Stacked or Folded? Impact of Chelate Cooperativity on the Self-Assembly Pathway to Helical Nanotubes from Dinucleobase Monomers
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37531225
PubMed Central
PMC10436278
DOI
10.1021/jacs.3c04773
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Self-assembled nanotubes exhibit impressive biological functions that have always inspired supramolecular scientists in their efforts to develop strategies to build such structures from small molecules through a bottom-up approach. One of these strategies employs molecules endowed with self-recognizing motifs at the edges, which can undergo either cyclization-stacking or folding-polymerization processes that lead to tubular architectures. Which of these self-assembly pathways is ultimately selected by these molecules is, however, often difficult to predict and even to evaluate experimentally. We show here a unique example of two structurally related molecules substituted with complementary nucleobases at the edges (i.e., G:C and A:U) for which the supramolecular pathway taken is determined by chelate cooperativity, that is, by their propensity to assemble in specific cyclic structures through Watson-Crick pairing. Because of chelate cooperativities that differ in several orders of magnitude, these molecules exhibit distinct supramolecular scenarios prior to their polymerization that generate self-assembled nanotubes with different internal monomer arrangements, either stacked or coiled, which lead at the same time to opposite helicities and chiroptical properties.
Zobrazit více v PubMed
Hayden O.; Nielsch K.. Molecular- and Nano-Tubes; Springer US: Boston, MA, 2011.
García-Fandiño R.; Amorín M.; Granja J. R.. Synthesis of Supramolecular Nanotubes. In Supramolecular Chemistry; Wiley, 2012.
Bharat T. A. M.; Castillo Menendez L. R.; Hagen W. J. H.; Lux V.; Igonet S.; Schorb M.; Schur F. K. M.; Kräusslich H.-G.; Briggs J. A. G. Cryo-electron microscopy of tubular arrays of HIV-1 Gag resolves structures essential for immature virus assembly. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 8233–8238. 10.1073/pnas.1401455111. PubMed DOI PMC
Dutzler R.; Campbell E. B.; Cadene M.; Chait B. T.; MacKinnon R. X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 2002, 415, 287–294. 10.1038/415287a. PubMed DOI
Shimizu T. Self-Assembly of Discrete Organic Nanotubes. Bull. Chem. Soc. Jpn. 2018, 91, 623–668. 10.1246/bcsj.20170424. DOI
Shimizu T.; Ding W.; Kameta N. Soft-Matter Nanotubes: A Platform for Diverse Functions and Applications. Chem. Rev. 2020, 120, 2347–2407. 10.1021/acs.chemrev.9b00509. PubMed DOI
Shimizu T.; Masuda M.; Minamikawa H. Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. Chem. Rev. 2005, 105, 1401–1444. 10.1021/cr030072j. PubMed DOI
Chapman R.; Danial M.; Koh M. L.; Jolliffe K. A.; Perrier S. Design and properties of functional nanotubes from the self-assembly of cyclic peptide templates. Chem. Soc. Rev. 2012, 41, 6023–6041. 10.1039/c2cs35172b. PubMed DOI
