nm.2153-5477.0000130

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...