Application and effectiveness of Methylobacterium symbioticum as a biological inoculant in maize and strawberry crops

. 2024 Feb ; 69 (1) : 121-131. [epub] 20230801

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37526803
Odkazy

PubMed 37526803
PubMed Central PMC10876812
DOI 10.1007/s12223-023-01078-4
PII: 10.1007/s12223-023-01078-4
Knihovny.cz E-zdroje

The effectiveness of Methylobacterium symbioticum in maize and strawberry plants was measured under different doses of nitrogen fertilisation. The biostimulant effect of the bacteria was observed in maize and strawberry plants treated with the biological inoculant under different doses of nitrogen fertiliser compared to untreated plants (control). It was found that bacteria allowed a 50 and 25% decrease in the amount of nitrogen applied in maize and strawberry crops, respectively, and the photosynthetic capacity increased compared with the control plant under all nutritional conditions. A decrease in nitrate reductase activity in inoculated maize plants indicated that the bacteria affects the metabolism of the plant. In addition, inoculated strawberry plants grown with a 25% reduction in nitrogen had a higher concentration of nitrogen in leaves than control plants under optimal nutritional conditions. Again, this indicates that Methylobacterium symbioticum provide an additional supply of nitrogen.

Zobrazit více v PubMed

Abanda-Nkpwatt D, Musch M, Tschiersch J, Boettner M, Schwab W. Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J Exp Bot. 2006;57(15):4025–4032. doi: 10.1093/jxb/erl173. PubMed DOI

Agafonova NV, Kaparullina EN, Doronina NV, Trotsenko YA. Phosphate-solubilizing activity of aerobic Methylobacteria. Microbiology. 2013;82(6):864–867. doi: 10.1134/S0026261714010020. PubMed DOI

Andreote FD, Lacava PT, Gai CS, Araújo WL, Maccheroni W, van Overbeek LS, van Elsas JD, Azevedo JL (2008) Detection of siderophores in endophytic bacteria Methylobacterium Spp. associated with Xylella Fastidiosa subsp. Pauca Pesq Agropec Bres Brasilia 43(5)521–528. 10.1590/S0100-204X2008000400011

Ardanov P, Sessitsch A, Haggman H, Kozyrovska N, Anna Maria P (2012) Methylobacterium Induced endophyte community changes correspond with protection of plants against pathogen attack. PLoS One 7. 10.1371/journal.pone.0046802 PubMed PMC

Borsani O, Díaz P, Monza J. Proline is involved in water stress responses of Lotus corniculatus nitrogen fixing and nitrate fed plants. J Plant Physiol. 1999;155(2):269–273. doi: 10.1016/S0176-1617(99)80018-2. DOI

Cervantes J, López S, Rodríguez B. Detection of the effects of in Weber var. azul by laser induced fluorescence. Plant Sci. 2004;166(4):889–892. doi: 10.1016/j.plantsci.2003.11.029. DOI

Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens G. Controlling eutrophication: nitrogen and phosphorus. Science. 2009;323:1014–1015. doi: 10.1126/science.1167755. PubMed DOI

Daniel RM, Curran MP. A method for the determination of nitrate reductase. J Biochem Biophys Methods. 1981;4(2):131–132. doi: 10.1016/0165-022x(81)90026-9. PubMed DOI

Dourado MN, Andreote FD, Dini-Andreote F, Conti R, Araújo JM, Araújo WL. Analysis of 16S rRNA and mxaF genes reveling insights into Methylobacterium niche-specific plant association. Genet Mol Biol. 2012;35(1):142–148. doi: 10.1590/S1415-47572012005000017. PubMed DOI PMC

Dourado MN, Santos DS, Nunes RL, Costa de Oliveira RLB, Oliveira MV, Araújo WL. Differential gene expression in Xylella fastidiosa during co-cultivation with the endophytic bacterium Methylobacterium mesophilicum SR1.6/6. J Basic Microbiol. 2015;55:1357–1366. doi: 10.1002/jobm.201400916. PubMed DOI

Eke AU, Hill JE, Shannon MC, Rhoades JD, Rodriguez IR, Miller GL. Using near infrared reflectance spectroscopy to schedule nitrogen applications on dwarf-type bermudagrasses. Agron J. 2000;427:423–427. doi: 10.2134/agronj2000.923423x. DOI

Elbeltagy A, Nishioka K, Suzuki H, Sato T, Sato YI, Morisaki H, Mitsui H, Minamisawa K. Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci Plant Nutr. 2000;46:617–629. doi: 10.1080/00380768.2000.10409127. DOI