Gong B.; Shao Z. Self-Assembling Organic Nanotubes with Precisely Defined, Sub-nanometer Pores: Formation and Mass Transport Characteristics. Acc. Chem. Res. 2013, 46, 2856–2866. 10.1021/ar400030e. PubMed DOI
Shimizu L. S.; Salpage S. R.; Korous A. A. Functional Materials from Self-Assembled Bis-urea Macrocycles. Acc. Chem. Res. 2014, 47, 2116–2127. 10.1021/ar500106f. PubMed DOI
Fuertes A.; Juanes M.; Granja J. R.; Montenegro J. Supramolecular functional assemblies: dynamic membrane transporters and peptide nanotubular composites. Chem. Commun. 2017, 53, 7861–7871. 10.1039/C7CC02997G. PubMed DOI
Picini F.; Schneider S.; Gavat O.; Vargas Jentzsch A.; Tan J.; Maaloum M.; Strub J.-M.; Tokunaga S.; Lehn J.-M.; Moulin E.; Giuseppone N. Supramolecular Polymerization of Triarylamine-Based Macrocycles into Electroactive Nanotubes. J. Am. Chem. Soc. 2021, 143, 6498–6504. 10.1021/jacs.1c00623. PubMed DOI
Bae K.; Lee D. G.; Khazi M. I.; Kim J. M. Stimuli-Responsive Polydiacetylene Based on the Self-Assembly of a Mercury-Bridged Macrocyclic Diacetylene Dimer. Macromolecules 2022, 55, 2882–2891. 10.1021/acs.macromol.1c02583. DOI
Roesner E. K.; Asheghali D.; Kirillova A.; Strauss M. J.; Evans A. M.; Becker M. L.; Dichtel W. R. Arene–perfluoroarene interactions confer enhanced mechanical properties to synthetic nanotubes. Chem. Sci. 2022, 13, 2475–2480. 10.1039/D1SC05932G. PubMed DOI PMC
Yashima E.; Ousaka N.; Taura D.; Shimomura K.; Ikai T.; Maeda K. Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chem. Rev. 2016, 116, 13752–13990. 10.1021/acs.chemrev.6b00354. PubMed DOI
Mayoral M. J.; Bilbao N.; González-Rodríguez D. Hydrogen-Bonded Macrocyclic Supramolecular Systems in Solution and on Surfaces. ChemistryOpen 2016, 5, 10–32. 10.1002/open.201500171. PubMed DOI PMC
Aparicio F.; Mayoral M. J.; Montoro-García C.; González-Rodríguez D. Guidelines for the assembly of hydrogen-bonded macrocycles. Chem. Commun. 2019, 55, 7277–7299. 10.1039/C9CC03166A. PubMed DOI
Chamorro P. B.; Aparicio F. Chiral nanotubes self-assembled from discrete non-covalent macrocycles. Chem. Commun. 2021, 57, 12712–12724. 10.1039/D1CC04968B. PubMed DOI
Beingessner R. L.; Fan Y.; Fenniri H. Molecular and supramolecular chemistry of rosette nanotubes. RSC Adv. 2016, 6, 75820–75838. 10.1039/C6RA16315G. DOI
Stefan L.; Monchaud D. Applications of guanine quartets in nanotechnology and chemical biology. Nat. Rev. Chem. 2019, 3, 650–668. 10.1038/s41570-019-0132-0. DOI
Yagai S.; Kitamoto Y.; Datta S.; Adhikari B. Supramolecular Polymers Capable of Controlling Their Topology. Acc. Chem. Res. 2019, 52, 1325–1335. 10.1021/acs.accounts.8b00660. PubMed DOI
Jonkheijm P.; Miura A.; Zdanowska M.; Hoeben F. J. M.; De Feyter S.; Schenning A. P. H. J.; De Schryver F. C.; Meijer E. W. π-Conjugated Oligo-(p-phenylenevinylene) Rosettes and Their Tubular Self-Assembly. Angew. Chem., Int. Ed. 2004, 43, 74–78. 10.1002/anie.200352790. PubMed DOI
Schuster G. B.; Cafferty B. J.; Karunakaran S. C.; Hud N. V. Water-Soluble Supramolecular Polymers of Paired and Stacked Heterocycles: Assembly, Structure, Properties, and a Possible Path to Pre-RNA. J. Am. Chem. Soc. 2021, 143, 9279–9296. 10.1021/jacs.0c13081. PubMed DOI
Tripathi P.; Shuai L.; Joshi H.; Yamazaki H.; Fowle W. H.; Aksimentiev A.; Fenniri H.; Wanunu M. Rosette Nanotube Porins as Ion Selective Transporters and Single-Molecule Sensors. J. Am. Chem. Soc. 2020, 142, 1680–1685. 10.1021/jacs.9b10993. PubMed DOI PMC
Fukino T.; Joo H.; Hisada Y.; Obana M.; Yamagishi H.; Hikima T.; Takata M.; Fujita N.; Aida T. Manipulation of Discrete Nanostructures by Selective Modulation of Noncovalent Forces. Science 2014, 344, 499–504. 10.1126/science.1252120. PubMed DOI
Huang Z.; Kang S.-K.; Banno M.; Yamaguchi T.; Lee D.; Seok C.; Yashima E.; Lee M. Pulsating Tubules from Noncovalent Macrocycles. Science 2012, 337, 1521–1526. 10.1126/science.1224741. PubMed DOI
Tashiro K.; Saito T.; Arima H.; Suda N.; Vedhanarayanan B.; Yagai S. Scissor-Shaped Photochromic Dyads: Hierarchical Self-Assembly and Photoresponsive Property. Chem. Rec. 2022, 22, e20210025210.1002/tcr.202100252. PubMed DOI
Shi Q.; Javorskis T.; Bergquist K.-E.; Ulčinas A.; Niaura G.; Matulaitienė I.; Orentas E.; Wärnmark K. Stimuli-controlled self-assembly of diverse tubular aggregates from one single small monomer. Nat. Commun. 2017, 8, 1494310.1038/ncomms14943. PubMed DOI PMC
Liu C.-Z.; Yan M.; Wang H.; Zhang D.-W.; Li Z.-T. Making Molecular and Macromolecular Helical Tubes: Covalent and Noncovalent Approaches. ACS Omega 2018, 3, 5165–5176. 10.1021/acsomega.8b00681. PubMed DOI PMC
Balbo Block M. A.; Kaiser C.; Khan A.; Hecht S.. Discrete Organic Nanotubes Based on a Combination of Covalent and Non-Covalent Approaches. In Functional Molecular Nanostructures; Schlüter A. D., Ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2005; pp 89–150.
Vázquez-González V.; Mayoral M. J.; Chamorro R.; Hendrix M. M. R. M.; Voets I. K.; González-Rodríguez D. Noncovalent Synthesis of Self-Assembled Nanotubes through Decoupled Hierarchical Cooperative Processes. J. Am. Chem. Soc. 2019, 141, 16432–16438. 10.1021/jacs.9b07868. PubMed DOI
Vázquez-González V.; Mayoral M. J.; Aparicio F.; Martinez-Arjona P.; Gonzalez-Rodriguez D. The Role of Peripheral Amide Groups as Hydrogen-Bonding Directors in the Tubular Self-Assembly of Dinucleobase Monomers. ChemPlusChem 2021, 86, 1087–1096. 10.1002/cplu.202100255. PubMed DOI PMC
Aparicio F.; Chamorro P. B.; Chamorro R.; Casado S.; González-Rodríguez D. Nanostructured Micelle Nanotubes Self-Assembled from Dinucleobase Monomers in Water. Angew. Chem., Int. Ed. 2020, 59, 17091–17096. 10.1002/anie.202006877. PubMed DOI
Chamorro P. B.; Aparicio F.; Chamorro R.; Bilbao N.; Casado S.; González-Rodríguez D. Exploring the tubular self-assembly landscape of dinucleobase amphiphiles in water. Org. Chem. Front. 2021, 8, 686–696. 10.1039/D0QO01110J. DOI