Giraud E, Vermeglio A. Bacteriophytochromes in anoxygenic photosynthetic bacteria. Photosynth Res. 2008;97:141–153. doi: 10.1007/s11120-008-9323-0. PubMed DOI

Jourand P, Giraud E, Bena G, Sy A, Willems A, Gillis M, Dreyfus B, de Lajudie P. Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol. 2004;54:2269–2273. doi: 10.1099/ijs.0.02902-0. PubMed DOI

Kaiser WM, Huber SC. Post-translational regulation of nitrate reductase in higher plants. Plant Physiol. 1994;106(3):817–821. doi: 10.1104/pp.106.3.817. PubMed DOI PMC

Kjeldahl J. Neue Methode zur Bestimmung des Stickstoffs in organischen Korpern. Fresenius Zeitschrift f Anal Chemie. 1883;22(1):366–382. doi: 10.1007/BF01338151. DOI

Konovalova HM, Shylin SO, Rokytko PV. Characteristics of carotenoids of methylotrophic bacteria of Methylobacterium genus. MikrobiolZ. 2007;69:35–41. PubMed

Kutschera U. Plant-associated methylobacteria as co-evolved phytosymbionts: a hypothesis. Plant Signal Behav. 2007;2:74–78. doi: 10.4161/psb.2.2.4073. PubMed DOI PMC

Kwak MJ, Jeong H, Madhaiyan M, Lee Y, Sa TM, Oh TK, Kim JF (2014) Genome information of Methylobacterium oryzae, a plant-probiotic methylotroph in the phyllosphere. PLoS ONE 9(9). 10.1371/journal.pone.0106704 PubMed PMC

Lim PO, Kim HJ, Gil Nam H. Leaf senescence. Annu Rev Plant Biol. 2007;58(1):115–136. doi: 10.1146/annurev.arplant.57.032905.105316. PubMed DOI

Ling Q, Huang W, Jarvis P. Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynth Res. 2011;107(2):209–214. doi: 10.1007/s11120-010-9606-0. PubMed DOI

Madhaiyan M, Alex THH, Ngoh ST, Prithiviraj B, Ji L. Leaf-residing Methylobacterium species fix nitrogen and promote biomass and seed production in Jatropha curcas. Biotechnol Biofuels. 2015;8(1):1–14. doi: 10.1186/s13068-015-0404-y. PubMed DOI PMC

Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P. Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res. 2016;24(4):3315–3335. doi: 10.1007/s11356-016-8104-0. PubMed DOI

Marx CJ, Bringel F, Chistoserdova L, Moulin L, Ul F, Haque M, Fleischman DE, Vuilleumier S. Complete genome sequences of six strains of the genus Methylobacterium. J Bacteriol. 2012;194(17):4746–4748. doi: 10.1007/s11356-016-8104-0. PubMed DOI PMC

Mus F, Alleman AB, Pence N, Seefeldt LC, Peters JW. Exploring the alternatives of biological nitrogen fixation. Metallomics. 2018;10:523–538. doi: 10.1039/C8MT00038G. PubMed DOI

Nigris S, Baldan E, Zottini M, Squartini A, Baldan B (2013) Is the bacterial endophyte community, living in Glera (Vitis vinifera) plants, active in biocontrol? In: Schneider C, Leifert C, Feldmann F (Eds), Endophytes for plant protection: the state of the art, Deutsche Phytomedizinische Gesellschaft, Braunschweig pp. 12–16. ISBN: 978–3–941261–11–2.

Ohyama, T (2010) Nitrogen as a major essential element of plants. In: Ohyama, T. and Sueyoshi, K., Eds., Nitrogen assimilation in plants, Research Singpot, Kerala, 1–18. ISBN: 978–81–308–0406–4 by pink-pigmented facultative methylotrophic bacteria (PPFMs). FEMS Microbiol Ecol 47:319–326. 10.1016/S0168-6496(04)00003-0

Omer ZS, Tombolini R, Gerhardson B. Plant colonization by pink-pigmented facultative methylotrophic bacteria (PPFMs) FEMS Microbiol Ecol. 2004;47(3):319–326. doi: 10.1016/S0168-6496(04)00003-0L379. PubMed DOI

Pascual JA, Ros M, Martínez J, Carmona F, Bernabé A, Torres R, Fernández F. Methylobacterium symbioticum sp. nov., a new species isolated from spores of Glomus iranicum var. tenuihypharum. Curr Microbiol. 2020;77(9):2031–2041. doi: 10.1007/s00284-020-02101-4. PubMed DOI