Montoro-García C.; Camacho-García J.; López-Pérez A. M.; Bilbao N.; Romero-Pérez S.; Mayoral M. J.; González-Rodríguez D. High-Fidelity Noncovalent Synthesis of Hydrogen-Bonded Macrocyclic Assemblies. Angew. Chem., Int. Ed. 2015, 54, 6780–6784. 10.1002/anie.201501321. PubMed DOI
Montoro-García C.; Camacho-García J.; López-Pérez A. M.; Mayoral M. J.; Bilbao N.; González-Rodríguez D. Role of the Symmetry of Multipoint Hydrogen Bonding on Chelate Cooperativity in Supramolecular Macrocyclization Processes. Angew. Chem., Int. Ed. 2016, 55, 223–227. 10.1002/anie.201508854. PubMed DOI
Jorgensen W. L.; Pranata J. Importance of secondary interactions in triply hydrogen bonded complexes: guanine-cytosine vs uracil-2,6-diaminopyridine. J. Am. Chem. Soc. 1990, 112, 2008–2010. 10.1021/ja00161a061. DOI
Camacho-García J.; Montoro-García C.; López-Perez A. M.; Bilbao N.; Romero-Pérez S.; González-Rodríguez D. Synthesis and complementary self-association of novel lipophilic [small pi]-conjugated nucleoside oligomers. Org. Biomol. Chem. 2015, 13, 4506–4513. 10.1039/C5OB00098J. PubMed DOI
Mayoral M. J.; Camacho-Garcia J.; Magdalena-Estirado E.; Blanco-Lomas M.; Fadaei E.; Montoro-Garcia C.; Serrano-Molina D.; Gonzalez-Rodriguez D. Dye-conjugated complementary lipophilic nucleosides as useful probes to study association processes by fluorescence resonance energy transfer. Org. Biomol. Chem. 2017, 15, 7558–7565. 10.1039/C7OB01930K. PubMed DOI
Serrano-Molina D.; de Juan A.; González-Rodríguez D. Dinucleoside-Based Macrocycles Displaying Unusually Large Chelate Cooperativities. Chem. Rec. 2021, 21, 480–497. 10.1002/tcr.202000141. PubMed DOI
Romero-Pérez S.; Camacho-García J.; Montoro-García C.; López-Pérez A. M.; Sanz A.; Mayoral M. J.; González-Rodríguez D. G-Arylated Hydrogen-Bonded Cyclic Tetramer Assemblies with Remarkable Thermodynamic and Kinetic Stability. Org. Lett. 2015, 17, 2664–2667. 10.1021/acs.orglett.5b01042. PubMed DOI
Montoro-García C.; Mayoral M. J.; Chamorro R.; González-Rodríguez D. How Large Can We Build a Cyclic Assembly? Impact of Ring Size on Chelate Cooperativity in Noncovalent Macrocyclizations. Angew. Chem., Int. Ed. 2017, 56, 15649–15653. 10.1002/anie.201709563. PubMed DOI
Montoro-García C.; Bilbao N.; Tsagri I. M.; Zaccaria F.; Mayoral M. J.; Fonseca Guerra C.; González-Rodríguez D. Impact of Conformational Effects on the Ring–Chain Equilibrium of Hydrogen-Bonded Dinucleosides. Chem.–Eur. J. 2018, 24, 11983–11991. 10.1002/chem.201801704. PubMed DOI
Mayoral M. J.; Serrano-Molina D.; Camacho-García J.; Magdalena-Estirado E.; Blanco-Lomas M.; Fadaei E.; González-Rodríguez D. Understanding complex supramolecular landscapes: non-covalent macrocyclization equilibria examined by fluorescence resonance energy transfer. Chem. Sci. 2018, 9, 7809–7821. 10.1039/C8SC03229G. PubMed DOI PMC
Serrano-Molina D.; Montoro-García C.; Mayoral M. J.; de Juan A.; González-Rodríguez D. Self-Sorting Governed by Chelate Cooperativity. J. Am. Chem. Soc. 2022, 144, 5450–5460. 10.1021/jacs.1c13295. PubMed DOI PMC
Bilbao N.; Destoop I.; De Feyter S.; González-Rodríguez D. Two-Dimensional Nanoporous Networks Formed by Liquid-to-Solid Transfer of Hydrogen-Bonded Macrocycles Built from DNA Bases. Angew. Chem., Int. Ed. 2016, 55, 659–663. 10.1002/anie.201509233. PubMed DOI
Chamorro R.; de Juan-Fernández L.; Nieto-Ortega B.; Mayoral M. J.; Casado S.; Ruiz-González L.; Pérez E. M.; González-Rodríguez D. Reversible dispersion and release of carbon nanotubes via cooperative clamping interactions with hydrogen-bonded nanorings. Chem. Sci. 2018, 9, 4176–4184. 10.1039/C8SC00843D. PubMed DOI PMC
Garcia F.; Korevaar P. A.; Verlee A.; Meijer E. W.; Palmans A. R. A.; Sanchez L. The influence of [small pi]-conjugated moieties on the thermodynamics of cooperatively self-assembling tricarboxamides. Chem. Commun. 2013, 49, 8674–8676. 10.1039/c3cc43845g. PubMed DOI
Chan A. K.-W.; Wong K. M.-C.; Yam V. W.-W. Supramolecular Assembly of Isocyanorhodium(I) Complexes: An Interplay of Rhodium(I)···Rhodium(I) Interactions, Hydrophobic–Hydrophobic Interactions, and Host–Guest Chemistry. J. Am. Chem. Soc. 2015, 137, 6920–6931. 10.1021/jacs.5b03396. PubMed DOI
Valera J. S.; Gómez R.; Sánchez L. Supramolecular Polymerization of [5]Helicenes. Consequences of Self-Assembly on Configurational Stability. Org. Lett. 2018, 20, 2020–2023. 10.1021/acs.orglett.8b00565. PubMed DOI
Mayoral M. J.; Guilleme J.; Calbo J.; Arago J.; Aparicio F.; Orti E.; Torres T.; Gonzalez-Rodriguez D. Dual-Mode Chiral Self-Assembly of Cone-Shaped Subphthalocyanine Aromatics. J. Am. Chem. Soc. 2020, 142, 21017–21031. 10.1021/jacs.0c07291. PubMed DOI
Helmers I.; Ghosh G.; Albuquerque R. Q.; Fernández G. Pathway and Length Control of Supramolecular Polymers in Aqueous Media via a Hydrogen Bonding Lock. Angew. Chem., Int. Ed. 2021, 60, 4368–4376. 10.1002/anie.202012710. PubMed DOI PMC
Wu A.; Isaacs L. Self-Sorting: The Exception or the Rule?. J. Am. Chem. Soc. 2003, 125, 4831–4835. 10.1021/ja028913b. PubMed DOI
Safont-Sempere M. M.; Fernández G.; Würthner F. Self-Sorting Phenomena in Complex Supramolecular Systems. Chem. Rev. 2011, 111, 5784–5814. 10.1021/cr100357h. PubMed DOI
Aratsu K.; Prabhu D. D.; Iwawaki H.; Lin X.; Yamauchi M.; Karatsu T.; Yagai S. Self-sorting regioisomers through the hierarchical organization of hydrogen-bonded rosettes. Chem. Commun. 2016, 52, 8211–8214. 10.1039/C6CC03419E. PubMed DOI
Kitamoto Y.; Pan Z.; Prabhu D. D.; Isobe A.; Ohba T.; Shimizu N.; Takagi H.; Haruki R.; Adachi S.-i.; Yagai S. One-shot preparation of topologically chimeric nanofibers via a gradient supramolecular copolymerization. Nat. Commun. 2019, 10, 457810.1038/s41467-019-12654-z. PubMed DOI PMC
Takahashi S.; Yagai S. Harmonizing Topological Features of Self-Assembled Fibers by Rosette-Mediated Random Supramolecular Copolymerization and Self-Sorting of Monomers by Photo-Cross-Linking. J. Am. Chem. Soc. 2022, 144, 13374–13383. 10.1021/jacs.2c05484. PubMed DOI