Patt TE, Cole GC, Hanson RS. Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol. 1976;26:226–229. doi: 10.1099/00207713-26-2-226. DOI

Pillay VK, Nowak J. Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium. Can J Microbiol. 1997;43(4):354–361. doi: 10.1139/m97-049. DOI

Priya M, Kumutha K, Senthilkumar M. Impact of bacterization of Rhizobium and Methylobacterium radiotolerans on germination and survivability in groundnut seed. Int J Curr Microbiol App Sci. 2019;8:394–405. doi: 10.20546/ijcmas.2019.808.045. DOI

Romanovskaya VA, Stolyar SM, Malashenko YR, Dodatko TN. The ways of plant colonization by Methylobacterium strains and properties of these bacteria. Microbiology. 1999;70(2):221–227. doi: 10.1023/A:1010441900060. PubMed DOI

Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN. Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett. 2008;278(1):1–9. doi: 10.1111/j.1574-6968.2007.00918.x. PubMed DOI

Schrader LE, Hageman RH. Regulation of nitrate reductase activity in corn (Zea mays L.) seedlings by endogenous metabolites. Plant Physiol. 1967;42(12):1750–1756. doi: 10.1104/pp.42.12.1750. PubMed DOI PMC

Seok H, Munusamy L, Woo C, Seung K, Choi J. Physiological enhancement of early growth of rice seedlings (Oryza sativa L.) by production of phytohormone of N 2 -fixing methylotrophic isolates. Biol Fertil Soils. 2006;42(5):402–408. doi: 10.1007/s00374-006-0083-8. DOI

Shah VK, Ugalde RA, Imperial J, Brill WJ. Molybdenum in nitrogenase. Ann Rev. Biochem. 1984;53:231–257. doi: 10.1146/annurev.bi.53.070184.001311. PubMed DOI

Sharma A, Johri BN. Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res. 2003;158:243–248. doi: 10.1078/0944-5013-00197. PubMed DOI

Sippel D, Einsle O. The structure of vanadium nitrogenase reveals an unusual bridging ligand. Nat Chem Biol. 2017;13(9):956–960. doi: 10.1038/nchembio.2428. PubMed DOI PMC

Sy A, Timmers ACJ, Knief C, Vorholt JA. Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl Environ Microbiol. 2005;71(11):7245–7252. doi: 10.1128/AEM.71.11.7245-7252.2005. PubMed DOI PMC

Tani A, Sahin N, Kimbara K. Methylobacterium oxalidis sp. nov., isolated from leaves of Oxalis corniculata. Int J Syst Evol Microbiol. 2012;62:1647–1652. doi: 10.1099/ijs.0.033019-0. PubMed DOI

Toyama H, Anthony C, Lidstrom ME. Construction of insertion and deletion mxa mutants of Methylobacterium extorquens AM1 by electroporation. FEMS Microbiol Lett. 1998;166:1–7. doi: 10.1111/j.1574-6968.1998.tb13175.x. PubMed DOI

Van Dien SJ, Okubo Y, Hough MT, Korotkova N, Taitano T, Lidstrom ME. Reconstruction of C3 and C4 metabolism in Methylobacterium extorquens AM1 using transposon mutagenesis. Microbiology. 2003;149:601–609. doi: 10.1099/mic.0.25955-0. PubMed DOI

Wanderley Costa IP, Maia LC, Cavalcanti MA. Diversity of leaf endophytic fungi in mangrove plants of northeast Brazil. Braz J Microbiol. 2012;43(3):1165–1173. doi: 10.1590/S1517-838220120003000044. PubMed DOI PMC

Wang Y, Wang D, Shi P, Omasa K. Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light. Plant Methods. 2014;10(1):36. doi: 10.1186/1746-4811-10-36. PubMed DOI PMC

Wellner SA, Lodders N, Kampfer P. Methylobacterium cerastii sp. nov., isolated from the leaf surface of Cerastium holosteoides. Int J Syst Evol Microbiol. 2012;62:917–924. doi: 10.1099/ijs.0.030767-0. PubMed DOI

Yim WJ, Chauhan PS, Madhaiyan M, Tipayno SC, Sa TM. Plant growth promontory attributes by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing Methylobacterium oryzae strains isolated from rice. In: Gilkes RJ, Prakongkep N, editors. 19th world congress of soil science, soil solutions for a changing world. Brisbane, Australia: International Union of Soil Sciences; 2010.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...