Kang J.; Miyajima D.; Mori T.; Inoue Y.; Itoh Y.; Aida T. A rational strategy for the realization of chain-growth supramolecular polymerization. Science 2015, 347, 646–651. 10.1126/science.aaa4249. PubMed DOI
Haedler A. T.; Meskers S. C. J.; Zha R. H.; Kivala M.; Schmidt H.-W.; Meijer E. W. Pathway Complexity in the Enantioselective Self-Assembly of Functional Carbonyl-Bridged Triarylamine Trisamides. J. Am. Chem. Soc. 2016, 138, 10539–10545. 10.1021/jacs.6b05184. PubMed DOI
Zhang W.; Jin W.; Fukushima T.; Mori T.; Aida T. Helix Sense-Selective Supramolecular Polymerization Seeded by a One-Handed Helical Polymeric Assembly. J. Am. Chem. Soc. 2015, 137, 13792–13795. 10.1021/jacs.5b09878. PubMed DOI
Sarkar S.; Sarkar A.; George S. J. Stereoselective Seed-Induced Living Supramolecular Polymerization. Angew. Chem., Int. Ed. 2020, 59, 19841–19845. 10.1002/anie.202006248. PubMed DOI
Sarkar S.; Sarkar A.; Som A.; Agasti S. S.; George S. J. Stereoselective Primary and Secondary Nucleation Events in Multicomponent Seeded Supramolecular Polymerization. J. Am. Chem. Soc. 2021, 143, 11777–11787. 10.1021/jacs.1c05642. PubMed DOI
Arja K.; Selegård R.; Paloncýová M.; Linares M.; Lindgren M.; Norman P.; Aili D.; Nilsson K. P. R. Self-Assembly of Chiro-Optical Materials from Nonchiral Oligothiophene-Porphyrin Derivatives and Random Coil Synthetic Peptides. ChemPlusChem 2023, 88, e20220026210.1002/cplu.202200262. PubMed DOI
Zhang L.; Zhang G.; Qu H.; Todarwal Y.; Wang Y.; Norman P.; Linares M.; Surin M.; Zhang H.-J.; Lin J.; Jiang Y.-B. Naphthodithiophene Diimide Based Chiral π-Conjugated Nanopillar Molecules. Angew. Chem., Int. Ed. 2021, 60, 24543–24548. 10.1002/anie.202107893. PubMed DOI
Bäck M.; Selegård R.; Todarwal Y.; Nyström S.; Norman P.; Linares M.; Hammarström P.; Lindgren M.; Nilsson K. P. R. Tyrosine Side-Chain Functionalities at Distinct Positions Determine the Chirooptical Properties and Supramolecular Structures of Pentameric Oligothiophenes. ChemistryOpen 2020, 9, 1100–1108. 10.1002/open.202000144. PubMed DOI PMC
Linares M.; Sun H.; Biler M.; Andréasson J.; Norman P. Elucidating DNA binding of dithienylethenes from molecular dynamics and dichroism spectra. Phys. Chem. Chem. Phys. 2019, 21, 3637–3643. 10.1039/C8CP05326J. PubMed DOI
Selegård R.; Rouhbakhsh Z.; Shirani H.; Johansson L. B. G.; Norman P.; Linares M.; Aili D.; Nilsson K. P. R. Distinct Electrostatic Interactions Govern the Chiro-Optical Properties and Architectural Arrangement of Peptide–Oligothiophene Hybrid Materials. Macromolecules 2017, 50, 7102–7110. 10.1021/acs.macromol.7b01855. DOI
Holmgaard List N.; Knoops J.; Rubio-Magnieto J.; Idé J.; Beljonne D.; Norman P.; Surin M.; Linares M. Origin of DNA-Induced Circular Dichroism in a Minor-Groove Binder. J. Am. Chem. Soc. 2017, 139, 14947–14953. 10.1021/jacs.7b05994. PubMed DOI
Sun H.; Hunter C. A.; Navarro C.; Turega S. Relationship between Chemical Structure and Supramolecular Effective Molarity for Formation of Intramolecular H-Bonds. J. Am. Chem. Soc. 2013, 135, 13129–13141. 10.1021/ja406235d. PubMed DOI